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Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative illness that causes memory loss and cognitive impairment. For neu-
rodegenerative illnesses, the therapeutic properties and healthy advantages of brewed coffee (BC) intake have been widely explored.
Objectives: This research aimed to look into the findings of sub-chronic BC administration on long-term potentiation (LTP) as a
model of synaptic plasticity that supports memory function in the hippocampus in rat models of AD.
Methods: In this study, 32 male Wistar rats were utilized as test subjects. The animals were randomly divided into four groups with
eight rats in each group as follows: (1) Sham (animals that received normal saline (NS)), (2) streptozotocin (STZ), (3) BC, and (4) BC-STZ.
Animals were treated for three weeks.
Results: The amplitude of excitatory postsynaptic potentials (EPSPs) in the BC + STZ (164.23 ± 11.33%; n = 8) group significantly in-
creased compared to the STZ group at 0.25 h after HFS (P = 0.0330). Also, it significantly increased in the BC + STZ group at 0.5, 0.75,
1, 1.25, 1.5, 1.75, and 2 h (P = 0.4481, P = 0.4609, P = 0.1239, P = 0.0017, P = 0.0413, P = 0.0851, P = 0.1323) after HFS. Moreover, the slope
of EPSPs in the BC-STZ group showed an overall improvement compared to the STZ group at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 h
(P = 0.1511, P = 0.0004, P = 0.0394, P = 0.0038, P = 0.0002, P = 0.0059, P = 0.0245, and P = 0.4126, respectively) after HFS during LTP
recording time.
Conclusions: In conclusion, the present study found that BC consumption improved synaptic plasticity and memory in rat models
of AD induced by STZ. However, more studies are needed to elucidate BC’s neuroprotective mechanisms.
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1. Background

The World Health Organization (WHO) defines
Alzheimer’s disease (AD) as an unknown etiological
neurodegenerative disorder marked by worsening mem-
ory and cognitive decline (1). The most widely recognized
type of dementia is AD, and its histopathological char-
acteristics include extracellular amyloid-β (Aβ) plaque
deposition, which is caused by amyloid precursor protein
(APP), presenilin 1, presenilin 2 (2), neurofibrillary tan-
gles, consisting of Tau protein hyperphosphorylated, and
neuronal loss (3). Several neurological centers, including
the amygdala, thalamus and hippocampus, parietal pro-
jections, and entorhinal cortex, influence memory and
realizing, of which the hippocampus plays a significant

role (4). The hippocampus is a segment of the temporal
memory lobe implicated in the pathology of AD (5), whilst
its synaptic communication is related to the formation
of long-term potentiation (LTP). As a synaptic plasticity
model, LTP incorporates neurobiological elements that
sustain the hippocampal memory process (6). An electro-
physiological phenomenon is made at the synapse site
after high-frequency electrical stimulation (tetanus) of the
presynaptic neurons. Indeed, incitement of tetanus causes
an abrupt and persistent increment in the postsynaptic
reaction (hours to days) (5).

Coffee is one of the most consumed beverages glob-
ally, and a high proportion of adults consume it as a bev-
erage form (7), while caffeine (1,3,7- trimethylxanthine),
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a psychostimulant within the coffee, is frequently used
in Western countries (8). The therapeutic properties and
health benefits of coffee consumption have been studied
extensively for diabetes and neurodegenerative diseases
(9). Given that disease prevention is often much safer,
quicker, less costly, and cheaper than treating the disease
when it happens, prophylaxis is seen as the optimal solu-
tion.

2. Objectives

Considering the mentioned issues, so far, and to our
knowledge, there are no studies released on the impact of
brewed coffee (BC) on LTP in a rat model of AD caused by
streptozotocin (STZ). As a result, the goal of this research
was to explore the effect of sub-chronic administration of
CB on LTP in rat models of AD.

3. Methods

3.1. Animals

Thirty-two mature male Wistar rats (220 - 250 g) were
selected from the pet care and breeding department of Za-
hedan University of Medical Sciences (ZAUMS), Zahedan,
Iran, and were kept in a room with a controlled tempera-
ture (20 ± 2C) and under a light/dark cycle of 12 - 12 hours
(lights on at 6:00 a.m. and dark at 6:00 p.m.). In addition,
we allowed animals to have access to water and normal
laboratory food ad libitum. All experimental procedures
were authorized by the Zahedan ethics committee of ZA-
UMS (IR. ZAUMS. REC.1397.341). All rats were kept in con-
ventional cages (each cage contained four rats) and then
were divided into four groups randomly: (1) Sham: Ani-
mals were given normal saline (NS) for 21 days, (2) BC: Rats
were given coffee for 21 days before the tests, and (3) STZ:
Animals were given STZ and subsequently given NS, in a
similar time. In the AD group, most neurons will die after
injecting toxic substances like STZ into the cerebral ventri-
cles. This causes AD-like behavior to occur in sensorimotor
tests (10). 4) BC-STZ: Rats were given BC for 21 days until re-
ceiving STZ to induce AD. Rats’ brains were removed and
immediately placed in a cool saline bath. The right hemi-
sphere of the rat’s brain was used for electrophysiological
recording, and their left hemisphere was used for histolog-
ical studies.

3.2. Preparation of BC

We prepared a filtered BC according to the method pro-
posed by Vitaglione et al. (11): At 90ºC, 10 g of coffee pow-
der was placed in the filter paper, and 100 mL of water was

added to the coffee. At the gavage time, the BC was always
prepared and given to the rats once a day for 221 days, at a
dosage of 5.7 mL/kg per day, which is equivalent to eight 50
mL cups of BC (10 percent) a day, being drunk by an adult
person (12).

3.3. LTP Recording

We anesthetized rats using ketamine / xylazine (90/
10 mg/kg, i.p.) and fixed their heads to implant the elec-
trodes in a stereotaxic device. The bipolar metal wire film-
ing (tungsten wire, CFW Co., USA) and stimulating (stain-
less steel wire, CFW Co., USA) microelectrodes were then
implanted into the granular cells of the left hippocampal
dentate gyrus (DG) (AP = ± 3.8 mm, ML = ± 3.2 mm, DV =
2.7 mm) and in the perforant pathway (PP) (AP = -7.5 mm,
ML = -4 mm, DV = 3.9 mm), respectively. LTP recording was
conducted 0.25, 0.5, 1, and 3h after HFS. In order to assess
any improvements in the synaptic reaction of the DG, the
percent of population spike (PS) amplitude (AMP) and field
excitatory postsynaptic potential (fEPSP) slope were mea-
sured (13, 14).

3.4. Hippocampus Staining Method

Hippocampal tissues were treated with 10% neutral
buffered formalin, whereupon dehydrated in 50 - 100%
C2H5OH solutions before being immersed in paraffin. Tis-
sues were dissected as thin as 5 µm, then stained with
Hematoxylin and Eosin (H&E) before being examined un-
der a microscope (15).

3.5. Data Analysis

Data are presented as mean ± standard error of the
measurement (SEM). To examine the data, a repeated mea-
sure analysis of variance (ANOVA) was used, continued by
a Tukey’s post-hoc test to check the % AMP and % slope (LTP
indices) of fEPSPs at different intervals. Statistical signifi-
cance was then acknowledged at P < 0.05. All statistical
analyses were conducted using Prism Graphpad 7.0.

4. Results

4.1. AMP

Field potential recordings were obtained after stimula-
tion of the PP in granular cells in the hippocampal DG. In
the DG, LTP was caused by the HFS of the PP, and the results
of BC pretreatment (before STZ injections) on the percent-
age of PS AMP and the percentage of EPSP slope and PS AMP
of the BC-treated STZ rats are shown in Figures 1 and 2, re-
spectively.
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Figure 1. From the dentate gyrus of the hippocampus before and after high-frequency stimulation, the percentage of amplitude (AMP) recorded in the groups according to
the mean ± SEM during 0.25, 0.5, 1 and 2 hours after HFS to brain perforant path (PP) was obtained (repeated measures two- way ANOVA followed by HSD post hoc test). + P <
0.05, ++ P < 0.01 and +++ P < 0.001 vs. the sham group and $ P < 0.05, $$ P < 0.01, $$$ P < 0.001 vs. the STZ group.
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Figure 2. From the dentate gyrus of the hippocampus before and after high-frequency stimulation, the percentage of slope recorded in the groups according to the mean ±
SEM during 0.25, 0.5, 1 and 2 hours after HFS to brain perforant path (PP) was obtained (repeated measures two- way ANOVA followed by HSD post hoc test). + P < 0.05, ++ P <
0.01, and +++ P < 0.001 vs. the sham group and $ P < 0.05, $$ P < 0.01, and $$$ P < 0.001 vs. the STZ group.

The PS AMP was 188.325± 10.74% in the sham group and
it reduced 134.90 ± 8.58% in the STZ group. The PS AMP in
the BC + STZ group (164.23 ± 11.33%;) markedly increased
compared to the STZ group 0.25 h after HFS (P = 0.0330).
Moreover, PS AMP significantly increased in the BC + STZ
group 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 h after HFS (P = 0.4481,
P = 0.4609, P = 0.1239, P = 0.0017, P = 0.0413, P = 0.0851, and
P = 0.1323, respectively).

As can be seen in Figure 1, the LTP also occurred in the
STZ group, but its severity was very low compared to other
groups. The AMP (%mv) meaningfully increased (P < 0.05
and P < 0.01, respectively) 0.75, 1, 1.25, 1.5, 1.75, and 2 h after
HFS in these groups. In addition, there was a meaningful
difference between the STZ group compared to the sham
group in all LTP recording times after HFS.
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4.2. Slope

The EPSP slope was 182.11 ± 4.6% in the sham group.
The EPSP slope decreased to 143.62 ± 9.4% (P < 0.05) in the
STZ group. However, the oral administration of BC (BC+STZ
group) significantly (P < 0.001) increased the hippocam-
pal DG EPSP % slopes 0.5 h after HFS (165.47 ± 12.4%). The
BC pretreatment (three weeks) preserved the decrement
of the hippocampal EPSP slope caused by the STZ injection
0.75, 1, and 1.25 h after HFS (P = 0.0394, P = 0.0038, and P
= 0.0002, respectively) in comparison with the STZ group.
There was also a marked difference between the STZ group
compared to the sham group in all LTP recording times, ex-
cept 1.5h after HFS.

4.3. Histological Evaluation

In the current paper, diffuse plaques were identified
in the DG area of the hippocampus ten days following the
development of AD, utilizing H&E staining. BC treatment
significantly healed the histopathological injury in AD rats
(reduced the AD amyloid plaques in DG area of the hip-
pocampus) (Figure 3).

5. Discussion

The goal of the current research was to assess the
possible impact of sub-chronic BC administration from
roasted coffee beans on LTP after AD induction. Accord-
ingly, we found that coffee administration ameliorated
synaptic dysfunction. Hippocampal LTP a long-lasting in-
crease in synaptic efficacy. Numerous studies have indi-
cated that hippocampal LTP is the cellular learning and
memory basis (16-18), and is abnormally controlled in vari-
ous diseases, including AD, Parkinson’s disease, and stroke
(19-21); thus, control of hippocampal LTP may be a putative
method to treat these pathological conditions (22, 23). The
BC is one of the world’s most popular beverages, consumed
regularly by millions of people, and is known as a psy-
choactive stimulant due to its caffeine content, resulting
in increased alertness and excitement and improved cog-
nitive performance (24). Recently, animal studies have sug-
gested that chronic consumption of caffeine could inhibit
Aβ production in rodent brains (25), improve the cogni-
tive performance of AD (26), or prohibit a cognitive reduc-
tion in male rats (27). Moreover, caffeine has been demon-
strated as an antioxidant to reduce oxidative stress (28) and
helps to combat blood-brain barrier (BBB) disorders (29).

The AD starts with a synaptic dysfunction, and A2A
receptors (A2AR) are mainly found in synapses that con-
trol synaptic plasticity. Indeed, A2AR over-activation in-
duces memory deficits, and A2AR blocking hampers mem-
ory loss in AD models (30). Espinosa et al. investigated

the effect of caffeine on STZ-induced AD and related hip-
pocampal neurodegeneration and also on the expression
and density of adenosine receptors. In this regard, adult
male rats received a bilateral saline or STZ infusion (3
mg/kg, ICV), which induced memory impairments four
weeks later, and led to impaired object recognition mem-
ory. This was followed by a decrease in neuronal nucleus
antigen (NeuN) immunoreactivity in the hippocampal re-
gion of CA1 and improved adenosine A2AR expression and
density in the hippocampus, but not A1 receptor (A1R). Ac-
cordingly, the investigators observed that the intake of caf-
feine (1g/L in drinking water two weeks before the STZ chal-
lenge) inhibited memory deterioration and neurodegen-
eration caused by STZ and also A2AR up-regulation (31).
Larsson and Orsini showed that there is no association be-
tween 1 cup/ day of coffee consumption and the increased
risk of overall dementia or AD specifically (32); moderate
coffee drinking (3 - 5 cups/day) has a protective role in pre-
venting the risk of dementia (14).

In the present study, the daily dosage was 5.7 mL/kg,
which is equivalent to eight 50 mL cups of BC (10%) a day,
being drunk by an adult person. Furthermore, a signifi-
cant improvement in memory was observed, which is in
line with the results of Arendash and Cao, who found a
significant improvement in memory in 18-to-19-month-old
rats after caffeine administration 1.5 mg per day (human
equivalence of 500 mg/d) compared to the controls (four
weeks: 217%, fifth weeks: 198%) (33). However, a recent meta-
analysis revealed that caffeine consumption from coffee or
tea has no statistically significant protective effect, while
the pattern has decreased the risk of cognitive diseases,
such as AD and dementia, by 18% (34). Concerning the
present study, there are some limitations that should be
considered. In particular, LTP has been reported alone, and
biochemical and histological data were not collected due
to the lack of facilities. Therefore, more comprehensive
studies are required to determine the optimal dose of cof-
fee for cognitive function and thereby yield more conclu-
sive findings.

5.1. Conclusions

In conclusion, the present study indicated that BC con-
sumption improved the synaptic plasticity and thus mem-
ory in rat models with AD induced by STZ. However, further
studies are required to explain the neuroprotective mech-
anism attributed to BC.
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Figure 3. Comparison of Aβ plaques in the hippocampal DG region of the four main groups (H&E staining, × 400): Sham group, STZ group, BC group, and BC-STZ group.
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