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Abstract

Background: Transcranial direct current stimulation (tDCS) is a non-invasive technique for stimulating the brain that can alter
brain excitability. Prior research has indicated that tDCS has the potential to enhance performance by increasing corticospinal
excitability or improving muscle recruitment strategies.
Objectives: This study aimed to investigate whether tDCS could enhance kinetic parameters of the countermovement jump (CMJ)
in non-elite jumping athletes, specifically focusing on the maximum force, time to maximum force, and rate of force development.
Additionally, the study aimed to assess whether any potential improvements persisted after one week.
Methods: This study involved the participation of 48 healthy individuals within a double-blinded, randomized controlled design.
The participants were randomly assigned to three experimental conditions: Anodal tDCS, sham tDCS, and control. Both the anodal
and sham tDCS groups underwent a series of three intervention sessions, with each session occurring 48 hours apart. Kinetic
assessment of the lower limb during the CMJ was conducted using a force plate before and after these intervention sessions.
Additionally, a follow-up evaluation session was conducted one week after the last intervention session to assess the persistence
of the stimulation effects. The control group underwent kinetic assessments of the lower limb during the CMJ within a similar time
frame as the other groups.
Results: No statistically significant differences were observed for maximum force (P = 0.881), time to maximum force (P = 0.570),
and rate of force development (P = 0.474) between the different conditions at any of the assessed time points.
Conclusions: Our findings indicated that applying 20 minutes of anodal tDCS at 2 mA over the Cz region did not have an impact
on the maximum force, time to maximum force, and rate of force development in the CMJ task among non-elite jumping athletes
when compared to the Sham and Control conditions.

Keywords: tDCS, Biomechanics, Sport Performance

1. Background

The capacity to perform jumps is crucial for achieving
success in numerous sports, including volleyball, diving,
and American football, as it enables athletes to compete
at higher levels. Jumping ability plays a significant role in
these sports and serves as an indicator of lower extremity
strength (1, 2). The countermovement jump (CMJ) is a
vertical jump variation that involves both an eccentric and
concentric phase, resulting in optimal muscle contraction
(3). Over the years, the CMJ has been extensively utilized to
evaluate the effectiveness of different training modalities.
It is widely recognized as one of the most commonly
employed tests for monitoring neuromuscular status in
both individual and team sports (4-6).

The CMJ assessment offers a range of kinetics and
kinematics variables that can be effectively incorporated
into training programs to enhance athletes’ performance
(7). Notably, the rate of force development (RFD), which
is influenced by motor unit activation, has a strong
correlation with an athlete’s explosive power production
and CMJ performance (8). It is reasonable to assume that
improving the biomechanical parameters of the CMJ, such
as RFD, could potentially lead to enhancements in CMJ
performance.

In recent decades, there has been an increasing
emphasis on understanding the role of the brain in
performance limitations and enhancements. Extensive
research has demonstrated the significant influence of
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the brain on physical performance (9, 10). The central
nervous system has the capacity to augment muscle
strength through increased recruitment of motor units.
Consequently, alterations in cortical or corticospinal
excitability can contribute to improved muscle strength
(11). In light of these findings, transcranial direct current
stimulation (tDCS) has emerged as a promising method
for enhancing athletic performance (12).

As a non-invasive, user-friendly, safe, and painless
brain stimulation technique, tDCS has the ability to
modulate the excitability of brain pathways and induce
cortical plasticity (13, 14). By applying a weak direct
current (up to 2 mA for 3 - 20 minutes) to the scalp,
tDCS can effectively regulate cortical excitability. This
technique has the potential to enhance performance by
increasing corticospinal excitability or optimizing muscle
recruitment strategies (15, 16). Furthermore, tDCS has
been shown to improve motor learning and contribute to
enhanced performance (17).

Although the precise mechanisms underlying
muscle strength are not yet fully comprehended, several
factors such as age, gender, neuromuscular and muscle
characteristics, and fatigue are believed to contribute
to this process. Additionally, increased activation of
agonist muscles and motor unit firing rate appear to
influence power generation. In line with this, tDCS has the
potential to enhance strength-related performances, such
as the CMJ, by modulating cortical or corticospinal tract
excitability (18).

There is a growing interest in utilizing tDCS as
a method to enhance athletic performance through
modulation of the motor cortex excitability. Numerous
studies have investigated the impact of tDCS on muscle
strength in healthy individuals (19, 20). While some
studies have reported an increase in strength with tDCS
application (20, 21), other studies have not found a
significant relationship between tDCS and enhanced
muscle strength (22, 23). By examining the effects of tDCS
on the kinetic variables of the CMJ, we can gain insights
into the influence of tDCS on movement strategies (24).
Given the pivotal role of kinetic components in jumping
and the divergent findings of previous research (20-23),
we have undertaken this study.

To date, no study has specifically investigated the
impact of tDCS on the kinetic variables of jumping, which
is a fundamental exercise in numerous sports. In order to
establish a link between potential kinetic improvements
and tDCS, we included a control group that underwent the
same procedure but without any stimulation.

2. Objectives

The objective of this investigation was to assess the
effects of anodal tDCS (a-tDCS) on the kinetic variables of
the CMJ and compare them to both the Sham tDCS and
non-intervention groups.

3. Methods

3.1. Subjects

We conducted a power analysis (G*Power v 3.1) with
a critical P-value of 0.05 and a power of 0.95, based
on a similar study (25), which yielded a sample size
of 48 subjects. Forty-eight young, healthy individuals
(mean ± standard deviations (SD); age: 22.12 ± 2.11 years;
body mass: 65.66 ± 14.41 kg; height: 168.31 ± 11.18 cm),
classified as non-elite athletes in jumping sports like
handball, volleyball, and basketball (up to 3 hours of
training per week), volunteered to participate in this
study. Participants’ anthropometric measurements are
displayed in Table 1. Participants were excluded if they
had orthopedic, cardiovascular, or neurological diseases.
Those who took neuropsychiatric drugs and caffeinated
beverages on the experiment day were also excluded, as
well as those who had severe migraines or a metal plate
in the head. Before starting the study, all participants
signed an informed consent form. The experiment was
approved by the institutional ethics committee of Semnan
University of Medical Sciences (IR.SEMUMS.REC.1399.200).

3.2. General Experimental Design

A double-blinded, randomized, controlled design was
used to investigate the effects of tDCS on the kinetic
parameters of the CMJ. Participants underwent three
experimental conditions: Anodal tDCS, sham tDCS, and
control (non-intervention). In the anodal tDCS and sham
tDCS groups, the kinetic assessment of the lower limb
during CMJ was conducted using a force plate before and
after three intervention sessions, which were spaced 48
hours apart. One week after the last intervention session,
an evaluation session was conducted for these two groups
to assess the persistence of stimulation effects. In the
control group, the kinetic assessment of the lower limbs
during CMJ was evaluated, with a time interval equivalent
to that of the other groups.

3.3. Procedure

Participants visited the laboratory on four occasions.
During the initial session, participants underwent
anthropometric measurements and were familiarized
with the CMJ procedure, as well as the reliability test
for CMJ kinetic measurements. Following a five-minute
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Table 1. Participant Anthropometric Measurements a , b

Groups N Age (y) Male Female Height (cm) Weight (kg)

tDCS 17 22.1 ± 2.0 8 9 169.1 ± 12.1 66.1 ± 14.5

Sham 14 21.6 ± 2.2 7 7 169.4 ± 10.0 67.4 ± 13.6

Control 17 22.5 ± 2.2 8 9 166.6 ± 11.6 63.8 ± 15.5

Abbreviation: tDCS, transcranial direct current stimulation.
a Values are expressed as mean ± SD.
b No significant difference in the age, sex, height, and weight of the participants was present between the groups (all P > 0.05).

warm-up, the second session involved participants
performing three jumps with a one-minute rest interval
between each jump to determine their optimal jump
performance.

After a period of recovery, the participants were seated
on a laboratory chair for the administration of tDCS in
the Anodal tDCS group. An electrical current with an
intensity of 2 mA was delivered for 20 minutes using a
pair of saline-soaked surface electrodes (5 × 7 cm) (26)
connected to a continuous current stimulation device
(Activa DOS2, activatech, USA). The anode was positioned
over the Cz electrode region following the 10 - 20 system
(27), while the cathodal electrode was placed over the right
orbitofrontal cortex. In the sham tDCS group, the setup
mirrored that of the anodal tDCS group, except the current
ceased after 30 seconds. Any adverse effects of tDCS were
assessed based on participants’ reports of discomfort or
unusual sensations. During the third session (48 hours
after the second session), tDCS was administered in a
manner similar to the second session. In the fourth session
(48 hours after the third session), tDCS was administered
in the same way as the second session, followed by the
completion of three CMJs, as depicted in Figure 1. The
control group (non-intervention) solely took part in the
evaluations without any intervention. Factors such as time
of day, sleep, and nutritional status were standardized
across all groups. The evaluator responsible for assessing
the CMJ was blind to the stimulation conditions.

3.4. Countermovement Jump Performance

To execute the CMJ, the athlete initiates from a
standing position. The jump commences with an upward
acceleration originating from below the center of gravity,
with the knees flexed approximately 90 degrees, under
the supervision of the examiner who monitors this
angle. Throughout the jump, the trunk is maintained
in a vertical position to the best extent possible, and the
athlete is instructed to generate maximum height and
perform the jump swiftly. Participants performed the
jump with their arms crossed over the rib cage and hands
resting on their shoulders to minimize the potential
influence from the upper limbs (25).

3.5. Kinetics Evaluation

The data were captured using a force platform (Kistler,
Switzerland, type: 523342) that recorded the vertical
ground reaction force data at a sampling frequency of 1200
Hz. From the conducted trials, only the jump with the
greatest height was chosen for subsequent analysis. Jump
height was determined using the following equation: h =
t2 × 1.22625, where h represents the jump height in meters
and t denotes the flight time of the jump in seconds (28).

MF was defined as the peak value attained during the
positive acceleration phase of the CMJ (25). The positive
acceleration phase commenced when the vertical force
trace exceeded the participant’s body mass subsequent
to the countermovement phase of the jump. Rate of
force development during the jump was determined as
the force-time record difference between the point of
maximum vertical force and the initiation of the positive
acceleration phase, divided by time, and expressed in
N·sec-1 (29). Time to maximum force (TMF) referred to the
duration it took for the positive acceleration phase to reach
the point of maximum force (30).

3.6. Statistical Analysis

All statistical analyses were performed using SPSS
version 25. The data are presented as means ± SD.
The normality assumption was assessed through the
Shapiro-Wilk test, complemented by a visual examination
of histograms and QQ plots, as well as calculations of
skewness and kurtosis. Additionally, Mauchly’s test was
utilized to examine sphericity.

A two-way repeated measures ANOVA was performed
with MF and RFD as the dependent variables. The
within-subjects variable was ’timepoints’ (before the
intervention, after the intervention, and follow-up), and
the between-subjects variable was ’condition’ (tDCS, sham,
and control). The main effects of ’time’ and ’condition,’ as
well as the interaction effects of time × condition, were
analyzed for MF and RFD. Since the normal distribution
assumption was violated, the Friedman test was employed
to assess the impact of conditions on TMF; for Friedman’s
test, effect size estimation was based on Kendall’s W
coefficient of concordance (31). Partial eta squared (η2p)
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Figure 1. Study design overview. tDCS, transcranial direct current stimulation; CMJ, countermovement jump.

was calculated as a measure of effect size for MF and RFD.
The significance level was set to 0.05.

4. Results

To assess the test-retest reliability of the force plate
measurements for the variables under investigation,
participants conducted two maximum CMJs on the force
plate during their initial visit to the laboratory. The
intra-class correlation coefficient (ICC) was computed
to evaluate test-retest reliability. The findings indicated
excellent reliability for the variables of MF (ICC = 0.98),
TMF (ICC = 0.98), and RFD (ICC = 0.99).

4.1. Maximum Force

Figure 2 shows data obtained for MF in CMJ in all
groups. No significant effect was detected for time (F =
1.324; P = 0.271; η2p = 0.029), condition (F = 0.127; P = 0.881;

η2p = 0.006), and condition-time interaction (F = 1.837; P =

0.122; η2p = 0.075) following the intervention.

4.2. Time to Maximum Force

Figure 3 presents the data obtained for TMF in the CMJ
across all groups. Given the violation of the normality
assumption, the Friedman test was utilized to assess
differences. The test did not demonstrate any significant
differences in TMF among the different conditions (χ2

(2) =
1.13, P = 0.57, Kendall’s W = 0.012).

4.3. Rate of Force Development

Figure 4 shows data obtained for RFD in the CMJ in all
groups. No significant effect was detected for time (F =
0.334; P = 0.717; η2p = 0.007), condition (F = 0.76; P = 0.474;

η2p = 0.033), and condition-time interaction (F = 1.86; P =

0.124; η2p = 0.076) following the intervention.
These results indicate that tDCS does not affect MF,

TMF, and RFD in the CMJ of non-elite jumping athletes.

5. Discussion

The primary objective of this study was to examine
the impact of applying 20 minutes of a-tDCS at 2 mA over
the Cz region on MF, TMF, and RFD during the CMJ task
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Figure 2. The maximum force (N) in three conditions (transcranial direct current stimulation (tDCS), sham, control). Data presented as mean ± SD.
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Figure 3. Time to maximum force (S) in three conditions (transcranial direct current stimulation (tDCS), sham, control). Data presented as mean ± SD.

in non-elite jumping athletes compared to the Sham and
control conditions. Our findings indicated no statistically
significant differences in these variables among the tDCS,
Sham, and control groups.

This finding aligns with the findings of Romero-Arenas
et al. (32), who demonstrated that the application
of 15 minutes of a-tDCS at 2 mA over the dorsolateral
prefrontal cortex did not lead to improvements in the CMJ
performance. In their study, 17 healthy men underwent
three experimental conditions (a-tDCS, c-tDCS, and sham)

at one-week intervals. Before and after each intervention
session, participants performed three CMJs. They found
no significant differences between the conditions for
CMJ height and muscular peak power. Our results
are consistent with numerous studies (33-35) that have
also reported non-significant improvements in sports
performance following tDCS use. In a meta-analysis
conducted by Holgado et al. (36), which considered mixed
and conflicting reports, it was concluded that if tDCS does
have any effect on exercise performance, it is likely to be
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Figure 4. Rate of force development (N·s-1) in three conditions (transcranial direct current stimulation (tDCS), sham, control). Data presented as mean ± SD.

small and influenced by publication biases.

In contrast to our findings, Lattari et al. (18) observed
improvements in the CMJ performance following the
application of 20 minutes of a-tDCS at 2 mA over the
Cz region. In their study, ten athletes participated
in three testing conditions (a-tDCS, c-tDCS, and sham),
with a one-week interval between each session. Prior
to and following each intervention session, participants
performed three CMJs. The authors reported significant
increases in jump height and peak power after a-tDCS.
However, it is worth noting that Button et al. (37) have
demonstrated that statistically significant effects observed
in studies with a small number of participants may easily
be indicative of false positives. Given that the current study
had a larger sample size (48 participants) compared to
Lattari et al.’s (20) study (10 participants), this discrepancy
in results may be attributed to the difference in sample
sizes.

Some studies have also reported improvements in
physical performance following the application of a-tDCS
(21, 22, 38). In our view, several reasons could account for
these conflicting results. Variations in electrode montages
and stimulation protocols could contribute to different
findings (39). Additionally, due to differences in electrode
size, positioning, and the relatively limited focal specificity
of the induced electric field, tDCS may affect areas of the
brain beyond the intended target, which can significantly
impact the outcomes (40). The type of muscle contraction
or the size of the recruited muscle mass could also

influence the requirements of the motor cortex, thereby
affecting the amplitude of response (23). Another factor,
as explained by Sidhu et al. (41), is that the effects of
multi-joint exercises on the response of corticospinal cells
differ significantly from those of single-joint exercises.
The responsiveness of neurons within the human brain is
likely dependent on the specific physiological responses
elicited by different exercise modes.

Interestingly, in recent years, there has been a
notable decline in the observed effects of tDCS on
cortical excitability. This decline could be attributed
to technological and methodological advancements
since 2000, which have likely minimized noise levels and
increased the reliability of more recent outcome measures
(42). However, it is worth noting that some studies have
shown that even if cortical excitability increases following
a-tDCS, this increase does not necessarily translate into
improvements in sports performance (35). Additionally,
Montenegro et al. (23) suggested that the influence of
a-tDCS may be more pronounced in patients with motor
cortex hypo-excitability disorders rather than in healthy
individuals. This can be explained by the theory that in
healthy individuals, there may be a ceiling effect of tDCS
on cortical excitability (43).

Furthermore, the reliability and reproducibility of
traditional tDCS have recently come under scrutiny.
Wiethoff et al. (44) conducted a study that demonstrated
the variability in response to tDCS, particularly the
polarity-dependent effect. They found that among the
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participants in their study, 50% either responded poorly
or did not respond at all to tDCS. Furthermore, among
those who did respond, 21% exhibited an ”inverted
typical response,” wherein a-tDCS led to suppression
of corticospinal excitability while c-tDCS increased it.
The authors attributed this variability in response to
tDCS to various individual differences, including factors
such as anatomy, neurochemistry, neurophysiology,
psychological state, gender, and genetics.

5.1. Conclusions

The findings of our study indicate that the application
of 20 minutes of a-tDCS at 2 mA over the Cz region did not
have a significant impact on MF, TMF, and RFD in the CMJ
task among non-elite jumping athletes when compared to
the Sham and control conditions. These results suggest
that the tDCS protocol used in this study, including the
intensity and electrode placement, may not be sufficient
for improving the kinetic variables of the CMJ in non-elite
jumping athletes. However, it is important to note that
these findings do not dismiss the potential use of a-tDCS in
modified strength training programs for individuals who
are unable to engage in high-intensity training.

5.2. Limitations

This study has some limitations. While electrical
stimulation was targeted to specific areas of the lower
limbs, it is possible that other areas of the cortex were
influenced due to the electrode size. In other words,
determining the precise location of electrical stimulation
was limited. Additionally, this study did not examine the
neurophysiological effects of tDCS on brain cell activity,
which is another limitation to consider.
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