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Abstract

Context: Methamphetamine (MA) use and the mortality it causes are increasing worldwide. The neurobiological mechanisms
underlying the destructive effects of MA use are complex; however, there is much evidence that MA induces the dysfunction of
monoaminergic transmission and causes oxidative stress, neuroinflammation, gliosis, and apoptosis. These toxic effects are asso-
ciated with cardiotoxicity and neurotoxicity and with an imbalance in the autonomic nervous system, which altogether manifest
themselves in clinical symptoms, such as neuropsychiatric disorders and cardiovascular diseases.
Evidence Acquisition: There is no approved treatment for methamphetamine use disorder (MUD) despite all efforts made to date.
The behavioral and pharmacological approaches currently used for the treatment of MUD are not completely effective. In this study,
it is hypothesized that the stimulation of the vagus nerve and biological pathways underlying the processes of this stimulation
might be effective as adjunctive therapy.
Results: Despite the potential effects of vagus nerve stimulation (VNS) to improve MUD, no study has yet examined the clinical
potential effects of VNS in patients with the disorder.
Conclusions: Therefore, further studies, including experimental and clinical trials, are needed to examine the effects of VNS on
MUD.
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1. Context

The use of amphetamine-type stimulants
(i.e., methamphetamine (MA), amphetamine, and
methylenedioxy-methamphetamine) is on the rise
worldwide. According to the United Nations Office on
Drugs and Crime report, there were an estimated 27 mil-
lion individuals using amphetamine-type stimulants in
2019 (1). Meanwhile, MA is the most widely used in the
amphetamine-type stimulants group (2). A pernicious
social wonder with far-reaching mental, familial, and eco-
nomic adversities, which contribute to robbery, murder,
suicide, aggression, and divorce, has been attributed to
this drug (3).

1.1. Neurobiology, Clinical Symptoms, Diagnosis, and Treatment
of Methamphetamine Use Disorder

The MA, due to its lipophilic nature, easily passes the
blood-brain barrier, where it stimulates the excessive re-

lease of monoamines (i.e., dopamine, norepinephrine, and
serotonin) in the monoaminergic nerve terminals. There
are several mechanisms that contribute to this release
of neurotransmitters, including (a) the redistribution of
monoamines from synaptic vesicles to the cytosol; (b) the
reversal of monoaminergic transporter function and re-
lease of neurotransmitters into the extraneuronal space;
and (c) the reduction of metabolism of monoamines by the
suppression of monoamine oxidase function. Collectively,
elevated neurotransmitters in nerve terminals promote
neurotoxicity through the degeneration of monoaminer-
gic terminals, apoptosis, oxidative stress, and neuroin-
flammation (4-6).

The MA, known as a sympathomimetic agent, acts rig-
orously on the central and peripheral nervous systems
and the cardiovascular system (7, 8). The clinical signs de-
pend on the duration, dose, and route of drug use. In
general, the clinical picture of acute MA use is eupho-
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ria, decreased need for sleep and food, increased alertness
and energy, and overactivation of the sympathetic nervous
system, producing a fight-or-flight response (9, 10). In a
study of emergency department referrals, seizures, chest
pain, tachycardia, palpitations, hypertension, tachypnea,
visual hallucinations, auditory hallucinations, paranoia,
grandiosity, talkativeness, suicidal ideation, homicidal
ideation, violence, and disorientation have been signifi-
cantly more common in patients who tested positive for
MA (11).

The repeated use of MA causes tolerance; therefore,
some MA users in order to re-experience the pleasure ef-
fect take higher doses; as a result, long-term consumption,
along with increasing the dose of the drug, can exacerbate
the symptoms. The excessive release of dopamine by MA
has destructive effects on nerve endings of dopaminergic
neurons in the brain. Neuroimaging studies of chronic
MA users have shown a greater number of blood flow de-
fects and ischemic lesions (12) and severe functional and
structural changes in brain regions related to memory and
mood. The most common symptoms of chronic abuse
include mood disturbances, anxiety, depression, halluci-
nations, paranoid ideas, homicidal ideas, violence, out-of-
control rages, psychosis, relapse tendency, and neurocog-
nitive dysfunction (3). The discontinuation of MA is also as-
sociated with withdrawal syndromes, such as somnolence,
craving, depression, anxiety, suicidal ideation, anhedonia,
and cognitive impairment (13-15).

The diagnosis of methamphetamine use disorder
(MUD) is characterized by the diagnostic and statistical
manual of mental disorders, fifth edition, and includes the
escalation of drug use, tolerance, withdrawal, and drug
craving in users (16). Currently, there is no Food and Drug
Administration (FDA)-approved effective intervention to
prolong abstinence and prevent relapse from MA (17). A sys-
tematic review surveyed the efficacy of numerous medica-
tions for the treatment of MUD, including dopamine ag-
onists, antidepressants, anticonvulsants, antipsychotics,
and opioid antagonists. This review showed that none
of these medications was successful in treating MUD (18).
Other approaches, such as behavioral therapies, have been
associated with promising results; however, few studies
have examined these interventions, and further studies are
needed to clarify the effectiveness of these approaches (19).

The vagus nerve is known as the major part of the au-
tonomic nervous system and involves in the maintenance
of homeostasis by the regulation of the neuroendocrine-
immune axis and cardiovascular system (20, 21). The dis-
turbance of the balance between the sympathetic and
parasympathetic nervous systems and overactivation of
the sympathetic and immune systems have been reported
in MUD (8, 9). The current study hypothesizes the role of

potential neuroprotective mechanisms of noninvasive va-
gus nerve stimulation (VNS) and the neurobiological path-
ways underlying the processes in the treatment of MUD.

2. Evidence Acquisition

2.1. Vagus Nerve Stimulation Methods

Currently, invasive vagus nerve stimulation (iVNS) is
approved by FDA for the treatment of refractory epilepsy
and drug-resistant depression. Transcutaneous vagus
nerve stimulation (tVNS) is another technique for va-
gal electrical stimulation that is known as a noninvasive
method and, unlike iVNS, does not require surgery and has
better safety and tolerability among users. The tVNS is per-
formed in two ways; one is via the cervical branch of the
vagus nerve in the neck, and the other is via the auricular
branch of the vagus nerve in the outer ear. The common
side effects of tVNS are tingling, redness, itching, and less
pain around the site of stimulation (22, 23). The tVNS is
used to treat various disorders, such as depression (24), mi-
graines (25), tinnitus (26), chronic pain (27), and epilepsy
(28).

3. Results

3.1. Neuroimmune Mechanisms of Vagus Nerve Stimulation in
the Control of Inflammatory Response

The MA induces neurotoxicity through the hyper-
activation of the neuroimmune system and produces
pro-inflammatory cytokines (e.g., interleukin-1 beta,
interleukin-6, and tumor necrosis factor α (TNF-α)). Ex-
posure to MA promotes the disruption of blood-brain
barrier integrity and infiltration of pro-inflammatory cy-
tokines from microglia and astrocytes, which might lead
to neurodegeneration. In addition, excessive monoamines
induce oxidative stress and subsequently mitochondrial
damage and endoplasmic reticulum stress. The repeated
use of MA leads to the depletion of monoamine stores,
damage to nerve terminals, and apoptosis. Therefore,
these neurotoxic mechanisms might contribute to neu-
ropsychiatric complications and cognitive dysfunction
and prolong addictive behavior (29-33).

Recent documents have suggested anti-inflammatory
effects for VNS, which might be central and peripheral
(34, 35). Neuroimmune and neuroendocrine systems are
involved in vagal anti-inflammatory pathways (36). Two
pathways are activated by vagal afferent fibers through
peripheral inflammatory mediators. These mediators,
such as endotoxins and pro-inflammatory cytokines, stim-
ulate vagal afferent fibers and, subsequently, vagal affer-
ents send inflammatory information to the dorsal vagal
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complex which consists of the nucleus tractus solitarii
(NTS), the area postrema (AP), and the dorsal motor nu-
cleus of the vagus (37, 38). After the dorsal vagal com-
plex receives inflammatory input, two distinct mecha-
nisms are initiated: The hypothalamic-pituitary-adrenal
(HPA) axis and the cholinergic anti-inflammatory path-
way (CAP). In the HPA axis, vagal inputs activate NTS neu-
rons from the A2 noradrenergic group, which projects to
neurons in the hypothalamus that contain corticotropin-
releasing factor. These neurons stimulate the release of
adreno-corticotrophin hormone by the pituitary gland, a
hormone that activates the release of glucocorticoids from
the adrenal glands and suppresses peripheral inflamma-
tion (36, 39). The HPA axis can also be centrally activated by
pro-inflammatory cytokines reaching the AP, a circumven-
tricular organ that lacks a normal blood-brain barrier (40).
The second mechanism, known as the CAP, is activated by
vagal efferent fibers that project to enteric neurons in the
gut and release acetylcholine near macrophages. This neu-
rotransmitter binds to alpha-7 nicotinic acetylcholine re-
ceptors located on the membrane of macrophages and
suppresses the release of TNF-α (39, 41, 42).

3.2. Role of Vagus Nerve Stimulation in Balancing the Auto-
nomic Nervous System and Regulating Cardiovascular Func-
tion

The acute consumption of MA causes a rapid release
of central and peripheral monoamine neurotransmitters
and a marked increase in sympathetic tone, causing vaso-
constriction, hypertension, tachycardia, bronchodilation,
and hyperthermia (30). In addition, MA overdose is associ-
ated with sudden cardiac death and is the second leading
cause of death, especially among young consumers (43).
Furthermore, the chronic consumption of MA is associated
with vagal tone dysfunction and a decrease in heart rate
variability (HRV), cardiovascular tissue damage induced by
an inflammatory response, pulmonary hypertension, car-
diac arrhythmias, and heart failure due to electrical re-
modeling of cardiac tissue (44, 45). It has been reported
that VNS alters the balance between the activation of sym-
pathetic and parasympathetic nervous systems toward the
dominance of parasympathetic tone (46-48). Therefore, it
might be an effective approach to various disorders char-
acterized by sympathetic hyperactivity, such as MUD.

Noninvasive VNS has been shown to increase HRV in
healthy participants, which is a biomarker for enhancing
vagus nerve outflow to the heart and inhibiting sympa-
thetic hyperactivity (49). Numerous studies have shown
that iVNS is a novel intervention to improve patients with
heart failure. Similar to autonomic system dysfunction in
MA users, heart failure is characterized by a decrease in va-
gal tone and an increase in sympathetic outflow (50-53).

Several mechanisms have been described for the clinical
benefits of VNS in heart failure, including heart rate re-
duction, antiarrhythmic effects, and suppression of proin-
flammatory cytokines (54-56).

3.3. Role of Vagus Nerve Stimulation in Modulating Mood Dis-
turbances

Mood/affective disturbances, such as anxiety and de-
pression, are characteristic withdrawal symptoms during
abstinence from the chronic abuse of MA, which might per-
sist for 2 - 5 years after discontinuation of the drug (57, 58).
Chronic MA use leads to structural and functional changes
in the monoaminergic system in the reward circuit, includ-
ing the limbic system, striatum, and paralimbic regions,
which are associated with anxiety and depressive symp-
toms (9, 59). Therefore, improving affective withdrawal
symptoms might reduce the risk of MA relapse.

Numerous studies have demonstrated the antidepres-
sant and anxiolytic effects of VNS on depressive and anx-
iety disorders through the modulation of monoaminer-
gic neurotransmitters, alteration of neuronal activity, sup-
pression of neuroinflammatory responses, neurogenesis
in the hippocampus, and control of the gut-microbiota-
brain axis (60-64). The effect of VNS on the treatment of
mood disturbances is partly related to the innervation of
afferent fibers to the NTS in the medulla oblongata. These
fibers are directly and indirectly further projected to other
brain regions, such as the orbitofrontal cortex, thalamus,
insula, hypothalamus, amygdala, and reticular formation,
responsible for the control of anxiety and depression (61,
62, 65). According to these findings, neuroimaging stud-
ies have shown that VNS can improve depressive symp-
toms by altering the activity of cortical-limbic-thalamic-
striatal neural circuits that are disrupted in depression (61,
62, 66-68). Anatomically, the vagus nerve sends direct affer-
ent sensory information to the NTS and from this region
to the locus coeruleus (LC) and the dorsal raphe nucleus
(DRN). As previously mentioned, the LC and NTS project nu-
merous mood-regulating limbic and cortical brain struc-
tures (69). Therefore, VNS can increase the concentration
of noradrenaline from noradrenergic neurons in the LC
and serotonin from the DRN (60, 70, 71). These events could
restore the depletion of monoamines, which are a major
cause of depressive and anxiety symptoms in chronic MA
users.

The effect of VNS on biogenic amines is consistent with
the mechanism of action of antidepressants. The electro-
physiological recordings and microdialysis studies of neu-
rons in the DRN and the LC show an increase in neuronal ac-
tivation and release of serotonin and norepinephrine after
acute and chronic VNS therapy (72). An animal study has
shown that the lesion of noradrenergic and serotonergic
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systems by 6-hydroxydopamine abolishes the antidepres-
sant and anxiolytic-like effects induced by VNS (73).

There are controversial findings regarding the
dopaminergic system and its relationship to VNS. Positron
emission tomography performed by Conway et al. (66)
showed that long-term VNS therapy increases the cerebral
metabolic rate of glucose in the ventral tegmental area
(VTA), the primary brainstem area of dopamine. This find-
ing is consistent with the findings of a study by Carpenter
et al. who demonstrated an increase in homovanillic
acid in the cerebrospinal fluid (CSF) of patients with
chronic major depression following VNS treatment (60).
In contrast to these findings, a preclinical study using
electrophysiological recordings has shown a decrease in
neuronal firing rate in the VTA after 2 weeks of VNS therapy
(71).

The neurogenesis theory in depression describes that
stress causes the impairment of neurogenesis in the hip-
pocampus, which can also be restored by antidepressants
(74, 75). Preclinical studies have shown that VNS enhanced
the proliferation of neural progenitor cells in the dentate
gyrus of the hippocampus in an animal model of depres-
sion (63, 76). A similar effect was also observed after the
chronic administration of fluoxetine (77). Chronic MA con-
sumption is associated with impairments in the prolifer-
ation, differentiation, and survival of neural progenitor
cells in the dentate gyrus. These impairments contribute
to memory impairment, mood disorders, drug seeking-
behavior, and drug taking-behavior (78-80). The current
study suggests that VNS might reverse the negative effects
of MA on hippocampal neurogenesis and reduce relapse
during MA abstinence.

The growing evidence elaborated that targeting of gut
microbiome ameliorates mood disorders in patients with
depression and anxiety (81, 82). The influence of the mi-
crobiota on brain function and the modulation of mood
and behavior is achieved through the vagus nerve (64). An-
imal studies have revealed that MA causes gut dysbiosis,
which can be associated with anxiety-like behaviors (83,
84). Therefore, the present study hypothesizes that VNS
reverses MA-induced gut dysbiosis and improves depres-
sion and anxiety in drug users. The microbiota compo-
nents can activate vagus nerve afferent fibers directly or in-
directly through gut endocrine cells. Activated vagus nerve
afferent fibers stimulate the central nervous system via the
central autonomic network and, in this way, affect psychi-
atric disorders and other stress-induced and inflammatory
diseases. As previously mentioned, vagus nerve afferent
fibers stimulate efferent fibers via inflammatory reflex and
decrease gut inflammation and intestinal permeability by
tight junction reinforcement, restoring dysbiosis. Studies
have reported a low vagal tone in inflammatory bowel dis-

ease. Therefore, VNS can increase vagal tone and improve
homeostasis in the gut-microbiota-brain axis (37, 85).

The concentrations of pro-inflammatory cytokines are
increased in the peripheral circulation and the CSF in pa-
tients with depression (86). Similarly, the serum levels of
pro-inflammatory cytokines are increased in MA abusers
(87). Therefore, VNS might have a protective effect on
the treatment of depression via the inhibition of pro-
inflammatory cytokines.

4. Conclusions

The treatment of MUD by clinicians is difficult because
it is associated with repeated relapses after abstinence
from drugs. Moreover, intensive MA use is accompanied
by physiological deficits, such as cardiovascular patholo-
gies and mood disorders. Some of the disorders might
even lead to death. The hypothesis of this study suggests
that noninvasive VNS, auricular tVNS, might be effective
as a complementary therapy in combination with current
treatments in the management of MUD, especially during
withdrawal from MA abstinence. Given the broad spec-
trum of MA adverse effects, there is an urgent need to de-
velop new interventions for the treatment of MUD.
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