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Abstract

Long-term potentiation (LTP) is one of the most important topics in neuroscience. It refers to a long-lasting increase in synaptic
efficacy and is considered as a molecular and cellular mechanism of learning and memory. Neurotrophins play essential roles in
different processes in the central nervous system (CNS), such as synaptogenesis, survival of specific populations of neurons, and
neuroplasticity. Some evidence suggests that neurotrophins also participate in the synaptic plasticity related to learning and mem-
ory formation. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor that is extensively expressed in the
hippocampus and cerebral cortex, where it promotes neuroprotection, increases synaptogenesis and neurotransmission, and me-
diates synapse formation and synaptic plasticity. In this review, we first focused on the research investigating the effects of BDNF on
synaptic plasticity and LTP induction and then reviewed the neuronal signaling molecules employed by BDNF to promote its effects
on these processes.
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1. Context

Learning and memory are the most important con-
cepts in neuroscience. Learning can be defined as the
mechanism by which new knowledge about the world is
attained, and memory as the mechanism by which that in-
formation is retained. Learning and memory are depen-
dent on synaptic plasticity that includes major changes
in neurons and synapses (1). In 1984, Konorski presented
the term “synaptic plasticity” for the first time to explain
persistent and activity-dependent modifications in synap-
tic strength (2). Long-term potentiation (LTP) is described
as the long-lasting activity-dependent enhancement of
synaptic strength, which is commonly regarded as the clos-
est neural model for explaining the molecular and cel-
lular mechanisms involved in learning and memory (3).
Long-term potentiation comprises three phases, includ-
ing initial-LTP, early-LTP, and late-LTP, which occur consec-
utively over time to create what we call LTP. Initial-LTP (i.e.,
short-term potentiation) lasts for about 30 - 60 min and
is a constant type of synaptic plasticity and dependent on
the N-methyl-D-aspartate receptor (NMDAR). This phase of
LTP does not require the activity of protein kinases. Early-

LTP lasts for about 2 - 3 h and is not dependent on pro-
tein kinases’ activity. Finally, late-LTP persists for 5 - 6 h
and requires gene expression and protein synthesis. Each
phase is performed by different mediators and regulators
(4). The high-frequency stimulation of presynaptic neu-
rons leads to the secretion of neurotransmitters, chiefly
glutamate. The binding of this neurotransmitter to the 2-
amino-3-(3-hydroxy-5 methylisoxazol-4-yl) propanoic acid
receptor (AMPAR) of postsynaptic neurons causes an influx
of sodium into these neurons, leading to neuron depolar-
ization. When the extent of depolarization is enough to
eliminate the Mg2+-induced block of NMDAR, the influx of
calcium into the postsynaptic neuron starts through this
receptor. It has been well established that an optimal level
of intracellular calcium-mediated NMDAR activation is es-
sential for LTP induction. An increase in intracellular cal-
cium concentration activates the signaling pathways that
modify gene transcription and induce the synthesis of new
proteins (5).

The induction of LTP needs the activation of many
molecules and signaling cascades. Brain-derived neu-
rotrophic factor (BDNF) is a key mediator that plays criti-
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cal roles in the CNS, including promoting the survival and
growth of neurons and inducing long-term synaptic plas-
ticity (6-8). The mechanisms by which BDNF induces LTP
are not fully understood. Substantial number of studies
have suggested various roles for BDNF in the induction of
hippocampal LTP. On the other hand, there is a relationship
between BDNF and the neuronal mediators and pathways
involved in LTP induction, including neurotransmitter sys-
tems, cellular receptors, and presynaptic and postsynaptic
proteins. Thus, the present review primarily aimed to ex-
plain the impacts of BDNF on synaptic plasticity and LTP
induction and then to elaborate the possible mechanisms
responsible for these effects.

2. BDNF and LTP

Neurotrophins are a main group of signaling
molecules widely investigated for their roles in promoting
the survival, growth, and differentiation of neurons dur-
ing development. Numerous studies have revealed that
neurotrophins can also act as the regulators of synaptic
plasticity. As one of the most important neurotrophic fac-
tors, BDNF is a 119-amino-acid basic peptide and has long
been recognized as an anti-apoptotic factor extensively
expressed in the brain. This factor shares important roles
in the CNS, including neuronal maturation, synaptogene-
sis, synaptic plasticity, and hippocampal LTP induction (6,
7). Because of its essential role in neuronal development
and function, changes in BDNF level have been described
in a variety of psychiatric and neurological disorders (8,
9). Likewise, BDNF levels have been detected to decline
in the CNS of patients with neurodegenerative disorders,
including Huntington, Parkinson’s, and Alzheimer’s dis-
ease, neuropsychiatric disorders such as schizophrenia,
and individuals with depressive-like behaviors (10-14).

Brain-derived neurotrophic factor is produced in the
soma of neurons and neuroglia and then is translocated
to the terminals of pre-synapses (15, 16). The transcrip-
tion of the gene encoding BDNF can be modulated by cal-
cium influx. It has been established that calcium induces
the binding of transcription factors, including cyclic AMP
response element-binding protein (CREB) and calcium re-
sponse factor (CaRF), to the bdnf gene’s promoters (17) (Fig-
ure 1A). In neurons, BDNF is synthesized as a precursor pep-
tide known as pre-pro-BDNF that is cleaved into pro-BDNF
(35 kDa). Then pro-BDNF can be cleaved by proteases into
mature BDNF (mBDNF or BDNF: 14 kDa) (15, 16) (Figure 1B).

Many studies propose that BDNF induces the complex
neuronal signaling cascades responsible for the promo-
tion of the cellular events involved in neuroplasticity and
LTP induction (18, 19). For the first time, in the 1990s, it was
reported that the treatment of hippocampus slices with

BDNF enhanced early-LTP induced by theta-burst stimula-
tion (20). Later, it was revealed that BDNF was involved in
the early and late phases of LTP (21, 22). Consistent with
these findings, De Vincent et al. reported that BDNF regu-
lated the extent of LTP in the presynaptic neuron whereas
in the postsynaptic neuron, it was involved in the mainte-
nance of LTP (23). Furthermore, Messaoudi et al. assessed
the impact of the intrahippocampal infusion of BDNF on
synaptic plasticity and reported that the intrahippocam-
pal microinjection of BDNF enhanced synaptic plasticity in
the dentate gyrus of the hippocampus (24). Other studies
also described a key role for BDNF in LTP induction, con-
firming that the knockout mice lacking the bdnf gene ex-
hibited hippocampal LTP impairment (25-27).

neurotrophic factors in response to physiological
changes bind to to the tyrosine kinase (Trk) and p75 neu-
rotrophin (p75NTR) receptors. Research findings propose
that pro-BDNF and mature BDNF activate distinct cellular
signaling pathways. Non-cleaved pro-BDNF leads to gen-
erally undesirable cellular events such as apoptosis and
LTD induction through its binding to p75NTR; on the other
hand, BDNF (i.e., mature BDNF) promotes positive events,
including survival, growth, synaptic plasticity, and LTP in-
duction through binding to TrkB receptors (28, 29). These
findings suggest that pro-neurotrophins can elicit impacts
opposite to mature-neurotrophins via binding to a differ-
ent receptor (i.e., p75NTR) (30). In other words, the acti-
vation of TrkB receptors promotes cell survival, synapto-
genesis, and synaptic plasticity whereas the engagement
of p75 receptors leads to cell death and synaptic pruning
(31). Consistent with these findings, LTD induction in the
hippocampus has been reported to be dependent on the
activation of p75 receptors (32). Overall, the binding of
BDNF to the TrkB receptor mediates anti-apoptotic func-
tions while pro-BDNF binding to p75NTR triggers apoptosis,
a phenomenon that needs interaction with its co-receptor,
sortilin. The pro-BDNF/p75NTR/sortilin complex begins the
signaling pathways activating Ras-homolog gene family
member A (RhoA), c-Jun amino terminal kinase (JNK),
and nuclear factor kappa B (NF-B) (33, 34). The activa-
tion of the RhoA-dependent signaling cascade regulates
neuronal growth cone, development, and motility (34).
The JNK-dependent signaling pathway stimulated by the
proBDNF/p75NTR/sortilin complex induces neuronal apop-
tosis (33). Ultimately, the p75NTR-dependent activation of
NF-B triggers the processes stimulating neurons’ survival
and maintaining their quantity during brain development
(34) (Figure 2A).

In addition, BDNF (mature BDNF) has a high affinity
for binding to TrkB receptors, which subsequently induces
the dimerization and autophosphorylation of this recep-
tor, activating the downstream mitogen-activated protein
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Figure 1. BDNF synthesis. BDNF mRNA transcription can be modulated via calcium influx through calcium channels. A, Ca2+ induces the binding of transcription factors,
including CREB and CaRF, to BDNF promoters. B, In neurons, BDNF is first synthesized as pre-pro-BDNF in the endoplasmic reticulum and converted to pro-BDNF, which is
then cleaved to mature BDNF.

kinase [MAPK, or Extracellular Signal Related Kinase (ERK)],
phosphatidylinositol 3-kinase (PI3K), and phospholipase
C-γ (PLC-γ) pathways (35, 36). The MAPK/ERK signaling
pathway causes cell growth and differentiation, and the
PLC-γ signaling route stimulates the inositol trisphos-
phate (IP3) receptor to release calcium, boosting calmod-
ulin kinase (CamK) function and thus synaptic plastic-
ity. Also, the PI3K signaling pathway activates protein ki-
nase B (AKT), extending cell survival. Evidence from dif-
ferent studies suggests that the PI3K/Akt pathway is essen-
tial for axonal elongation. Furthermore, when the PI3K sig-
naling pathway is activated, it leads to the inhibition of
the downstream glycogen synthase kinase-3 (GSK-3), a ser-
ine/threonine kinase originally recognized as a regulator
of glycogen metabolism (35, 37) and known to be exten-
sively expressed throughout the CNS (38). On the other

hand, GSK-3 has been shown to play an important role
in NMDAR-dependent LTD at CA3–CA1 synapses of the hip-
pocampus (39, 40). Previous studies reported that the lo-
cal inactivation of GSK-3 was essential for axonal growth
(41, 42). Moreover, other studies showed that various GSK-3
blockers could prevent the induction of LTD, when loaded
into neuronal cells by a patch pipette (40, 43). Interest-
ingly, it has been reported that BDNF inhibits GSK-3 by
activating a PI3K-dependent cascade (44) (Figure 2B). Fi-
nally, these signaling pathways affect the cAMP response
element-binding protein (CREB) transcription factor that
can up-regulate the expression of relevant survival genes.
It is notable that rapid effects on synapses and ion chan-
nels are dependent on PLCγ-mediated calcium release, and
more long-lasting impacts, such as gene transcription, are
downstream to the PI3K and MAPK signaling pathways. The
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Figure 2. The intracellular signaling pathways of BDNF-p75NTR and BDNF-TrkB. A, Binding of pro-BDNF to the p75NTR and sortilin receptors activates the signaling cascades
related to RhoA, NF-B, and JNK, stimulating the processes involved in neuronal development, survival, and programmed cell death; B, Binding of BDNF to the TrkB receptor
initiates the MAPK, PI3K, and PLC γ pathways that promotes neuronal survival and growth and synaptic plasticity.

activation of these pathways promotes neuronal survival
and growth and neuroplasticity (8, 35, 36).

Dendrites are known to integrate synaptic inputs into
neuronal cells, and their branching is associated with their
representational capacity. Interestingly, the branching
forms of dendritic trees are associated with the extent
of the compartmentalization of inputs to neurons, and
a stronger compartmentalization potential has been sug-
gested to increase the representational capacity of the neu-
ron, leading to a greater neuroplasticity capacity (45). The
administration of diverse types of BDNF molecules me-
diates different morphological alterations. For example,
the acute application of BDNF stimulated neurite elonga-
tion and spine head enlargement while its gradual appli-
cation enhanced the branching of dendritic and filopodia-
like spines (46). The effects of BDNF on cellular responses
are also complex. For instance, the rapid perfusion of
BDNF (i.e., acute exposure) increases synaptic transmission
at neuromuscular synapses (47) while long-term (chronic)
treatment with BDNF stimulates synapse maturation (48).

A previous study found that the perfusion of BDNF in hip-
pocampal slices induced a long-lasting improvement in
basal-synaptic transmission (49). However, some studies
have demonstrated that LTP, but not basal synaptic trans-
mission, is facilitated in the hippocampal slices perfused
with BDNF (50, 51). In support of these findings, Ji et
al. reported that cellular responses to BDNF differed dra-
matically depending on how BDNF was delivered. In the
neonatal slices of the hippocampus, slow BDNF perfusion
(i.e., chronic exposure) facilitated the LTP induced by theta
burst stimulation, without altering the baseline synaptic
strength. In contrast, in adult hippocampus slices, the
rapid perfusion of BDNF (acute) stimulated the synaptic
growth necessary for the establishment of neuronal net-
works during development and induced structural and
functional modifications in synapses (46). Kang et al.
reported that the chronic or acute application of BDNF
induced the long-lasting enhancement of basal synaptic
transmission in the CA1 area of the hippocampus (49).
However, some studies reported that slow or chronic BDNF
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perfusion did not induce such an enhancement (26, 50).
On the other hand, in hippocampus slices, the rapid and
slow increase of BDNF enhanced basal synaptic transmis-
sion and LTP induction, respectively (46). Overall, BDNF
regulates an extensive range of cellular functions in the
CNS, such as dendritic and axonal growth, survival of neu-
rons, signal transmission in synapses, and LTP induction in
the hippocampus.

3. BDNF and Neurotransmission

A great number of studies suggest that optimal brain
function requires an intermediate range of neurotrans-
mitters, and both high and low levels of neurotransmit-
ters are involved in the pathophysiology of many men-
tal diseases. Synaptic plasticity is commonly regulated by
the release of various neurotransmitters from presynap-
tic neurons. Actually, dysregulated neurotransmitter sys-
tems can impair synaptic plasticity (52, 53). Some studies
have reported that BDNF can regulate neurotransmission
and LTP induction through both presynaptic and postsy-
naptic pathways. Consistent with these findings, the ap-
plication of BDNF to cortical and hippocampal neuronal
cultures and slice preparations induced excitatory neuro-
transmission and increased glutamate release (36, 49, 54,
55). Glutamate is one of the most important excitatory
neurotransmitters in the CNS, and glutamate ionotropic
receptors mediate most of excitatory neurotransmission.
In fact, NMDAR and AMPAR are two types of ionotropic
glutamate receptors (ligand-gated ion channels) that have
critical roles in neuroplasticity and LTP induction. Gluta-
matergic synapses act mainly through AMPAR to generate
rapid synaptic excitation, and NMDAR can also contribute
to neurotransmission and plasticity (56). The activation of
NMDAR increases calcium levels in the postsynaptic neu-
ron and modulates the downstream signaling cascades in-
volved in LTP induction (57). Considerable evidence sug-
gests that BDNF promotes glutamatergic synaptic trans-
mission in postsynaptic neurons by modulating NMDAR
phosphorylation (58, 59). In line with these findings, it
was reported that BDNF increased the phosphorylation of
the NR1 and NR2B subunits of NMDAR (58) and enhanced
the probability of the opening of NMDAR channels (54) to
increase calcium influx (60). Moreover, AMPAR mediates
most of the fast excitatory synaptic transmission in the
brain of mammals. In the hippocampus, early-LTP main-
tenance is accompanied by an increase in AMPAR. Accord-
ing to some studies, changes in the number and type of
the subunits of this receptor can impair synaptic plasticity.
A considerable number of studies have also reported that
BDNF modulates the surface expression of AMPAR through

regulating its quick surface translocation to enhance exci-
tatory transmission (61, 62) (Figure 3).

Evidence suggests that a decrease in the level of
monoamine neurotransmitters, including serotonin,
dopamine and norepinephrine, impairs brain functions.
Interestingly, BDNF regulates the activity of the dopamin-
ergic, serotonergic, and noradrenergic systems (63, 64)
and changes the secretion of neurotransmitters by al-
tering protein expression in the presynaptic neurons
responsible for releasing these mediators (65). Glutamate
production in glutamatergic neurons is induced via a rise
in the number of docked vesicles in the active zones of
synapses (66). A previous study reported that the mice
lacking BDNF showed a decline in the release of neuro-
transmitters in neuronal synapses, which was associated
with a drop in the number of docked synaptic vesicles
(67) and a reduction in the content of different presy-
naptic proteins, including synapsin, synaptophysin, and
synaptobrevin, which are essential for vesicle docking and
exocytosis in synaptic active zones (27). In line with these
findings, Jovanovic et al. have reported that BDNF binds
to the TrkB receptor and activates MAPK in synaptosome,
inducing synapsin I phosphorylation at MAPK-dependent
P-sites and the release of neurotransmitters (55).

Further evidence suggests that BDNF, in addition to in-
fluencing presynaptic proteins, alters the levels of postsy-
naptic proteins. As the most abundant postsynaptic pro-
tein, PSD-95 regulates different types of synaptic transmis-
sion, synapse structure and stability, and the formation
and long-term stabilization of memory. The expression
of PSD-95 enhances synapse maturation while the knock-
down of this protein weakens synaptic strength and re-
duces spine density (68). Also, PSD-95-dependent protein
complexes interact with NMDAR- and AMPAR-type gluta-
mate receptors (69), which in the postsynaptic space can
be vital for neuroplasticity and synaptic plasticity (70). Fur-
thermore, the BDNF-TrkB pathway has an essential role in
the development of synapses through the synaptic deliv-
ery of PSD-95 by vesicular transport (71) and its initial asso-
ciation with the membrane (71, 72).

Moreover, it appears that BDNF can affect synaptic plas-
ticity and LTP induction via interaction with the sigma-1
receptor (Sig-1Rs) that is extensively distributed in differ-
ent areas of the CNS, such as the prefrontal and parietal
cortex, hypothalamus, and hippocampus (73). This recep-
tor plays an important role in regulating different types
of ion channels (74, 75), including voltage-gated ion chan-
nels that are critical for initiating and shaping action po-
tentials (76) and NMDA-induced neuronal firing in the hip-
pocampal CA3 region (77). The agonists of Sig-1Rs enhance
synaptic plasticity, neuroplasticity, and memory functions
(78, 79). It also has been reported that Sig-1Rs ligands af-
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Figure 3. BDNF/TrkB actions on NMDAR and AMPAR, which mediate synaptic transmission in neurons. BDNF increases glutamatergic neurotransmission through increasing
the probability of the opening of NMDAR (by promoting its phosphorylation) and through inducing the surface expression of AMPAR (by inducing the rapid translocation of
its subunits to the surface) to enhance excitatory transmission.

fect memory functions via modulating NMDA-dependent
LTP (75) and increasing BDNF level (80, 81). In a previous
study, Malik et al. reported that the administration of a
Sig-1Rs agonist stimulated the release of BDNF in rat pri-
mary cortical cultures (82), proposing that Sig-1Rs may fa-
cilitate BDNF secretion. Furthermore, Lever et al. reported
that a Sig-1Rs agonist, cutamesine (SA4503), contributed to
the trafficking, processing, and also release of BDNF from
the neuronal B104 cell line (83). In agreement, the release

of BDNF was shown to be inhibited by a Sig-1Rs antagonist
(i.e., NE-100) (84). Overall, these findings confirmed a re-
lationship between Sig-1Rs and BDNF, which can mediate
synaptic plasticity and LTP induction.

Androgens have been suggested to exert profound ef-
fects on hippocampal structure and LTP induction (85, 86).
According to some reports, it seems that the binding of
androgens to androgenic receptors (ARs) induces a series
of molecular mechanisms that activate BDNF via a TrkB
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receptor-dependent manner, finally resulting in enhanced
synaptic plasticity and LTP induction. In a previous study,
Salimi et al. reported a link between ARs and BDNF, medi-
ated by calcium influx through Ca2+ channels (87). There-
fore, the interaction between ARs and BDNF may affect neu-
roplasticity and LTP induction. In conclusion, BDNF is a
neurotrophic factor that plays a fundamental role in the
activation of cellular receptors and neurotransmitter sys-
tems and the induction of the presynaptic and postsynap-
tic proteins involved in synaptic responses. These proper-
ties make BDNF an essential modulator of the LTP process
and synaptic plasticity.

4. BDNF and Free Radicals

Reactive oxygen species (ROS) encompass the initial
species formed by oxygen reduction (i.e., hydrogen perox-
ide (H2O2) or superoxide (O2

-), as well as their secondary
reactive products. These radicals are commonly generated
in cells during metabolism, and the disruption of the bal-
ance between the formation of these radicals and the an-
tioxidant capacity of cells can lead to oxidative stress. The
increased production of ROS can pose a threat to cells by
oxidizing proteins, inducing fatty acid peroxidation, and
causing damage to nucleic acids. The brain is especially
vulnerable to oxidative stress since it uses a large amount
of oxygen and has a plentiful supply of lipids while it has
a low antioxidant capacity (88, 89). Therefore, the accu-
mulation of free radicals is very dangerous to the brain
and can lead to memory impairment, synaptic dysfunc-
tion, neuronal death, and cognitive decay, and this is while
antioxidants can abolish these effects (87). One of the most
important cellular antioxidant defense mechanisms is the
activation of the nuclear factor erythroid 2-related factor
2 (Nrf2) signaling pathway that regulates the expression
of the genes whose protein products are involved in the
detoxification and removal of reactive oxidants via con-
jugative reactions and increasing cells’ antioxidant capac-
ity. Furthermore, Nrf2 is itself an important transcription
factor regulating the expression of endogenous antioxi-
dants, including heme oxygenase-1 (HO-1) (90). Indeed,
Nrf2 deletion suppresses neurogenesis and leads to LTP im-
pairment (91). Together, these findings reflect that the Nrf2
signaling pathway contributes to brain health and synap-
tic plasticity preservation in the hippocampus. According
to the results of a previous study, there is a potential re-
lationship between BDNF and Nrf2 activity. It has been
reported that BDNF, as a homeostatic regulator of Nrf2
activity, induces its translocation into the nucleus in ba-
sic conditions, persistently activating antioxidant mecha-
nisms (92) (Figure 4). In line with these findings, Bouvier

et al. reported that low BDNF levels inhibited the activa-
tion of Nrf2-dependent endogenous antioxidant defense
mechanisms, finally leading to persistent oxidative stress
(92). Therefore, BDNF can enhance the antioxidant ca-
pacity of cells through inducing the translocation of Nrf2
into the nucleus. Overall, synaptic dysfunction and LTP
impairment are associated with the accumulation of ox-
idative damage to macromolecules, and these negative ef-
fects can be reversed by the BDNF/Nrf2 pathway. In con-
clusion, BDNF shares a critical role in promoting Nrf2 nu-
clear translocation to preserve synaptic responses and LTP
induction.

4. Conclusions

As a member of the family of neurotrophins, BDNF has
a fundamental role in the survival and differentiation of
neurons during development and is involved in the plastic
changes related to synaptic plasticity, as well as in learning
and memory formation. This review aimed to discuss the
effects of BDNF on LTP induction and also to describe the
neuronal pathways involved in these effects of BDNF in the
CNS. As one of the most important neurotrophins, BDNF
induces complex neuronal signaling pathways that are es-
sential for the cellular modifications underlying synaptic
plasticity and LTP induction. Indeed, BDNF regulates a va-
riety of functions in the CNS, such as dendritic and axonal
growth, neuronal survival, synaptic signal transmission,
activation of presynaptic and postsynaptic proteins, and
LTP induction in the hippocampus. The brain is highly vul-
nerable to oxidative stress due to its high oxygen turnover
that results in the formation of oxygen-related free radi-
cals. In addition, the brain contains a high level of polyun-
saturated fatty acids and a low antioxidant capacity com-
pared to other organs and tissues. On the other hand, the
Nrf2 transcriptional signaling pathway plays an essential
role in regulating the genes encoding the proteins shar-
ing critical roles in the detoxification and removal of free
radicals. As described in this review, BDNF induces Nrf2
translocation into the nucleus in basic conditions. Thus,
BDNF seems to promote its effects on neuroplasticity and
LTP induction at least partly through activating antioxi-
dant mechanisms and reducing free radical production.
However, further research is needed to understand the in-
teractions of BDNF-derived signaling with other mediators
of synaptic
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Figure 4. Increased production of ROS can cause damage to biomolecules including nucleic acids, fatty acids, and proteins. Therefore, ROS accumulation may be involved in
synaptic dysfunction and LTP impairment. BDNF plays a critical role in promoting the nuclear translocation of Nrf2, which contributes to the expression of antioxidant genes
and ROS removal.
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