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Abstract

Background: An essential factor in the validity of motor evoked potential (MEP)s recorded by transcranial magnetic stimulation
(TMS) over multiple times is their test-retest reliability which to a large extent depends on the accuracy and competence of the
assessor (intra-rater reliability). However, intra-rater reliability is infrequently reported in TMS studies suggesting that this is rarely
done.
Objectives: This study was conducted to determine the intra-rater within and between-session reliability of a newly trained TMS
assessor prior to amain TMS study and report on themethodology used to encourage similar practice.
Methods: Fourteen (10males, 4 females;mean age: 32 ± 5.8 years) participants took part in the study. Motor evoked potentials were
elicited from a relaxed, right first dorsal interosseous (FDI) muscle three times (T1, T2 and T3) across two testing sessions at least 48
hours apart. During the first session,MEPswere recorded twice (T1 and T2)within an interval of 20minutes to determine thewithin
(intra) session reliability of the assessor. During the second session, a singlemeasurementwas carried out (T3)whichwas compared
to T1 to determine the inter-session reliability.
Results: Repeatedmeasure analysis of variance (ANOVA) didnot reveal significant difference in the amplitude of theMEPs obtained
across the three timeperiods (P=0.196)demonstratingagreement in theMEPs andhence the reliability of the assessor. Additionally,
the intraclass correlation coefficient (ICC) between T1 and T2; and T1 and T3 were 0.952 (P< 0.001) and 0.833 (P = 0.001) respectively
further indicating the within and between sessions reliability of the assessor.
Conclusions: The agreement between the three measured MEPs amplitude and the significant ICC demonstrates the reliability
of the assessor in this study to use TMS for research. We suggest that the intra-rater reliability of new TMS operators should be
established using themethodology in this report prior tomain TMS studies.
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1. Background

Transcranial magnetic stimulation (TMS) is a
non-invasive technique used to deliver magnetic fields
across the scalp and skull to activate the neurons within
the brain (1). When applied at sufficient intensity over the
primary motor cortex (M1), TMS produces a twitch in the

muscle corresponding to the stimulated part of the M1
which can be recorded as a motor evoked potential (MEP)
using surface electromyography over the target muscle (1,
2). Motor evokedpotentials provide an importantmeasure
of corticospinal excitability (CSE) or the responsiveness of
the corticospinal neurons and pathways (3). Components
of the MEP such as the MEP amplitude have been used as
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outcome measures for the assessment of CSE changes in
different areas of research relating to the central nervous
system (4). They are employed in clinical research to
comprehend the alterations in the functional integrity
of the corticospinal pathway caused by brain diseases
and/or recovery, with the aim of developing potential
diagnostic, prognostic, and treatment monitoring
parameters for these conditions (5, 6). Additionally,
research using interventions like non-invasive brain
stimulation, exercise training, and other rehabilitation
techniques to modulate brain function and improve
human performance frequently rely on measures of
corticospinal excitability as biomarkers (7-11). These
biomarkers are instrumental in comprehending the
neuroplastic changes in the brain that underlie the
functional improvements linked to these interventions
(2, 10-13). Similarly, CSE serves as a valuable tool for
understanding the physiology behind several sensory
motor processes and how they are influenced by factors
such as age, gender, sleep, arousal,motivation, and fatigue
(2, 14-18).

A common feature of the studies using TMS to assess
CSE for different research purposes is the need to carry
out repeated measurements of CSE parameters within
and across different sessions of the studies (4). For
instance, the use of TMS to understand the changes in
the functional integrity of the corticospinal neurons after
certain rehabilitation techniques aimed at improving
functional abilities of patients with brain diseases
would require multiple assessments of the CSE (10-12).
These assessments encompass pre-to-post intervention
measurements of the CSE, as well as measurements at
different time periods after the experimental and control
interventions over several weeks or months to enable
appropriate comparisons that would reveal the positive
effects or otherwise of the interventions (9-11). This need
for multiple assessments brings the question of the
test-retest reliability of the CSE measures especially in
relation to the intra-rater reliability or the reliability
of the person using TMS to elicit MEPs (4). In many
ways, this concern becomes particularly pertinent when
the individual is new to the TMS device and technique.
Several factors, including the TMS device, TMS device
operator, participants, and recording or analysis set-up,
can influence the elicited MEPs in TMS research (4, 19, 20).
It is therefore crucial to tightly control these factors to
ensure that observed changes inMEPsover timeaccurately
reflect the effects of the research intervention rather than
errors resulting from these factors (4). The validity and
reliability of the TMS device is usually already assessed
and confirmed by the manufacturer before making it
commercially available (4). Therefore, the test-retest

reliability of TMS induced MEPs for assessment of CSE is
largely dependent on the remaining three factors (4, 19,
20). In addition to ensuring that the TMS rater has avoided
any errors that may affect the elicited MEPs during the
measurement, he/she also has a duty to ensure adequate
control of the participant’s related factors as well as the
set-up related factors during both the recording and
analysis phases (4). Thus, the TMS operator has a central
role to play in controlling the remaining factors that
may affect the accuracy of the elicited MEPs in studies
involving repeated TMS. However, in the majority of
TMS studies, the intra-rater reliability is rarely reported
suggesting that this may not be done in most studies
(4). Given that researchers, especially graduate students,
who are using TMS to induce MEPs for various research
objectives, might have limited familiarity with both
the device and the technique, it becomes necessary to
adequately train them and also assess the reliability of the
MEPs they evoke during preliminary sessions (bothwithin
session and across different sessions), before embarking
on their primary research studies. In view of this, the
main aim in this study was to investigate the intra-rater
within- and between-session reliability of TMS induced
MEPs for assessment of CSE by a newly trained operator.
Furthermore, we present the methodology used and
discussed the limitations of not ensuring the reliability
of newly trained TMS operators. This could significantly
contribute to promoting analogous practices, thereby
improving the precision of changes in corticospinal
excitability when conducting repeated measurements in
various research types that involve transcranial magnetic
stimulation.

2. Methods

2.1. Training of the New Operator (Rater)

The new rater in this study is a PhD student who will
use TMS to study the effects of a particular intervention
on corticospinal excitability as part of his PhD research.
Considering that the new rater has no prior experience
in using TMS, there is a need to adequately train him and
establish the reliability of MEPs he evokedbothwithin and
across sessions prior to the main study. As a first step, the
rater was equipped with adequate theoretical knowledge
of the TMS through several teaching and demonstration
sessions over a two-week period (3 × 2 hours sessions
per week) (19, 20). During these sessions, several topics
including the basic principles of transcranial magnetic
stimulation, theprocedure for assessmentof corticospinal
and cortico-cortical excitability using single and paired
pulse TMS, safety considerations when using TMS, as well
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as the various TMS parameters and CSE outcomemeasures
were described to the rater.

Subsequently, the rater was taken through practical
sessions where he conducted the various steps that he
learnt during the theoretical sessions. These sessions
were repeated six times over another two weeks period
under close supervision of the laboratory head up to
the point where the rater was deemed confident in TMS
assessmentof CSE (19, 20). Thereafter, the raterwasallowed
to independently perform other practical sessions on as
manypeopleaspossibleoveranother fourweeks to further
build his competence and confidence in the assessment
method (19, 20). From this point, the reliability study was
started to assess the intra and inter-session reliability of
the rater.

2.2. Participants

Fourteen (10 males, 4 females; age: 32 ± 5.8 years)
participants attended two TMS sessions at least 48 hours
apart (19, 20). All participants were right-handed and
had no known neurological or psychological symptoms.
Participants were also not taking any medications
(including caffeine) that could influence corticospinal
excitability. The participants completed a TMS safety
questionnaire before the first session to ensure that
they were safe for the study procedures, including
questions relating to previous history of seizure or
epileptic fit, presence of metal in the head such as
surgical clip and other implanted devices such as cardiac
pacemaker. Written informed consent was provided by
each participant prior to inclusion in the study and all
study procedures were conducted in accordance with
the Helsinki declaration. The study was approved by the
Monash University Human Research Ethics Committee
(project ID: 27394).

2.3. Procedure

In the first session, two TMS assessments were
conducted with an interval of 20 minutes between
the first (T1) and the second (T2) assessments. Throughout
the 20-minute restingperiod, participantswere instructed
to refrain from any contraction of the targetmuscle (right
first dorsal interosseous (FDI) muscle) as well as any hand
or finger movements. Participants subsequently attended
the second session for the third TMS assessment (T3),
after a minimum gap of 48 hours (2 days) from the initial
session (Figure 1).

The first and second assessments (T1 and T2) were used
to investigate the intra-sessionreliabilityof the rater,while
the first and third assessments (T1 and T3) were used to
assess the inter-session reliability of the rater (19, 20).

In this way, the intra-rater within and between sessions
reliability was established. Participants were asked to
ensure adequate sleep the night before, avoid drugs that
may affect their CNS function as well as participation in
rigorous physical activity before and in between the two
sessions. Before each session, participants were asked
questions relating to these factors to ensure adequate
compliance (4). Additionally, all assessments were done
at approximately the same time of the day to control
circadian effects.

2.4. Electromyography

During each session, participants were positioned
comfortably on a chair to ensure that they were relaxed,
with their head well positioned and the right forearm
supported in a pronated position on the arm rest of
the chair (20, 21). To ensure good surface contact and
minimize skin resistance, the participant’s skin over the
FDI muscle and the dorsum of the hand was abraded
and cleaned (22). First dorsal interosseous location was
determined throughpalpationduring amanually resisted
abduction of the second digit (20). Two pre-gelled
self-adhesivebipolarAg/AgCldisposable surfaceelectrodes
were then placed over the FDI with an inter-electrode
distance of 2 cm and a ground electrode was placed
over the dorsum of the hand. These electrodes were
used to record the electromyographic (EMG) activity
from the FDI during induction of MEPs. First dorsal
interosseous was chosen because the newly trained rater
is going to elicit MEPs from the same muscle in his
subsequent study using TMS. This muscle is commonly
used to evaluate CSE due to the strong corticospinal
projection to the spinal motor neuron pool innervating it
and therefore ease of stimulation (23). Electromyographic
signals were filtered (10 – 500 Hz), amplified (× 1000)
and sampled at 1000 Hz. All data were recorded on
PC using LabChartTM software (ADInstruments, Australia)
via a laboratory analogue-digital interface (PowerLab,
ADInstruments, Australia) for later off-line analysis.

2.5. Induction of MEPs by TMS

During each session, MEPs were elicited from the right
FDI at rest through single pulse magnetic stimulation of
the right FDI M1 administered via 70 mm figure-of-eight
magnetic coil (Magstim Company Limited, UK). The vertex
was first located bymeasuring themid-point between the
nasion and the inion and the two preauricular areas. 5
cm was then measured medio-laterally from the vertex
to locate part of the left (dominant) M1 corresponding
to the right FDI. The coil was then placed over this area
and oriented at 45° to the midline with the handle of
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Figure 1. Study set-up. T1 = First transcranial magnetic stimulation (TMS) assessment of corticospinal excitability (CSE), T2 = Second TMS assessment of CSE, T3 = Third TMS
assessment of CSE. Intra-session reliability = Reliability of themotor evoked potentials (MEPs) elicited at T1 and T2. Inter-session reliability = Reliability of theMEPs elicited at
T1 and T3.

the coil pointing backward to induce current flow in
the posterior-anterior direction (20, 24). The coil was
then carefully moved by about 1 cm in each one of these
four directions (i.e., anteriorly, posteriorly, medially, and
laterally) eliciting 3 MEPs in each site and taking note of
the size of theMEP (226). The site that producedMEPswith
largest peak-to-peak amplitude was used as the hotspot
for the stimulation of the target muscle (FDI) (227). This
area was marked with a non-permanent marker to ensure
consistent placement of the coil throughout the entire
session (20). Subsequently, the marked was cleaned with
wipes after each session.

The resting motor threshold (RMT) was then
determined through Adaptive threshold-hunting based
on parameter estimation by sequential testing (PEST)
method using a freely available computer program called
motor threshold assessment tool (MTAT). The stimulator
output (test intensity) was then set at 120% of the RMT
and 25 MEPs with inter-pulse interval of 6 seconds were
recorded during each of the three TMS assessment time
points (T1, T2 and T3).

2.6. Statistical Analysis

Statistical analyses were conducted using the
statistical package for the social sciences (SPSS) version
28 (IBM Corp., Armonk, NY, United States). Motor evoked
potential values were calculated by measuring the
peak-to-peak amplitude and the average of 25 MEPs for
each data collection period (T1, T2 and T3) were calculated.
The data were screened for normal distribution using the
Shapiro-Wilk test and visual inspection of histograms.
Because our data was found to be positively skewed,

log transformation was performed to correct the
skewness before conducting the analysis (20). To assess
the agreement between the repeated measurements
(T1, T2 and T3), one-way repeated measure analysis of
variance (RM-ANOVA) was carried out. Before interpreting
RM-ANOVA statistical outcomes, sphericity was verified
by Mauchly’s test. Additionally, intra-class correlation
coefficient (ICC) were calculated to investigate the
correlation between the MEP amplitude values obtained
from the three-testing periods (intra-session reliability:
T1 and T2; inter-session reliability: T1 and T3). This was
to determine the within- and between-session reliability
of the TMS-induced MEPs by the operator. Intra-class
correlation coefficient values range between 0 and 1, with
larger value indicating stronger correlation.

3. Results

All participants completed both session one and two.
Themean interval between the first and the second session
was 6.71 ± 3.02 days. Themean RMT in the first and second
sessions were 37.50 ± 7.94 and 36.79 ± 6.86 percent of the
stimulator output respectively.

3.1. Reliability of TMS-evoked MEPs

3.1.1. Intra-session Reliability

The ICC between the MEP sizes at T1 and T2 was 0.952
(P < 0.001) indicating excellent correlation between the
values and hence the intra-session reliability of the rater
(Table 1).
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Table 1. Results of the Intraclass Correlation Coefficient Calculation Between theMotor Evoked Potential Amplitudes Measured at T1 and T2

Intraclass Correlation
95 % Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig

Values 0.952 0.852 0.985 21.019 13 13 < 0.001

Abbreviation: df, degree of freedom.

3.1.2. Inter-session Reliability

The ICCbetweentheMEPsizesatT1 andT3was0.833 (P=
0.001) similarly indicating strong and significant between
sessions reliability of the rater (Table 2).

3.2. Level of Agreement

One-way RM-ANOVA did not reveal significant effect of
time on themeasured MEP amplitudes (F (2,26) = 1.736, P =
0.196, ηp2 = 0.118). Therefore, there was agreement in the
MEP amplitude obtained during the three testing periods,
further indicating the reliability of the rater (Figure 2).

Figure 2. Motor evoked potential (MEP) amplitudes for T1, T2 and T3 presented as
mean and SE.

4. Discussion

The purpose of this study was to assess the intra-rater
within and between session reliability of TMS-induced
MEPs amplitude. Additionally, we aimed to outline
the procedures followed during the assessment in order
to promote similar practices among other new TMS
operators.

The new rater in this study is a PhD student who will
use TMS to study the effects of a particular intervention
on corticospinal excitability as part of his PhD research.
This study was undertaken with the objective of ensuring
that any observed changes in the size of MEPs during
subsequent TMS studies were genuinely attributable
to the intervention rather than potential errors arising
from inconsistent or suboptimal performance of the
TMS technique by the rater. Results of the study revealed
no significant difference between the MEP amplitudes
measured at three time points indicating agreement
between the three measurements. Similarly, a strong
correlation was observed between the twomeasurements
in the first session (T1 and T2) and between the first
measurement in session 1 (T1) and the measurement
during the second session (T3) indicating the within
and between sessions reliability of the new user
respectively. This is in line with the result of previous
intra-rater reliability studies conducted using the same
methodology described in this study (19, 20). Therefore,
the methodology followed in the current and previously
mentioned studies is an effective way of training and
examining the intra-rater within and between session
reliability of new TMS users (19, 20). In view of this, the
rater in this study canbe said tobe reliable in assessingCSE
using TMS and any changes in CSE observed in subsequent
studies following intervention and assessment by
the same rater can be confidently attributed to the
effect of the intervention (4). Transcranial magnetic
stimulation is increasingly beingused to evaluate changes
in corticospinal excitability in different areas of research
relating to the central nervous system in both healthy
and clinical populations (25-28). For instance, single and
paired pulse TMS is commonly used before and after
different types of interventions (e.g., other non-invasive
brain stimulation techniques such as transcranial direct
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Table 2. Results of the Intraclass Correlation Coefficient Calculation Between theMotor Evoked Potential Amplitudes Measured at T1 and T3

Intraclass Correlation
95 % Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig

Values 0.833 0.478 0.496 5.973 13 13 0.001

Abbreviation: df, degree of freedom.

current stimulation and exercise training) to understand
the brain mechanisms underlining the positive effects
of these interventions on cognitive, motor, or affective
symptoms in clinical populations in order to develop
potential therapies or optimize existing treatment
parameters (29-32). However, a significant aspect of the
TMS-evoked MEP amplitude which is used as a measure
of corticospinal excitability and brain function in these
studies is its test-retest reliability (4, 20, 33). Several
methodological factors can bring about significant
variability in the MEP amplitudes measured at different
timepoints using TMS thereby confounding the true effect
of the intervention being investigated (4). Therefore, to
ensure that any changes observed following a particular
intervention truly reflect the effects of that intervention
not other measurement errors, these factors need to
be tightly controlled (4). Interestingly, the majority of
these factors can be controlled by ensuring the reliability,
competence and confidence of the TMS operator (4).
Hence, it is critically important to adequately train and
confirm the reliability of new TMS operators using the
methodology described in this study prior to their use
of TMS for assessment of CSE for research purposes.
A properly trained and reliable TMS operator would
be able to accurately locate the hot spot during each
assessment session and ensure that the TMS coil is
properly positioned over the hot spot and kept on the
same spot during multiple elicitations of the MEPs (4).
Indeed, any misjudgement in precise identification of
the hot spot or deviations from this spot during the
assessment of the CSE will greatly affect the amplitude of
the elicitedMEPs (34-37). This underscores the importance
of ensuring the intra-rater within and between sessions
reliability before repeated TMS assessment of CSE by a
new user (4). Additionally, several participant’s related
factors such as head movement during testing, taking
certain drugs or drinks and engaging in rigorous physical
exercise/training programs in between sessions may
bring about significant variability in the measured MEPs
(4, 38-40). While the participant may not be aware of
the influence of these factors on the measured CSE, a
reliable TMS operator would already be aware of these
factors and control them by instructing the participant
against head movement during testing and monitoring

for it (4). Similarly, he/she will instruct the participant
to avoid, as well as report about the use of drugs, drinks
or physical training between TMS sessions that may
potentially affect the elicited MEPs (4). Other important
factors that may significantly affect the reliability of the
measured MEPs include the number of recorded MEPs,
the inter-pulse interval between the TMS pulses, Intensity
of the TMS stimuli, any background contraction, and
normalization of MEPs to the size of theM-wave (when the
motor neuron excitability at the spinal cord level could
be changed by the intervention) (4, 19, 20, 41-44). A TMS
operator that passed through the rigour of a reliability
study as described in this study would be familiar with
these recording and analysis factors that may affect MEP
amplitudes and control them before hand in the research
he/she is undertaking (4). Therefore, the TMS operator
is responsible directly or indirectly for controlling the
various factors that may affect CSE measurement using
TMS to ensure that any observed changes in research
projects are truly due to the effect of the interventions
used (4). Hence, with the widespread and increasing use
of TMS to assess corticospinal excitability in different
research settings, it is critical to establish the reliability of
the TMS operator before clinical trials or other research
(e.g., graduate research students using TMS) as described
in this study to ensure certainty of the reported findings.

4.1. Conclusions

The agreement between the threemeasuredMEPs and
the significant ICC demonstrates the reliability of the
assessor in this study to use TMS for research. We suggest
that the intra-rater reliability of newTMSoperators should
be established using the methodology reported here
prior to main TMS studies to ensure that any changes
in MEPs observed across multiple measurement are truly
because of the intervention used in the studies not
measurement errors arising from the assessor’s handling
of the equipment or participants.
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