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Review Article

Role of Transcriptomics in Precision Oncology
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Abstract

Transcriptome profiling is one of themost widely used approaches in the field of multiomics research. It plays a crucial role in the
prognostic, diagnostic, and predictive treatment of cancer patients. Novel next-generation sequencing (NGS) technologies permit
the identificationof cancerbiomarkers, gene signatures, and their abnormal expression, affectingoncogenic andmolecular targets
and novel biomarkers for cancer therapies. Multiomics studies have changed the overall understanding of cancer and opened
a precise perspective for tumor diagnostics and therapy. The use of these approaches has strengthened our understanding of
disease pathophysiology and classifications at themolecular level, including specific interferencewith drugmechanisms of action.
Still, it has limited added value in the clinical setting. The omics data on precision medicine include the application of data from
genes, transcripts, and proteins for diagnosis, monitoring of diseases, risk factor determination, counseling, and development of
novel therapeutics. Bioinformatics applications have expanded statistics-based analysis toward deriving molecular pathways and
process models for characterizing phenotypes and drug action mechanisms. In this review, we will discuss transcriptomics and
interference analysis that allows the identificationof predictive biomarkers at themolecular level to test drug response andanalyze
the molecular process interface of disease progression-relevant pathophysiology and mechanism of action to propose predictive
biomarkers.
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1. Context

Cancer is a disease that depends on both oncogenic
mutations and non-mutated genes for survival, and so
named as oncogene and non-oncogene addictions. The
reason for improper treatment and death of patients
is poor diagnosis and prognosis of the disease, which
is defined by the 10 hallmarks of cancers (1), due to
which the treatment process is affected. Cancer is
developed due to genetic and epigenetic changes, which
accumulate within the cell through which the abnormal
biological features (1, 2) specific to cancer cells occur.
The multiomics provides the basic understanding of
precision oncology (3). Themajor progress in the research
of mutations driving cancer cells (4) has happened since
the sequencing of the human genome. Mutants play
a key role in understanding gene function because
mutations hinder cellular processes. The specific
mutations responsible for malignant transformation
and hereditary cancer syndromes (5) can be identified
by genomics. In DNA sequencing, the mutation assays
present certain limitations in personalized care (6). If

we consider the proteomics, only a small percentage of
the human genome is expressed. Also, gene expression
is a very complicated and multistage process, which is
controlled by various regulating mechanisms, such as
DNA methylation (7), DNA-binding proteins (8), or small
interfering RNA (siRNA) (9). The determination of a
karyotype and genomic hybridization at the molecular
level affirms the heterogeneity of cancer cells. DNA
sequencing of the cells within the same tumor may
differ remarkably to define different subpopulations
involving clinical diversity (10, 11). Moreover, during
tumor development and treatment, it is observed that
the plasticity of cancer genomes exhibits itself in the
cell-to-cell flexibility of DNA sequence, which can be
used for large-scale clinical assistance (12). So, it can be
concluded that the cancer genome may provide worthy
information on the DNA sequence and its structure,
but cancer genomics is not sufficient to report the real
phenotype of the cell. Thus, other approaches (such as
proteomics, transcriptomics, and metabolomics) are
needed to find proper molecular diagnostic targets and
mark specific therapies for cancer patients. Proteomics
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is much closer to the determination of molecular
mechanisms for the phenotype of cells. Proteins are
the key factors in all cellular processes, whereasmutations
changetheirexpressionsand/oractivities inmanyways (13,
14). The analysis of the cancer proteome gives a landscape
of post-translational modifications and interactions
between cellular mechanisms and their locations (15).
Microarrays are commonly used for protein recognition.
Microarrays use monoclonal antibodies or other binders
to identify individual proteins. Protein microarrays have
wide applications in molecular diagnostics, specifically
in the discovery (16) of cancer biomarkers. Yet the main
barrier for proteomic studies at (17) wider levels is the
different physical and chemical properties of proteins, as
well as the need to use highly specific antibody panels.

The transcriptome consists of ”classical” RNAs
(messenger RNA [mRNA], ribosomal RNA [rRNA], and
transfer RNA [tRNA]) and multiple subtypes of noncoding
RNA (microRNA [miRNA] and long noncoding RNA
[ncRNA]), which have novel regulatory functions in
cell biology (18, 19). Microarray technology or recent
transcriptome sequencing (RNA sequencing [RNA-Seq])
methods are used for profiling gene expression.
Transcriptomics includes precise details about base
pairs (bp) and the ability to detect novel RNAs that
cannot be detected on microarrays. Fluorescence in situ
hybridization (FISH) and reverse transcriptase-polymerase
chain reaction (RT-PCR) are used to detect gene
rearrangements in routine, but these techniques are
limited, with only testing for 1 gene at a time. RNA-Seq
has been performed successfully in recent years (20-23).
Applications of RNA-Seq include the detection of novel
clinically relevant gene fusions in cancer at the early
stage of development. The detection of novel gene
fusions leads to novel opportunities in the treatment of
advanced-level cancer and therapeutics with kinase
inhibitors (18). Roberts et al. recently identified a
novel treatment hypothesis for patients with pediatric
B-cell acute lymphoblastic type of leukemia in clinical
trials and identified kinase fusions involving genes for
target therapies (24, 25). Gene expression signatures
of clinical relevance can be used to classify cancer
types into molecular subsets (26-28). In other studies,
microarray-based transcriptome profiling on primary
breast cancer samples was divided into 5 molecular
subsets to study the biological and clinical relevance of
the disease (29).

The various modules of RNA-Seq study the classical
elements of the transcriptome, including mRNA, rRNA,
and tRNA. Multiple subtypes of RNAwith novel regulatory
functions in cell biology have been discovered. The major
part of the transcriptome consists of ncRNAs, miRNAs

(30, 31), siRNAs (32), and long ncRNAs. These novel RNAs
play multiple roles in cell biology, including regulation of
transcription, post-transcriptional events, gene silencing,
translation, and protein-level function, apart from the
classical function for mRNAs that encode proteins (33).
The role of miRNAs is genomic alterations, including
mutation, deletion, amplification, and epigenetic
modifications (34). MicroRNAs can function as oncogenes
or tumor suppressor genes (35). Small interfering RNAs
arbitrate a highly specific gene-silencing mechanism,
which is conserved to mammalian biology (33) and used
as a potential strategy for gene-silencing therapies in
biomedical research (36). Long ncRNAs are pervasive
in cancer, have varied regulatory functions, and have
been intrinsically identified recently (37). Circular RNA
(circRNA) is also a human transcriptome feature and
is ubiquitous in many other metazoans. The multiple
functions of circRNA include serving as protein scaffolds
ormiRNA sponges and being translated into polypeptides
(38). With a longer half-life and more resistance to
ribonuclease (RNase) R than linear RNAs (39), circRNAs are
used as potential candidates for diagnostic biomarkers
and therapeutic targets (38).

Transcriptome connects the cellular phenotype and
genetic characteristics of tumor biology. It contains all
the information encoded in RNA transcribed from DNA.
While the genome is relatively stable, the transcriptome
reacts actively to physiological or pathological conditions.
Thus, we can say that the transcriptome-based studies
have opened a new era for understanding the cancer
mechanisms.

In the next section, various computational
bioinformatics tools that are used to perform the
transcriptomic analysis will be discussed.

2. Computational Methodology

Over the years, transcriptomics with improved
sensitivity, accuracy, and reproducibility with reduced
biases have been widely used to understand the cause
and effect of biological processes through differential
gene-/transcript-/exon-expression analysis. Themain steps
in RNA-Seq data analysis include experimental design
with quality control, read alignment, quantification
of gene and transcript levels, visualization, differential
expression gene (DEG) analysis, alternative splicing,
functional analysis, and gene fusion detection. Being
sequence-based, RNA-Seq is useful for identifying genetic
variants for expression quantitative trait loci (eQTL)
analysis, and even clinical diagnosis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, protein-protein interactions, integrated
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multiomics data analysis, and drug-gene interaction
predictions can suggest personalized treatment for
cancer patients. The original sequencing data are
taken either by the experimental results or by other
public repositories, such as Gene Expression Omnibus
(GEO), The Cancer Genome Atlas (TCGA), International
Cancer Genome Consortium (ICGC), GEO (40) and
European Genome-phenome Archive (EGA) (41), to
identify transcriptome-level gene expressiondatasetswith
accessible clinical details. The format conversion tools and
the extraction of necessary information can be obtained
by software packages that have constructed workflows,
for example, Anduril (42) and Galaxy (43). The advanced
features of these servers include building complex
pipelines with large datasets that need automated
correlation. The strength of these web servers is the
user-friendly environment and easier visualization of data
with highly advanced tools.

The raw RNA-Seq reads were extracted from the
Sequence Read Archive (SRA) files and converted into
FASTQ files. For longer reads of the fragment sequence,
adapters may also be present, and trimming these will
improve the number of reads mapped. The FASTQC tool
was used to generate the quality report for the sequence,
and MultiQC was used to collect the generated reports.
Trimmomatic (44) and Cutadapt (45) are used to remove
the adapter and quality trimming. Phred quality score
> 20 and read length > 50 bp (46) are selected for the
downstream analysis of reads. The statistical comparisons
among the trimming algorithms (read mapping rate
and the surviving reads) were performed using the
Kruskal-Wallis test, followed by the dunn test package
(47) in R (48). For Homo sapiens, GRCh38 (hg38) from
Ensembl65 was used as the reference genome. The read
alignment was carried out by Tophat2 (49), STAR (50) and
Hisat2 (51). Transcriptome alignment methods were also
tested by Bowtie2 (52) and STAR against the Ensembl (v82)
transcriptome. BAM files were sorted by read name and
genome position using SAMtools (53), and unmapped
reads were discarded. The results from the BAM files were
visualized using Integrative Genomics Viewer (IGV) (54).
Quantification depends on both the reference genome
(the FASTA file) and its associated annotations (the GTF
file). Counting methods, such as Cuffinks (55), eXpress
(56), HTSeq (57), RSEM (58), and Stringtie (59), were used
for mapping alignments. Various algorithms were used
for gene expression values using the normalization
techniques. For pseudoalignment, 3 commonly used
pseudoaligners, Kallisto (60), Sailfish (61), and Salmon (62)
were used. Differential expression analyses were carried
out to study the gene expressions. Themethods used were
divided into 3 categories as follows (46): (1) Methods that

assume a negative binomial distribution of data: BaySeq
(63), Cuffdiff (64), DESeq2 (65), EBseq (66), and edgeR
(67); (2) methods that assume a log-normal distribution
as Ballgown (68) and the Trend and Voom limma (69)
variants; and (3) non-parametric methods such as NOISeq
(70) and SAMseq (71) (R package).

The criteria for DEGs were adjusted with P-value (adjP)
≤ 0.1 and fold change (FC) values ≥ 1.5 and ≤ -1.5 for
the upregulated and downregulated genes. The analysis
was carried out by the principal component analysis
(PCA) plot, heatmap of the sample-to-sample distance
matrix (with clustering) based on the normalized counts,
dispersion estimates, histogram of P-values for the genes,
and MA plot. Principal component analysis tools, such as
https://gccri.bishop-lab.uthscsa.edu/correlation-analyzer/
(72), were used to carry out the analysis (Figure 1).

The GO and KEGG analyses for the different species
were performed by various computational tools, such as
GEne SeT AnaLysis Toolkit (Webgestalt) web server (73),
the “clusterProfiler” package (74), and “msigdbr” package
(75). Differential expression genes for each species
were selected separately for the differentially connected
genes, and gene modules and P-values were obtained
by hypergeometric analysis. The functional analyses,
including GO, pathway, and chromosome enrichment
analysis of the candidate genes, can also performed by
DAVID (76), ahigh-throughputand integrateddata-mining
environment. The pathway maps represent proteins and
genes, which are accountable for the reaction networks.
The molecular interactions were manually drawn from
the KEGG database. KEGG pathways were used to obtain
significantly enriched terms with a P-value < 0.05.
Significant termswere taken for adjP ≤ 0.1. The corrected
P-values were used for the false discovery rate (FDR).
Weighted gene co-expression network (WGCNA) (77)
provides the modules or clusters of highly correlated
genes.

The Drug Gene Interaction Database (DGIdb) (78, 79)
was used to predict the interaction between DEGs and
drugs so that the oncologist canmake treatment decisions
regarding the therapeutic targetswith the approveddrugs
and immunotherapies.

Various tools and computational methodologies
are used for gene screening and prognostic signature
development. The LASSO (80) Cox regression was used
to obtain the prognosis-related TRGs using the “glmnet”
package, and the gene signature was identified based
on the LASSO Cox regression coefficients. Multivariable
analysis was carried out to select the suitable reason
with the range of prognostic factors. Combining the
gene signature and clinicopathological parameters, a
nomogram was built to predict the survival probability
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Figure 1. The workflow for RNA sequencing (RNA-Seq) analysis. Left panel (1) represents the raw gene expression quantification workflow. Each box contains algorithms
and methods for trimming, alignment, counting, normalization, and pseudoalignment levels for RNA-Seq. The right panel (2) represents differential gene expression
quantification algorithms (*HTSeq is performed in union and intersection-strict modes; **EdgeR exact test, edgeR GLM, and NOISeq have estimated internally 3 separated
normalization techniques (46)).

of different time points using the “rms” package (81).
The internal validation of the risk score was carried out
using the bootstrap resampling method. The calibrated
nomogramwasaccessedby thecalibrationcurves (82). The
performance of the gene signature was estimated using
X-tile software (82). Multivariate analysis was carried out
to estimate the overall survival (OS). The nonparametric
tests such as t-test, Mann-Whitney-Wilcoxon test, and
Kruskal-Wallis test are used for statistical analysis. These
methods do not require a distribution tomeet the needed
assumptions for analysis, especially if the data is not
normally distributed (48).

3. Transcriptomics in Clinical Trials

Transcriptomics applications include classifications
of cancers, identification of early detection of cancer
biomarkers, formation of cancer prognostic and
predictive panels, intratumoral heterogeneity (ITH)
and tumor microenvironment (TME) related research,
and RNA-based therapeutics. The WINTHER trial
was the first such study, which included integrated
transcriptional-genomics studies for the treatment of
solid tumors with matched therapeutics results (83). The

WINTHER database is a valuable resource that provides
information on the ”targeting” gene expression and
efficient registered and clinically tested drugs. The
treatment process was recommended by the clinical
management committee, and evaluation was carried
out by exploratory matching score, calculated in an
eventually blinded manner. An Eastern Cooperative
Oncology Group (ECOG) performance with 2 or fewer
previous therapies showed a status of 0. The high
matching score was independently related to the long
progression-free survival. Though the WINTHER trial
showed that transcriptomic analysis could be successfully
used for the treatment in selected patients, the analysis
was complex and required bioinformatics expertise.
Transcriptomic analysis based on matched therapies to
molecular alterations was also carried out in the clinical
trials on pediatric patients (83, 84). In one such study, 20
patients with refractory pediatric sarcoma were selected
to study the gene expression profiling and identification
of overexpressed genes and deregulated pathways that
could be therapeutically targeted (83). The targeted
therapy was received by 9 patients with higher overall
(P = 0.0014) and progression-free (P = 0.0011) survival
rates. Recently, updated results of the INFORM study
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with 1300 patients (enrolled at 72 centers) showed that
525 included in the analysis reported ”very high” and
”high” priority actionable targets for 8% and 14.8% of
patients, respectively (85). Another Pediatric Sequencing
(PIPseq) Program studied the clinical utility of molecular
analysis in pediatric tumors (86). Molecular alterations
(variant calls, copy number variations [CNV], fusions, and
overexpressed genes) and clinically relevant alterations
were initially reviewed.

4. Challenges and Limitations

The main challenges in transcriptomics are the
handling of tissue samples and the application
of advanced computational methodologies. The
experimental data of RNA-Seq formalin-fixed,
paraffin-embedded tissue samples include degraded,
fragmented (87), or defoiled (88) RNA, which was
followed by bioinformatics. Degradation causes errors
during sample preparation, leading to the presence of
sequence data from a different sample. In addition,
tumor samples can be contaminated by normal cells
that surround the tumor. Experimental methods
(cell sorting or laser capture micro-dissection) (87)
and bioinformatics algorithms are used to remove the
contamination effects (88). Furthermore, methodological
artifacts are endured in transcriptome analysis that
requires precise evaluation. Another challenge is the
application of advanced computational methodologies.
The complex analysis of transcriptomic data requires
a high-level bioinformatic approach, needing orderly
expansion of efficient algorithms. The implementation
of transcriptomic analysis in clinical functions can be
more complex compared to genomics analysis. The
reproducibility issues also need to be addressed. As the
RNA profile is used to compare tumor tissue with normal
tissue from the same organ, in some cases, the peripheral
blood or buccal swab samples are compared, due towhich
there are variations in the results. Studies have shown
that transcriptomics in clinical trials develops diverse
and complex algorithms to specify the functionality of
molecular alterations (84).

5. Conclusions

Novel next-generation sequencing (NGS) techniques
have improved our understanding of the tumor biology
of individual patients and provided an abundance of
translational discovery opportunities, as tumor genomic
profiling approaches provide average signatures and a
snapshot of the tumor state (biopsy) but do not frequently

show the complete tumor biology, all tumor parts, or
the inherent heterogenic individual cell populations.
However, understanding the tumor complexity and
heterogeneity, as well as the dynamic expression
of the genome, requires advanced computational
methodologies. The future of precision medicine lies in
integrated multiomics data analysis for better treatment
decisions. Transcriptomics analysis has identified
appropriate targeted therapies and validated some
results in clinical trials, predicting that transcriptomics
will increase the targeted therapyandcan lead to favorable
outcomes. The future prospects of transcriptomic data
are promising but remain limited to the cost, time
implications, and inconsistent analysis. Clinical trials are
still going on to explore the relevance of transcriptomics
analysis in cancer biology.
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