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Abstract

Patients suffering from chronic renal failure have a higher burden of cardiovascular events, which increases in a dose-dependent
fashion as renal function worsens. Increased cardiovascular risk in these patients is thought to be mediated by the simultaneous
presence of both traditional and non-traditional cardiovascular risk factors, the latter being associated with renal impairment. Red
blood cells are usually considered as carries of nutrients for tissues and respiratory gases, less so as compartments essential to vas-
cular integrity. However, erythrocyte number, size, and integrity seem to severely affect cardiovascular morbidity and mortality
as established in recent clinical studies with large patient cohorts. In particular, the role of red blood cells in chronic renal fail-
ure tends only to be considered exclusively in relation to a change in their number. However, these cells in the uremic milieu are
prone to many alterations, which may adversely affect the cardiovascular system. In this review, we highlight the main qualitative
erythrocyte alterations that may have a pathophysiologic role in the elevated cardiovascular risk of chronic renal failure.
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1. Context

Cardiovascular (CV) disease is still the main cause of
morbidity and mortality in chronic renal patients (1). The
risk of CV events increases when the glomerular filtrate
falls below 60 mL/min/1.73 m2 and gets steadily more pro-
nounced as renal function diminishes, being especially
high in patients on dialytic replacement therapy (1).

The traditional risk factors like aging, diabetes, hyper-
tension, and dyslipidemia are highly prevalent in chronic
renal failure (CRF) and add significantly to CV pathology,
especially at slight-moderate phases of renal dysfunction
(2). Besides such factors, the higher incidence of CV events
in CRF patients than in the general population is attributed
to the simultaneous presence of non-traditional CV factors
associated with renal impairment (3). The prevalence of
such factors grows as renal function declines. They include
disturbances of the calcium-phosphorus metabolism, mal-
nutrition, extracellular volume expansion, inflammation,
increased oxidative stress, hyperhomocysteinemia, pro-
thrombotic condition, and vascular rigidity (4).

In the case of CV disease in uremia, the role of the red
blood cells (RBCs) tends only to be considered in relation to
a change in their number. This typical and frequent clinical

sign of uremia is rated a non-traditional CV risk factor in
CRF (4). However, uremic RBCs may have a broader role in
the CV system since in the uremic milieu erythrocytes are
prone to many alterations, which may adversely affect the
CV system.

The present review will comment on the main qualita-
tive erythrocyte alterations and their potential pathophys-
iologic role in the uremic patient’s CV risk status.

2. Evidence Acquisition

We systematically searched for studies published in
English in the MEDLINE (from 1956 to 2016). For this
search, we used the following terms in various combina-
tions: chronic kidney disease, end stage renal disease, red
blood cells, erythrocytes, inflammation, oxidative stress,
cardiovascular disease, atherosclerosis, uremia, hemodial-
ysis, nitric oxide, cyclic guanosine monophosphate, phos-
phatidylserine, endothelial cells, platelets, and anemia.

3. Results

The main studies that have reported RBC alteration in
chronic renal failure are described below.
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3.1. Altered Composition of the Erythrocyte Cell Membrane

The RBC is a fairly simple cell devoid of a nucleus; its
main components are cell membrane and hemoglobin-
rich cytoplasm. The cell membrane composition modu-
lates the erythrocyte’s visco-elastic properties, which are
fundamental to survival of the cell in the stream of the
circulation. Deformability is an intrinsic characteristic of
normal RBCs, enabling them to pass down tiny capillar-
ies and release oxygen. If they become less deformable,
this triggers hemolysis in the capillaries and premature se-
questration of RBCs by the reticulo-endothelial system (5),
altering tissue oxygenation (6).

One of the far from negligible pathogenic features of
anemia in the chronic kidney sufferers is the significant
shortening of the circulating RBCs’ half-life time (7). It is
conjectured that this is essentially due to the toxic action
of the uremic plasma environment upon the RBCs (8). It
is indeed well known that when healthy donors’ RBCs are
re-infused into uremic patients, their survival declines sig-
nificantly (9). Shortening of the half-life not only means a
drop in the quantity of circulating hemoglobin - a param-
eter normally used to measure the severity of anemia - but
also shows the difficulty the uremic patient’s RBCs have in
properly perfusing the microcirculation, precisely because
of their altered rheologic properties (10).

It is of interest that recent studies have shown an al-
tered protein composition in the uremic erythrocyte mem-
brane, which especially affects protein components in the
cytoskeletal network. In particular, in RBCs from patients
on maintenance hemodialysis treatment, analysis of the
expression of certain key proteins of the erythrocyte mem-
brane has especially brought to light the low level of spec-
trine (11). A more recent unbiased study designed to as-
sess CRF patients’ erythrocyte membrane composition by
proteomics revealed some significant variations in many
proteins such as beta-adducin, tropomodulin-1, ezrin, and
radixin (12). The cytoskeletal network is a chief factor be-
hind RBCs’ visco-elastic properties such as deformability
(13). Such alterations in the membrane protein component
(11, 12) might thus be part of the pathogenesis affecting ery-
throcyte deformability as observed in CRF (5, 14).

One compound that has a beneficial effect on RBC rhe-
ology is carnitine. Especially when this important cofac-
tor in the beta-oxidation of fatty acids is present in con-
centrations greater than normal, it is able to affect the
biophysical and visco-elastic properties of the cell mem-
brane (10). By techniques of ectacytometry, we have ob-
served that carnitine can increase cell membrane elasticity,
an effect that is somehow linked to carnitine’s interaction
with some protein components of the membrane-skeleton
(15). It would appear that carnitine is able to strengthen
the bonds among the proteins that form the cytoskeleton,

and that such action is responsible for increasing mem-
brane elasticity, which in turn improves RBC rheology. In
support of these experimental findings, it has also been
observed that carnitine significantly enhances interaction
among membrane-skeleton proteins within the cell mem-
brane (16).

The finding that there is a significant inverse corre-
lation between membrane fluidity (an index of deforma-
bility) and the erythropoietin (EPO) dosage needed by
hemodialysis patients seems to suggest that differing de-
grees of alteration in the uremic RBC’s mechanical proper-
ties may closely affect the dosage of EPO required (14).

To date, there is no direct clinical evidence to indi-
cate that changes in the rheologic properties of the RBCs
increase the CV risk run by uremic patients. However,
one recent preclinical experience suggests that rat RBCs
preserved for 2 weeks at 4°C are less effective in ensur-
ing normal oxygenation in the microcirculation than non-
preserved RBCs (17). Now, it is known that blood bank-
stored RBCs for transfusion are prone to various alter-
ations (18); these involve the RBC membrane-skeleton and
rheologic properties to an extent similar to the defects
found in uremic patients’ RBCs (19). Such alterations
might explain not only the above-mentioned experimen-
tal observation as to the microcirculation oxygenation, but
also some potential hypoxic effects to the coronary micro-
circulation and attendant CV risk.

The uremic erythrocyte membrane is altered not just
in its protein, but in its phospholipid component. Human
RBC phospholipids are normally distributed asymmetri-
cally in the double layer of the cell membrane, and keep-
ing such asymmetry is a physiologically important process
for the cell. Loss of normal asymmetry indeed may have
many pathophysiologic implications, especially when the
aminophospholipid phosphatidylserine (PS) gets exposed
on the cell surface instead of its usual location on the in-
ner face of the membrane (20). It may generate a signal
recognized by the macrophages and thereafter the cell be
phagocytosed and removed from the circulation (21). This
accelerated suicide mechanism on the part of the erythro-
cyte is termed eryptosis (22); it is thought to hold in vivo im-
portance in the diminished survival of sickle-shaped RBCs
(23).

The RBCs of chronic renal sufferers (whether on dialy-
sis or on conservative management) have PS more exposed
on the outer face of the cell (24). As residual renal func-
tion declines, this alteration gradually accentuates and is
boosted by compounds pathologically present in uremic
plasma (24), including beta-2 microglobulin (25), acrolein
(26), and indoxyl sulphate (27). Extracorporeal dialysis
may reduce the ability of uremic plasma to induce ery-
throcytes’ PS exposure, and this is even more significant
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when techniques are used that have a broader range of re-
moval than conventional hemodialysis, such as hemodi-
afiltration (28). Again, L-carnitine has been proven in vitro
to reduce PS exposure on uremic patients’ RBCs thanks to
its antioxidant action (29); this may at least partly explain
the increased erythrocyte survival observed in hemodialy-
sis patients when treated with this compound for 24 weeks
(30).

What is more, the increased exposure of PS on the ery-
throcytes may contribute to the anemia found in CRF (31).
It has been shown in this connection that the presence of
PS makes uremic RBCs susceptible to phagocytosis by hu-
man macrophages (32), which may lie behind the dimin-
ished erythrocyte survival in uremia (7). Not being fully in-
tegrated into the dosage algorithms, the diminished RBC
half-life in uremia might have a role in the erythropoi-
etic response to EPO (33), prompting the phenomenon
of hemoglobin variability (34) which has been associated
with increased risk of mortality in uremic patients (35).

The exposure of PS on the outer leaflet of the RBC mem-
brane may also play a role in the coagulation process by
promoting the assembly of two coagulation factor com-
plexes, the prothrombinase complex and the tenase com-
plex, leading to thrombin generation (36). Perturbations
in RBC PS exposure are seen as a pathogenic mechanism
for the prothrombotic state of beta-thalassemia and sickle
cell disease (37). Chronic uremia is associated with an in-
creased risk of thrombotic complications, which may rep-
resent the predominant cause of mortality particularly in
dialysis patients (38). This thrombophilia is considered as
being multifactorial (39), but mechanisms specific to ure-
mia promoting hypercoagulability remain to be yet iden-
tified (40).

Recent evidence indicate that uremic erythrocytes may
display a pathological pro-coagulant phenotype (40, 41). A
role for surface-exposed PS in the increased pro-coagulant
activity of uremic RBC is suggested by significant corre-
lations between PS levels and (i) prothrombinase activa-
tion, (ii) plasma levels of thrombin generation markers,
(iii) plasma levels of fibrinolysis markers and, (iv) throm-
botic events in a 3-year retrospective analysis (41). Further-
more, preincubation of uremic RBCs with annexin V (41) or
with lactadherin (40), which have a propensity for binding
to PS rendering it unavailable for PS-mediated processes,
strongly inhibited RBC pro-coagulant activity. Erythrocyte-
promoted hypercoagulability may also result from the cell
release of vesicles called microparticles, which expose PS
and express membrane antigens on their surface. It has
been recently shown that circulating levels of RBC-derived
pro-coagulant microparticles significantly increase in ure-
mic patients compared to healthy subjects (40).

Based on these findings, one may reasonably assume

that abnormal RBC PS exposure might have a part in the
induction of a hypercoagulable state in uremic patients.
Alternatively, RBC PS exposure could represent in these pa-
tients a new marker or a predictor of clinical thrombosis.

3.2. Altered Erythrocyte Enzymatic Activity

3.2.1. Diminished Erythrocyte Activity in the Intracellular An-
tioxidant System

The term “oxidative stress” covers a set of alterations af-
fecting tissue, cells and macromolecules once a disequilib-
rium sets in between excessive production of anti-oxidant
agents and an inadequate antioxidant defense mecha-
nism. That these systems should be correctly balanced (so-
called ox-redox equilibrium) is essential to a whole range
of physiological functions in our organism.

Pro-oxidant substances are highly reactive compounds
having a half-life of a few seconds. When these hydroxyl
radicals interact inside the cell environment with the chief
biological macromolecules (e.g., lipids, proteins, carbohy-
drates, and nucleic acids) they permanently modify the
structure and function of these molecules, and are hence
potential agents for CV damage (42).

When renal function is diminished, there is increased
circulation of free oxygen radicals (reactive oxygen
species, ROS) to an extent proportional to the level of
glomerular filtrate (43). A rise in ROS oxidizes the oxy-
hemoglobin and forms hydrogen peroxide (H2O2) and
methemoglobin, which are responsible for tissue hypoxia
(44). The presence of too many ROS also causes lipid per-
oxidation, resulting in permanent oxidative alterations in
the lipoproteins (45). Some of these are intensely athero-
genic such as malonyldialdehyde, the final products of
advanced glycation or the protein products of advanced
oxidation; they trigger the atherosclerotic process and
damage the intimal wall of the arteries, causing a vascular
inflammatory response and expression of leucocyte adhe-
sion molecules, followed by migration of inflammatory
cells into the sub-endothelial space. Oxidized LDL, in its
turn, stimulates the formation of foamy cells and releases
into circulation a great number of pro-inflammatory
cytokines, which may destabilize plaque and increase the
risk of ischemic cardiomyopathy (46, 47).

The lipid damage brought about by ROS via peroxida-
tion may alter the integrity of the erythrocyte membrane,
reducing cell half-life (48). Notably, RBCs may themselves
contribute to uremic oxidative stress via alterations in the
cellular enzymes that act upon the redox equilibrium. In
CRF, one notes, significantly, a marked increase in the ac-
tivity of glutathione peroxidase and glutathione reductase
(pro-oxidant enzymes), as well as a significant reduction in
superoxide dismutase and catalase (enzymes with antioxi-
dant properties) (49).
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Again, in uremia the erythrocyte enzyme activity may
be affected by the hemodialysis treatment. Interestingly,
it has been observed that using vitamin E-enriched mem-
branes significantly improves the erythrocyte activity of
superoxide dismutase (50) and the deformability of RBCs
(51), which reduces the need for EPO. By using such filters
along with vitamin C (250 mg iv) for two months it also
proved possible to reduce intradialytic hemolysis and ox-
idative damage to the RBCs (52). What is more, glucose
levels in the dialyzer fluid may play an important role in
regulating the erythrocyte antioxidant capacity. Bober et
al. have shown that a glucose concentration of 5.6 mmol/L
increases the exose monophosphate cycle in the erythro-
cytes, which benefits the antioxidant system and reduces
the risk of hemolysis (53).

Concerning the use of antioxidant agents, Usberti and
colleagues demonstrated how intravenous administration
of 1200 mg of reduced glutathione (GSH) at the end of
each hemodialysis session over a span of not less than 9
months enabled 28 dialysis patients (14 of them on EPO
treatment) to significantly improve erythrocyte survival
and enhance the uremic picture (54). Oral administration
of 600 mg/die over a period of 14 months enabled 36 dialy-
sis patients to increase the erythrocyte activity of superox-
ide dismutase vis-à-vis healthy controls, suggesting it had
a protective role (55). When uremic patients on replace-
ment therapy (34 on hemodialysis, 13 on peritoneal dialy-
sis) took 300 mg/die of vitamin E for 20 weeks, it proved
to be associated with improvement of the erythrocyte os-
motic fragility (56). However, other studies have failed to
confirm the efficacy of vitamin E in modifying the erythro-
cyte antioxidant activity in dialysis patients (57).

3.2.2. Altered Erythrocyte Nitric Oxide Production and Bioavail-
ability

Nitric oxide (NO) is a gaseous free radical produced
by the Nitric Oxide Synthase (NOS), which is constitutively
expressed in endothelial (eNOS) and neuronal (nNOS) tis-
sues and is inducible (iNOS) in several tissues and cells un-
der specific pathophysiological conditions. NO is known
to be involved in the regulation of many intracellular sig-
nal pathways and exerts a wide pleiotropic action (58).
At the vascular level, NO is a key molecule in the regu-
lation of endothelium-mediated vasodilatation (59); also,
it regulates several vascular mechanisms such as platelet
aggregation, leukocyte adhesion to the endothelium and
smooth muscle cells proliferation/migration, whose alter-
ations represent crucial events in the onset and develop-
ment of the atherosclerotic process (60).

In this regard, endothelial dysfunction is consid-
ered one of the main pathological mechanisms that
may contribute to increased CV risk in CRF (61). In

fact, reduced endothelium-dependent vasodilation and in-
creased plasma levels of the endothelium-derived medi-
ators have been reported in uremic patients (61-63). The
impaired endothelium-dependent vasodilation in CRF pa-
tients suggests a reduction in the NO bioavailability (61).
However, the mechanisms underlying this phenomenon,
which is triggered by the uremic state, remain not well de-
fined.

To date, circulating levels of NO were mainly attributed
to that produced by the endothelium, and RBCs had been
considered merely transporters of this gas. In fact, it
is well known that erythrocytes bind to and inactivate
NO produced in the endothelium through a rapid re-
action with oxyhemoglobin to form methemoglobin, S-
nitrosohemoglobin, and nitrates (64).

Under hypoxic conditions, RBCs play a key role in the
release of NO, resulting in an NO-dependent vasodilation
(65, 66), while under normal-oxygen or in various patho-
logical conditions, the NO production/release by RBCs still
needs to be better characterized. In this regard, the local-
ization and function of the NOS in RBCs and in platelets
were described for the first time in 2006 (67) although
prior studies suggested the presence of this enzyme in
RBCs (66, 68). In particular, in 2006, Kleinbongard and col-
leagues demonstrated the presence of an NOS-erythrocyte
isoform, thus extending the role of RBC from merely trans-
porters of NO to producers of such gas (67). Afterwards, the
same authors hypothesized an RBC-NOS regulating mecha-
nism comparable to that of endothelial NOS although ma-
ture RBCs lack cellular organelles which play a key role in
the regulation of endothelial NOS (69). More recently, it
has been demonstrated that RBCs are able to produce NO
even in normal-oxygen condition through the activation
of their endothelial isoform of NOS (70). Moreover, eNOS
expression levels and activity in the RBCs of patients with
coronary artery disease are significantly reduced as com-
pared to RBCs of healthy subjects (71).

Interestingly, our group has recently published a study
describing the possible mechanisms involved in the NO
synthesis and bioavailability in RBCs from uremic patients
(72). In particular, we assessed the enzymatic NO produc-
tion in erythrocytes of patients on hemodialysis and com-
pared it with that of healthy individuals.

Our study demonstrated that, in basal conditions, al-
though RBC-NOS expression was lower in uremic RBCs, its
phosphorylation levels in Serine-1177, NO production, and
bioavailability (levels of cyclic guanosine monophosphate,
cGMP) were significantly higher as compared to control
RBCs. On the contrary, following RBCs stimulation with
insulin or ionomycin (known to activate eNOS through a
phosphorylation or calcium dependent mechanisms, re-
spectively), the NO levels and its bioavailability were sig-
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nificantly higher in RBCs from healthy subjects compared
to RBCs from hemodialysis patients, suggesting that ure-
mic condition might reduce the response of RBC-NOS to
further stimuli.

Our findings confirmed the presence of the eNOS iso-
form in erythrocytes (topic still highly debated and contro-
versial) and identified, for the first time, an altered mecha-
nism of eNOS activation in uremic RBCs (72). Interestingly,
our data are supported by previous studies, which showed
a marked increase in NO production in both erythrocytes
and platelets from uremic patients on hemodialysis (73,
74). Moreover, a study published in 1982 (75) showed in-
creased cGMP levels in RBCs from uremic patients com-
pared to those from healthy subjects. This was confirmed
in our recent study (72) where we demonstrated accumu-
lating levels of cGMP in RBCs of subjects suffering from ure-
mia, which was associated with a defective transport to the
bloodstream of this nucleotide. In particular, we proved
that this effect was associated with an impaired activity
of erythrocyte cGMP membrane-transporter (multidrug-
resistance-associated protein-4, MRP4), whose levels of
nitration and nitrosylation significantly increased under
uremic conditions (72).

These data allow us to hypothesize that the erythrocyte
intracellular cGMP levels might be a useful biomarker to
monitor the uremic pro-oxidant and/or pro-inflammatory
state associated with reduced vascular NO bioavailability
in CRF.

3.3. Abnormal Heterotypic Cell-Cell Interaction

3.3.1. RBC-Platelet Interaction

Activated platelets may engage in dynamic interplay
with other blood cellular elements such as erythrocytes
(76, 77). By the use of flow cytometry and transmission
electron microscopy, we first reported direct evidence of
uremic platelet-RBC adherence in vitro and an increase
in the number of circulating platelet-erythrocyte aggre-
gates in chronic uremic patients (78). This observation
seems attributable to both renal failure and hemodialy-
sis treatment. Indeed, levels of platelet-RBC aggregates
were higher in CRF patients not on dialysis than in healthy
subjects but lower than in dialysis patients (78). In the
latter, platelet-erythrocyte aggregates could rise still fur-
ther during the hemodialysis session, mainly depending
on the membrane material contained in the hemodialyzer
(78, 79). Fibronectin might serve as a molecular bridge be-
tween adjacent platelets and RBCs (78).

Interactions between platelets and erythrocytes can
markedly enhance in vitro several aspects of platelet reac-
tivity (80, 81), and may be implicated in vivo in vascular ab-
normalities found in sickle cell disease (76, 77). Although

atherosclerosis and vascular events are common in ure-
mic patients, the significance of platelet-RBC aggregates in
these patients remains yet to be elucidated.

3.3.2. RBC-Endothelial Cell Interaction

We have shown that RBCs from patients on hemodialy-
sis have an increased propensity to adhere to human en-
dothelial cell monolayers, possibly via a direct interac-
tion between PS exposed on the external leaflet of the ery-
throcyte plasma membrane and thrombospondin in the
subendothelial matrix (82). Interestingly, we observed that
adhesion of RBCs from uremic patients to the vascular en-
dothelium may modulate NO release by endothelial cul-
tures (83), as previously demonstrated for sickle RBC (84).
In cultured human endothelial cells, erythrocytes from
uremic patients inhibited the eNOS expression (mRNA
and protein), activity and, consequently, NO production,
whereas erythrocytes from normal subjects had no such
role (83). Defective eNOS is thought to represent a key pa-
rameter characterizing endothelial cell dysfunction, and
in uremia it might have several consequences. Reduced NO
production may be crucial to functional and structural vas-
cular changes, promoted oxidative stress, and increased
expression of adhesion molecules, resulting in endothelial
damage and atherosclerosis (85) and therefore, it may play
a role in elevated blood pressure (86).

The enhanced interaction between uremic RBC and
the endothelium, besides the pro-inflammatory effects
stemming from the reduced NO bioavailability, may also
directly induce a vascular inflammatory phenotype (87).
In fact, adherence of uremic RBCs to human endothelial
cells induced a time-dependent up-regulation of vascu-
lar cell adhesion molecule-1 and of intercellular adhesion
molecules-1 (87), an early step in atherogenesis (46). Such
increased vascular adhesion molecule expression was as-
sociated with mitogen-activated protein kinase activation
and impaired protein kinase Akt phosphorylation, which
are pro-inflammatory, NO-independent, signal transduc-
tion pathways (88, 89). In our experimental model (87),
the increase of endothelial adhesion molecule expression
was supported by the remarkable enhanced adhesion of
human monocytoid cells to endothelial cells cultured with
uremic RBCs. These findings suggest that therapeutic
strategies aimed at limiting the action of these pathways
may have the potential to prevent and treat uremic vascu-
lar disease, a concept that deserves specific investigation.

4. Conclusions

The current review of literature has focused on the po-
tential role of erythrocyte qualitative alterations in cardio-
vascular complications in CRF. On the basis of the afore-

Nephrourol Mon. 2017; 9(3):e45866. 5

http://numonthly.com/


Bonomini M et al.

Figure 1. Schematic Presentation of the Main Uremic RBC Alterations Compared to Healthy RBC

(a) Decreased antioxidant intracellular system: ROS in RBC is mainly generated by heme oxidation of oxyHb (HbFe2+ -O2) to metHb (HbFe2+) and the release of superoxide
anions (O2-). The presence of O2- and its reaction with nitric oxide (NO) to generate peroxynitrite (ONOO-) can lead to increased oxidative and nitro-oxidative stress given
that, in uremic condition, there is a functional failure of the main antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT); (b) increased blood cell-
cell interaction: uremic RBCs show increased platelets and other blood cells interactions; (c) increased intracellular NO production and bioavailability: uremic RBC shows a
compensatory increased phosphorylation levels of eNOS (endothelial Nitric Oxide Synthase) and NO production and an intra-erythrocyte accumulation of cGMP. This latter
is due to a decreased activity of cGMP membrane transporter (MRP4, multidrug-resistance-associated protein-4) caused by rising levels of tyrosine nitration and cysteine
nitrosylation of this transporter (MRP4-NOTyr and MRP4-NOCys). Such alterations reduce the plasmatic NO bioavailability thus contributing to an increased CV risk in CRF;
(d) increased phosphatidylserine exposure: uremic RBC shows increased exposure levels of this membrane phospholipid; (e) increased RBC-endothelial cell (EC) interaction:
the increased PS exposure promotes the adhesion of uremic RBC to the endothelium through the interaction with the thrombospondin-1 (TSP-1) - integrin-αVβ3 (αVβ3)
complex. This interaction promotes in EC: (i) the activation of the pro-atherogenic MAP-Kinase (mitogenic-activator protein kinase) pathway with increased expression of
adhesion molecules such as VCAM-1 (vascular cellular adhesion molecule-1) and ICAM -1 (Intercellular adhesion molecule-1); (ii) the inhibition of the anti-atherogenic pathway
resulting in decreased Akt-eNOS (Protein kinase B-eNOS) phosphorylation and reduced NO production and bioavailability.

mentioned findings, it is possible to suggest that erythro-
cytes in the uremic milieu undergo structural and func-
tional impairments such as reduction of antioxidant ac-
tivity and alteration of the production of nitric oxide, in-
creased pro-coagulant activity and endothelium adhesion,
modification in the composition of plasma membrane, all
aspects which may jeopardize their properties.

These erythrocyte molecular transformations cer-
tainly can play an important role per se in understanding
RBC role in the pathogenesis of vascular complication
of uremia and, additionally, through them, it might be
possible to identify potential erythrocyte biomarkers
useful both for prevention and for monitoring of CV risk
in CRF patients.
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