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Abstract

Context: During a literature search, we found data indicating how lactate affects cancer patients.
Evidence Acquisition: This review discusses metabolism in tumors, the lactate production pathway, and its effects on the host
body.
Result: Research has described high lactate concentration as an undesirable clinical condition, and lactic acidosis contributes to
the death of patients or some metastatic cancers.
Conclusions: Lactate can lead to angiogenesis, metastasis in the tumor, and resistance to radiation therapy and chemotherapy,
especially immunosuppression. It may be possible to reduce the mortality of this disease by affecting treatment worldwide.
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1. Context

Nowadays, cancer is one of the serious public health
problems around the world. It is now clear that elevated
lactate levels are one of the common symptoms of many
cancers. This review article utilizes 18 articles from the
PubMed and Google Scholar databases. Research in the
field of cancer display How this compound can affect can-
cer patients, and perhaps by controlling its high produc-
tion, it relieves a great deal in treating cancer.

Lactate, a 3-carbon hydroxyl carboxylic acid, is pro-
duced by glycolysis in the cytoplasm under anaerobic con-
ditions from pyruvate and conversion of NADH to NAD+ (1).
Up to 40% of circulating lactate can be generated by skele-
tal muscle, which the liver and kidney generally receive
from the bloodstream and turn into glucose (2). This ter-
minal compound of pyruvate metabolism is carried out by
the lactate dehydrogenase (LDH) enzyme (3). In this review,
we will present the major findings of the articles about one
of the most metabolites in cancer patients.

2. Evidence Acquisition

It is commonly acknowledged that lactic acidosis is a
pathological condition, with a serum lactate concentra-
tion or lactic acid remaining above 5 mmol/L, while its nor-
mal concentration is 1 to 2 mmol/L (4). Blood lactate lev-

els reflect the balance between its production and clear-
ance. However, lactate is produced about 1500 mmol daily
under normal physiological conditions in skeletal muscle
(25%), skin (25%), brain (20%), intestine (10%), and red blood
cells (20%) (5) and also in patients from other tissues such
as lung, leukocyte, and visceral organs (6). Furthermore,
its clearance is carried out in the blood mainly by the liver
(60%) and the kidneys (30%), and the heart (10%) (7). Hy-
perlactemia (increased lactate) can occur under hypoxic
or anemia conditions, and hypolactemia (reduced lactate)
due to liver or kidney and heritable disorders or due to
drug toxicity (8).

The following steps occur in its oxidation: (1) Lactate is
passed into the cell by the monocarboxylate transporters
(MCTs) or produced within the cell; (2) LDH enzyme is re-
quired to convert lactate to pyruvate in both directions
then the pyruvate enters the tricarboxylic acid (TCA) cycle
(9).

It is estimated that lactate provides up to 40% of the
oxidative substrate required by the heart at rest, which in-
creases by up to 60% with activity (10). It acts as a buffer
between glycolysis and oxidative metabolism that, in the
process, is exchanged as fuel between cells and tissues at
different glycolytic and oxidative levels (11).

It should be noted that the brain is an extremely
complex organ that changes the amount of energy it
needs throughout life and increases during childhood but
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changes throughout life due to oxidative phosphorylation
(12). Although glucose is a significant substrate in nor-
mal brain tissue, it has recently been shown that this tis-
sue has a high ability to absorb lactate after exercise (13).
Monocarboxylate transporters transport lactate and pyru-
vate through the plasma membrane. As well as this transi-
tion was possible in both pathways (14) along with lactate
transfer, which also transports protons to maintain acidity
inside and outside the cell (15). Fourteen subgroups of MCT
have been identified in various body tissues and reported
in various cancers expressing and regulating MCT1, MCT2,
MCT3, and MCT4. MCT1 and MCT4 are expressed in skeletal
muscle and MCT1 in the heart (16), MCT1, MCT2, and MCT3
in the brain (17).

2.1. Cancer

It has been shown that cancer cell metabolism has
changed compared to normal cells, which is known as the
Warburg effect (18). In these aberrant cells, glycolytic lev-
els were much higher than in normal tissues, and they per-
formed anaerobic glycolysis even in large amounts of oxy-
gen. The effect of Warburg has revealed that some can-
cers cause loss of mitochondrial activity (19), which reduc-
ing mitochondrial activity is a valuable advantage to main-
taining cancer cell survival by inhibiting apoptosis (20).
High glucose uptake is a hallmark of cancer cells providing
the energy and precursor needed to biosynthesize other
molecules and proliferate in cancer cells (21). The increased
expression of glucose transporters and glycolytic enzymes
results from oncogenic signaling and their complex tran-
scriptional networks (22).

It is also very important to remember glutaminolysis
is another major pathway for energy production in cancer
cells that ultimately leads to increased lactate production
and facilitates the synthesis of macromolecules in tumor
cell proliferation (23). However, numerous studies have
shown that cancer cells use glycolysis and mitochondrial
oxidative metabolism to meet their metabolic needs (24).

2.2. Lactate and Cancer

Despite early promising data, the tumor microenvi-
ronment is a complex network of extracellular matrix
molecules, soluble factors, adipocytes, and stromal cells
composed of tumor endothelial cells, tumor-associated fi-
broblasts, and macrophages. In tumorigenesis, all of these
components work together in an unusually acidic environ-
ment (19).

Among the microenvironment-soluble factors, a large
amount of lactate is important for its effects on tumor and
stromal cells (1). The pH of the extracellular medium de-
creases from 6 to 6.5, resulting in high lactate production

by cancer cells (25). Pathology of the tumor microenvi-
ronment is under the influence of several key physiolog-
ical factors: oxygen transport, vascular structure, nutri-
tion, pH, and metabolite transport (26). Lactate has a criti-
cal role as the terminal compound of aerobic glycolysis in
the rapid proliferation of tumor cells without resemblance
to normal cells (27). Elevated lactate production is one of
the dominant features of altered tumor metabolism; in-
creased intracellular lactate must be released externally
to maintain intracellular pH (28). It has been shown that
this extracellular acidic environment is induced by lac-
tate, facilitating tumor cell invasion, metastasis, and im-
munosuppression, increasing cell survival and resistance
to apoptosis (29). On the other way, lactate is released at
physiological levels at points of infection and inflamma-
tion by leukocyte activity (30). One study has shown that
some cancer cells use lactate as a respiratory substrate and
a lipogenic precursor in a culture medium (31). Lactate pro-
duced in hypoxic areas of the tumor can be used to gener-
ate energy by tumor cells in areas near a blood vessel (32).

It must be considered that this chemical material, as
molecular signaling runs important roles in stimulating
tumor inflammation and facilitating tumor angiogene-
sis (33). Increased lactate alters the tumor microenviron-
ment and fuels cells of cancer cells, which are involved
in acidosis, inflammation, angiogenesis, immunosuppres-
sion, and radiation resistance. Aerobic glycolysis and glu-
taminolysis are accepted as key markers of cancer, and
both are involved in the metabolic acidosis of solid cancers
that leads to the production and secretion of lactate. The
extracellular pH of the tumor can be reduced to 6.5 - 6.5 in-
stead of the pH of 7.4 in normal cells. This, in turn, is asso-
ciated with weight loss, loss of appetite, and cachexia (34).

MCTs are found in the cell membranes of a variety of
cells, such as tumor cells (35), erythrocytes (36), and neu-
trophils (37). MCT1 is expressed at low levels in most tissues,
and MCT2 and MCT3 are restricted to some tissues. MCT2
is expressed predominantly in the liver, kidney, and neu-
rons, and MCT3 in retinal epithelial pigments. High levels
of MCT4 are found in white skeletal muscle fibers and, to
a lesser extent, in the testes, lungs. Also, expresses MCT4
in some cells, such as chondrocytes, leukocytes, and astro-
cytes (38). Lactate is released by glycolytic cells, such as as-
trocytes, and can be transferred to other cells, such as neu-
rons, for oxidative metabolism (39). Some tumors, such as
glioma, breast, colorectal, gastric, cervical, and neuroblas-
toma, show increased expression of MCT1 and MCT4 (40).
Of course, glioblastoma cells rely on MCT4 for proliferation
and survival (41).
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2.3. Lactate and Immune Cells

The previous finding demonstrated that high lactate
levels have an undeniable role in stopping the entry of
immune cells into the tumor, damage to the metabolism
and function of cytotoxic T lymphocytes in the tumor mi-
croenvironment (42); it also prevents the release of T lym-
phocytes cytokines (43). It is estimated that tumor cells
produce up to 40 times more lactate than normal cells
(44). The tumor microenvironment contains neutrophils,
macrophages, and dendritic cells that can produce lactate
(45).

Neutrophils contain few mitochondria that rely on gly-
colysis for ATP production, while resting macrophages of-
ten metabolize glucose via glycolysis rather than oxidation
but hexokinases and glucose 6 phosphate dehydrogenase
are highly expressed in activated macrophages, which in-
dicates that high pentose phosphate pathways are high in
them (46). Macrophages M1 and M2 are different in terms
of metabolism and immune function. M1 macrophages
are the first line of defense against bacterial infections
and obtain their required energy through glycolysis, and
M2 macrophages use oxidative metabolism to affect tissue
repair and wound healing (47). Macrophage phenotype
changes from M1 to M2 during tumor progression (48).

Inactive dendritic cells use fatty acids and glucose
for oxidative phosphorylation (49), but stimulation of
TLR in these cells increases glucose uptake and lactate
production (50), and dendritic cell activity stops when
drugs inhibit glycolysis, and these cells rely on Warburg
metabolism to survive (49). Stimulation of T lymphocytes
results in a rapid increase in the expression of glucose
transporters (GLUT1), glucose uptake, and glycolysis (51). In
addition, by stimulating T lymphocytes, glutaminolysis in-
creases and decreases fatty acid beta-oxidation (52).

Therefore, both glycolysis and glutaminolysis increase
lactate production within the T lymphocytes. Several stud-
ies have shown that acidosis results in loss of function of
T lymphocytes. The function of these cells can be resumed
by buffering in physiological quantities (34).

B lymphocytes play an important role in antitu-
mor immunity as antigen-presenting cells. In terms of
metabolism, these cells are distinct from T-type lympho-
cytes that do not alter their metabolism from oxidative
phosphorylation to glycolysis by stimulation. Even though
these lymphocytes use both pathways, inhibition of glycol-
ysis or deletion of GLUT1 in B lymphocytes suppresses anti-
body production (52).

As well, lactate alters monocyte function and conse-
quently suppresses the immune system in the tumor (53).
Studies have recently supported that NK cell activity is in-
hibited by lactate produced from the tumor or low extra-
cellular pH (54).

3. Results

Tumor cells can secrete anti-inflammatory cytokines
and suppress the immune cell population in the tumor mi-
croenvironment, inhibiting immune responses (55). On
the other hand, the microenvironment of the tumor en-
vironment can act as a trigger for pain in cancer pa-
tients (56); it also contributes to the metastasis of some
cancers (57). Lactic acid stimulates metalloproteinases-9
(MMP-9) in murine B16 melanoma (58), VEGF-A in gliomas
and glioblastoma cells (59), IL-8 expression in pancre-
atic adenocarcinomas (60), and ovarian carcinoma cells
(61). Lactate per second activates angiogenesis through
the VEGF/VEGFR2 signaling pathway and stimulation of en-
dothelial cells through MCT-1, which initiates phosphory-
lation/degradation of IKβ, stimulation of NF-Kβ/IL-8 path-
way, which induces cell migration and new vascular forma-
tion (62). Lactate indirectly facilitates the survival of hy-
poxic tumor cells in newly formed areas away from blood
vessels (63), and it is highly correlated with cancer malig-
nancy and will lead to poor survival in these patients (64).
Exosomes are 30- to 100-nm microscopic cells of endocy-
totic origin containing microRNAs, proteins, metabolic en-
zymes, and structural proteins. Exosomes play important
roles in cancer metastasis and carcinogenesis (65). Lactate
may play a key role in releasing exosomes and being ab-
sorbed by other cells (66).

Another study suggests that lactate is a marker of poor
blood flow and a measure of severe disease, and in an
emergency, the predicted mortality may be hyperlactemia
(serum lactate greater than 4 mmol/L), metabolic acido-
sis, along with symptoms of tissue anemia (67). In another
study, lactate is a predictor of brain tumor grade, and ele-
vated serum lactate levels may be useful as a non-invasive
biomarker, which correlates with tumor grade or range of
invasion and also can determine tumor progression or re-
sponse to treatment (68). Research has characterized high
lactate concentration as an undesirable clinical condition
(69), and lactic acidosis contributes to the death of patients
with some metastatic cancers (70).

Common standard treatments such as radiotherapy or
some chemotherapy drugs are the induction of reactive
oxygen species (ROS), which cause DNA/RNA damage, but
lactate may cause cancer cells to resist these treatments.
Targeting MCT will induce apoptosis of tumor cells due to
intracellular acidosis or lactate accumulation and inhibi-
tion of its uptake by aerobic tumor cells. Therefore, angio-
genesis, invasion, and tumor metastasis will be reduced
(71). It is well known that inhibition of MCT4 can induce
lactic acid accumulation within the cell, and consequently,
cell death occurs in hypoxic tumor cells (72). The feasible
role of lactate can be used as a biomarker to predict sur-
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vival in cancer patients (73), and a study reported that lac-
tate may be a quantitative biomarker in response to acute
radiation therapy (74).

4. Conclusions

To put it in a nutshell, lactate, the most important
metabolite, lead to angiogenesis in tumors, metastasis, re-
sistance to radiation therapy and chemotherapy, and im-
munosuppression (Figure 1). Encouragingly, the levels of
this effective substance should be monitored carefully, and
it may be possible to reduce the mortality of this disease by
affecting treatment worldwide.

Figure 1. Roles of lactate
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