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Editorial

Radiomics and Precision Medicine
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Breakthroughs in image acquisition and interpreta-
tion have substantially enhanced diagnostic value using
radiological imaging. Furthermore, with the advent of
artificial intelligence (AI), there have been substantial ad-
vances in the quantitative analysis of radiological images
(1). Therefore, a new sophisticated term called" Radiomics"
has emerged recently, which has been created by the com-
bination of two topics including ’radio’ (radiological im-
ages) and ’omics’ (genomics, transcriptomics, proteomics,
and metabolomics) to extract precise quantitative infor-
mation from diagnostic images using advanced math-
ematical algorithms, which is challenging to be recog-
nized by unaided eyes (2). Radiomics is classified into two
types: Feature-based and deep learning-based radiomics.
In the feature-based radiomics pipeline, there are four
main steps, including data collection and preprocessing;
segmentation of the region of interest (ROI); radiomics
features extraction, screening, and quantitative analysis;
and model selection and validation, through which tissue
and lesion properties on radiological images are extracted.
These properties, referred to as the radiomics features, in-
clude heterogeneity, size, shape, and serial changes during
follow-up. For a more efficient interpretation, these fea-
tures used for clinical problem-solving can be combined
with other biomarkers such as demographic, histologic,
genomic, or proteomic data.

Image processing is often used as a preprocessing tech-
nique to enhance image quality by normalizing and har-
monizing the medical images obtained from multiple fa-
cilities and suppliers. This step is mainly conducted to
negate the effect of diverse qualities and ensure that con-
sistency and uniformity are maintained across the dataset.
Afterward, the ROI is segmented (manually or automati-
cally) using 2D or 3D images. Hence, highly discrimina-
tive and quantitative features are extracted from the seg-
mented part fed into machine learning algorithms to es-

tablish a mathematical relationship and perform mean-
ingful predictions analysis. Intensity (histogram), shape,
and texture features are the most widely used radiomics
features (3). These features are often enhanced using pre-
processing techniques, e.g., wavelet transform and Gaus-
sian filtering, increasing the number of extracted features.

Regarding radiomics model selection and validation,
there are three correlated aspects, i.e., feature size, model
complexity, and evaluation metrics. For instance, while
new data are captured as more features are added, the
complexity of the model should be adjusted accordingly.
On the other hand, complex models are prone to overfit-
ting and often require larger datasets. Moreover, adding
more data can make the dataset unbalanced, which needs
proper evaluation metrics, e.g., precision, recall, or f1-score
instead of accuracy. Therefore, to achieve a superior ML
model, one should carefully choose model evaluation fea-
tures, model complexity, and metrics. In this regard, us-
ing artificial intelligence, the extracted features are used to
train machine learning models (neural networks, random
forest, decision trees, and support vector machine [SVM])
for practical purposes among which histopathologic diag-
nosis, therapy response, tumor grade, gene mutations, pa-
tient survival, and complications can be mentioned (4).
To evaluate the model, the training phase should be fol-
lowed by validation and testing phases to measure the per-
formance of each trained model in terms of accuracy, sen-
sitivity, specificity, receiver operating characteristic (ROC)
curve, and area under the ROC curve (AUC).

Contrary to feature-based models that require rich fea-
tures as input, deep learning-based radiomics have solved
the problem by adding deep layers of artificial neurons,
constructing a deep neural network that can be fed raw
signals or images, and training to output the prediction
directly. Over the past decade, many deep-learning net-
work architectures, including convolutional neural net-
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works (CNNs), auto-encoders, and generative adversar-
ial networks (GANs), have been introduced by scientists.
These deep neural networks are robust and highly non-
linear mathematical models capable of finding the essen-
tial characteristics of the radiological images. The deeper
network has multiple advantages and challenges. For ex-
ample, having more layers means higher nonlinearity and
capacity of the network to solve more complex problems.
On the other hand, this comes with various problems such
as vanishing gradient, over-fitting, and the need for more
significant quality data. To overcome these issues, tech-
niques such as skip connections, regularization, dropout
layers, and data augmentation were also introduced. Al-
though data augmentation is widely used in deep learn-
ing radiomics solutions, having large enough quality data
often prevents it from being applied to specific areas such
as neuro-oncology. Another well-known technique to solve
the data size problem is the transfer learning method. The
main idea behind transfer learning, as the name suggests,
is to transfer the knowledge acquired from a source signif-
icant dataset (better to be close to the target application
domain) into the target dataset and fine-tune the model to
better suit the problem.

Usually, a pre-trained model is preferred to start
the model training instead of randomly initializing the
model’s parameters. For example, one could use a model
obtained from automated glioma segmentation as the
starting point to further train the network for brain metas-
tases segmentation (5, 6). As the radiological images are of-
ten discerned via visual analysis in conventional radiology,
many valuable features may not be adequately extracted.
Indeed, radiomics has emerged to address this issue. For
instance, survival chances might vary between two pa-
tients suffering from tumors with differences in size, het-
erogeneity, and shape; however, they would be histopatho-
logically similar. Hence, each patient needs specific treat-
ments based on various prognostic factors. This concept is
the aim of precision medicine (7).

While personalized medicine was still the main med-
ical procedure, in 2008, the term precision medicine was
defined by Clayton Christensen, a business strategist from
Harvard Business School to help physicians diagnose the
cause of a disease with high certainty using molecular di-
agnostics. However, it took three more years for precision
medicine to be officially endorsed by a committee formed
by the US National Research Council. Finally, in 2011,
the committee released a plan, called Toward Precision
Medicine, to modernize the taxonomy of disease based on
the cause, e.g., genetic variants instead of the symptoms
(8). Then, the National Institute of Health (NIH) introduced
precision medicine as a novel method designed to select
unique treatments for groups of patients by recognizing

similarities in genetic or molecular profiling, individuals’
lifestyles, and environment (9). Precision medicine aims
to give tailored therapy to patients and diseases based on
genomics, proteomics, radiomics, and other related tech-
nologies. Moreover, precision medicine attempts to guide
healthcare decision-makers toward determining the best
approach to prevent iatrogenic damages and reduce med-
ical expenditure (10).

Personalized medicine is a type of medical care based
on tailoring treatment instead of the one-size-fits-all ap-
proach. Indeed, clinicians should adopt a specific ap-
proach to treat and care for each patient according to indi-
vidual characteristics, such as lifestyle, age, diet, body mass
index, gender, and environment, to achieve the best out-
come. Regarding differences between precision medicine
and personalized medicine, the former focuses on proper
care and intervention for similar subpopulations classified
based on meeting unique characteristics and is originally
research-oriented by creating big data (collecting molecu-
lar and clinical information) and fundamentally detecting
the causes of the disease (11).

All in all, as artificial intelligence (AI) has advanced
during the 21st century, by utilizing quality data, apply-
ing various ML techniques, and training deep neural net-
works or machine learning models, distinctive characteris-
tics of a disease can be revealed; thus, this can improve con-
ventional image evaluation for the overall management of
the disease. Furthermore, the correlation of these features
with clinical, demographic, and therapeutic profiles will
help us better understand the disease with less human er-
ror and save time and money.
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