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Abstract

Background: The rapid coronavirus disease 2019 (COVID-19) outbreak has overwhelmed many healthcare systems worldwide and
put them at the edge of collapsing. As the capacity of intensive care units (ICUs) is limited, deciding on the proper allocation of
required resources is crucial.
Objectives: This study aimed to create a machine learning (ML)-based predictive model of ICU admission among COVID-19 in-
hospital patients at the initial presentation.
Methods: This retrospective study was conducted on 1225 laboratory-confirmed COVID-19 hospitalized patients during January 9,
2020 - January 20, 2021. The top clinical parameters contributing to COVID-19 ICU admission were identified based on a correlation
coefficient at P-value < 0.05. Next, the predictive models were constructed using five ML algorithms. Finally, to evaluate the perfor-
mances of models, the metrics derived from the confusion matrix, classification error, and receiver operating characteristic were
calculated.
Results: Following feature selection, a total of 11 parameters were selected as the top predictors to build the prediction models. The
results showed that the best performance belonged to the random forest (RF) algorithm with the mean accuracy of 99.5%, mean
specificity of 99.7%, mean sensitivity of 99.4%, Kappa metric of 95.7%, and root mean squared error of 0.015.
Conclusions: The ML algorithms, particularly RF, enable a reasonable level of accuracy and certainty in predicting disease progres-
sion and ICU admission for COVID-19 patients. The proposed models have the potential to inform frontline clinicians and health
authorities with quantitative tools to assess illness severity and optimize resource allocation under time-sensitive and resource-
constrained situations.
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1. Background

Since December 2019, the coronavirus disease 2019
(COVID-19) has been spreading aggressively worldwide,
and the health systems have encountered an increasing
shortage of critical care resources, such as personal pro-
tective equipment, intensive care unit (ICU) beds, and ven-
tilators (1). So far, this virus has affected almost all coun-
tries, with more than two million deaths worldwide (2).
Approximately 20% of COVID-19 patients need hospitaliza-
tion, and 20%-30% of COVID-19 in-hospital patients are ad-
mitted to ICU (3). In Iran, the ICU admission rate is esti-

mated to be 32% of hospitalized patients, and the ICU death
rate is about 39% (4). The ICU resources are currently re-
stricted, and more than 50% of ICU beds are occupied un-
der normal conditions (5).

The unexpected outbreak, rapid transmission, am-
biguous disease course, and prognosis, as well as emerg-
ing new mutations of COVID-19, along with health systems
being not prepared for large-scale epidemic responses, cre-
ated a situation in which the management of intensive
care resources is crucial (6). Under this condition, it is ur-
gent to construct and test effective clinical risk prediction
tools for appropriately triaging critical patients (7, 8). Ac-
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cordingly, predicting the individual disease courses and
outcomes is essential for triaging patients, customized
care service provision, utilizing life-saving resources in the
best possible way, and directing them toward vulnerable
and at-risk sub-groups deteriorating to critical COVID-19.
Furthermore, many problems resulting from the short-
age of hospital resources can be overcome by predicting
the risk of patient deterioration, determining the length
of stay, using hospital resources efficiently, and managing
bed turnover (9, 10).

Innovative approaches for the early identification and
triaging of patients at the time of admission will be greatly
beneficial and effective in estimating which patients are at
the high risk of clinical deterioration and have poor out-
comes requiring ICU admission (8, 9). In such conditions,
the design and implementation of clinical decision sup-
port systems equipped with machine learning (ML)-based
prediction models will be critical for the optimal use of
limited hospital resources and supporting clinical deci-
sions. The ML, as a sub-form of artificial intelligence tech-
nologies, provides new insight or knowledge through ex-
tracting functional patterns and applicable rules from the
large raw datasets (7, 10).

In the previous researches, a large number of ML al-
gorithms were trained for the prediction of COVID-19 dis-
ease progression, patient condition deterioration (9, 10),
ICU hospitalization (8, 9, 11-13), and death (8, 11, 14-19).

2. Objectives

The present study aimed to develop and validate a
data-driven framework using five ML techniques to pre-
dict the patients who need transfer to ICU and find out the
contributing clinical predictors by analyzing the available
data at the time of admission.

3. Methods

This retrospective single-center cross-sectional study
was conducted in 2021 to predict admission to ICU based
on selected data-driven ML techniques.

3.1. Dataset and Participants

In this study, a COVID-19 hospital-based registry
database from Taleghani Hospital, Abadan, Iran, was
reviewed retrospectively. Only hospitalized confirmed
COVID-19 patients aged ≥18 years and admitted during
January 9, 2020 - January 20, 2021, met our inclusion
criteria. During this period, a total of 13885 suspected
cases with COVID-19 were referred to Taleghani Hospital,
3350 of which were confirmed as COVID-19 by RT-PCR

test. The exclusion criteria entailed non-COVID-19 cases,
non-hospitalized COVID-19 patients, cases with unknown
disposition, patients under 18 years old, incomplete case
records (missing more than 70%), and admission time
before January 9, 2020, or after January 20, 2021. Following
applying the exclusion criteria, finally, 1225 records were
entered in the study (Figure 1).

3.2. Feature Selection

Feature selection is an effective technique for deter-
mining the most significant variables, reducing the di-
mensions of the dataset, and improving the efficiency of
ML algorithms (20). The included cases are defined based
on 53 primary risk factors. In the current study, the vari-
ables with a correlation coefficient value less than 0.05 (P-
value < 0.05) were identified as influential risk factors in
predicting ICU admission.

3.3. Model Development

To predict ICU admission for COVID-19 patients, several
ML classification algorithms, including Artificial Neural
Network (ANN), K-Nearest Neighbor (KNN), Support Vec-
tor Machine (SVM), Decision Tree (DT), and Random Forest
(RF), were used. We applied a set of parameters as shown
in Table 1.

Table 1. Parameters for ML Algorithms

Model Parameters

KNN K = 1, 3, 5

SVM Kernel function = Gaussian

RF -

DT -

ANN 57-10-5-2

3.4. Study Roadmap and Experiment Environment

All experiments on the classification algorithms de-
scribed in this study were implemented using Python ver-
sion 3.7.7. The Python experiment environment offers a
well-defined framework for researchers and developers to
run and assess their ML models. The roadmap of the pro-
posed prediction model in this work is depicted in Figure
2.

3.5. Preprocessing

In the preprocessing stage, in order to use the data ef-
fectively in classifiers, raw data input was performed uti-
lizing several preprocessing techniques, such as deleting
missing values (missing more than 70%), minimum and
maximum scalar values, and standard scalar.
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Figure 1. Flowchart describing patient selection

3.6. Experiment Evaluation

In this study, the performance of ML algorithms was
calculated based on the 10-fold cross-validation method.
To better compare the performance of algorithms, we as-
sessed the effectiveness of five ML algorithms in terms of
accuracy, specificity, sensitivity, error rate (Equations 1-4),
receiver operating characteristic (ROC) curve, time to build
the model, correctly classified instances, incorrectly classi-
fied instances, Kappa statistic, mean absolute error (MAE),
root mean squared error (RMSE), relative absolute error,
and root relative squared error (RRSE).

(1)Classification accuracy =
TP + TN

TP + TN + FP + FN
× 100

(2)Classification sensitivity =
TP

TP + FN
× 100

(3)Classification specificity =
TN

TN + FP
× 100

(4)Classification error =
FP + FN

TP + TN + FP + FN
× 100
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Figure 2. Block diagram of the proposed system for predicting ICU admission in patients with COVID-19

3.7. Ethical Considerations

The present study was approved by the Ethics Com-
mittee of Abadan University of Medical Sciences (Ethics
code: IR.ABADANUMS.REC.1400.054). In order to protect
the privacy and confidentiality of patients, we concealed
the unique identification information of all patients in the
process of data collection and presentation.

4. Results

4.1. Demographic and Clinical Characteristics

After applying the exclusion criteria, a total of 1225
patients were eligible (Figure 1). Of 1225 hospitalized
COVID-19 cases, 664 (54.2%) were male, and 561 (45.8%)
were women. Moreover, the median age of participants
was 57.25 years (interquartile 18 - 100 years). We observed
that 170 (13.87%) individuals were hospitalized in the ICU,
and 1055 (86.13%) cases were hospitalized in general wards.
Among the eligible patients, 1136 (92.75%) recovered, and
89 (7.25%) were deceased. Descriptive statistics for the 1225
records in this dataset are summarized in Table 2.

4.2. Top Predictors of ICU Admission

The most important predictors affecting ICU admis-
sion and disease progression were determined using the
correlation coefficient at P-value < 0.05. As shown in Ta-
ble 3, the top 11 ICU admission predictors were age, white
cell count, neutrophil count, and lymphocyte count, blood
urea nitrogen (BUN), aspartate transaminase (AST)/alanine
transaminase (ALT), lactate dehydrogenase (LDH), cough,
dyspnea, and oxygen therapy.

4.3. Model Development

In this study, to construct the ICU admission prediction
model, we used five classification algorithms, namely ANN,
KNN, SVM, DT, and RF, with k-fold (k = 10) cross-validation
methods. The mean metrics of 10-fold cross-validation
methods were measured. Table 4 shows the 10-fold cross-
validation results of five classifiers.

4.4. ANN Configuration

In this structure, according to Table 5, the input data
consisted of 57 variables, two hidden layers with ten and
five neurons, and two outputs (configuration: 57-10-5-2).
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Table 3. Key Diagnostic Criteria at P-Value < 0.05

Variables Pearson’s Correlation P-Value Variables Pearson’s Correlation P-Value

Age -0.045 *0.019 Blood type -0.025128 0.274

Height -0.24 0.409 Gender -0.107 0.38

Weight -0.25 0.388 Cough 0.299 *0.041417

Temperature -0.32 0.268 Contusion -0.122 0.342

Creatinine -0.066 0.119 Hypertension -0.1744378 0.0541

Red cell count 0.029 0.315 Cardiovascular 0.2746594 0.125

White cell count -0.054 *0.047 Alcohol consumption 0.7923469 0.218

Hematocrit -0.017 0.562 Smoking 0.3123146 0.354

Hemoglobin -0.1 0.724 Diabetes 0.0980716 0.104

Platelet count 0.018 0.532 Other underline disorders 0.0904762 0.465

Absolute lymphocyte count -0.057 *0.044 Sore throat 0.0591151 0.64

Absolute neutrophil count 0.061 *0.033 Runny noise -0.1446846 0.253

Calcium -0.055 0.055 Loss of smell 0.0335175 0.811

Phosphorus -0.02 0.476 Loss of taste -0.1192558 0.414

Magnesium -0.033 0.243 Dyspnea 0.4443414 *0.017

Sodium -0.015 0.59 Oxygen therapy 0.460136 *0.008

Potassium 0.015 0.607 Pneumonia 0.2690936 0.115

Bun -0.059 *0.038 Fever 0.0241734 0.842

Total bilirubin -0.003 0.915 Chill 0.0269847 0.824

Asp 0.054 *0.033 Muscular pain 0.0885438 0.466

Alt 0.047 *0.027 GI complications -0.20181 0.179

Albumin 0.024 0.394 Headache -0.0297449 0.831

Glucose 0.017 0.552 Vomit 0.0525788 0.696

Ldh 0.056 *0.049 Nausea 0.0083105 0.949

Activated partial thromboplastin time -0.036 0.213 ESR 0.04 0.157

Prothrombin time 0.01 0.714 Hyper sensitive troponin -0.2146846 0.439

Alkaline phosphatase -0.003 0.929 C-reactive protein 0.0258788 0.196

Table 4. Average Performance of Ten Independent Runs of Classifiers Based on 10-Fold Cross-validation

Evaluation Criteria
Classifier

ANN DT KNN SVM RF

Best time to build a model (s) 38 22 27 14 31

Correctly classified instances 1,747 1,654 1,783 1,637 1,885

Incorrectly classified instances 148 241 112 258 10

Mean accuracy (%) 92.2 87.3 94.1 86.4 99.5

Mean specificity (%) 96.8 85.4 88.7 87.5 99.7

Mean sensitivity (%) 87.6 89.3 99.5 85.3 99.4
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Table 5. ANN Configuration

Model Parameters Values

ANN

Grid weights Random (between 1 and -1)

Network error According to MSE

Training ratio 0.7

Validation ratio 0.15

Test ratio 0.15

Optimization Using Trainlm, which is a network training function that updates
weight and bias values according to Levenberg-Marquardt
optimization

Maximum epochs 1000

Maximum training time Inf

Performance goal 0

Minimum gradient min_grad: 1e-07

Maximum validation checks max_fail: 6

Mu 0.001

Mu decrease ratio mu_dec: 0.1

Mu increase ratio mu_inc: 10

Maximum mu mu_max: 10000000000

According to the experimental results of evaluating se-
lected ML models in 10-iterations, the KNN algorithm (with
K = 5) had 94.1% accuracy, 88.7% specificity, and 99.5% sen-
sitivity. After running ANN, the algorithm achieved an ac-
curacy of 92.2%, a specificity of 96.8%, and a sensitivity of
87.6%. The RF algorithm showed high performance with
99.5% accuracy, 99.7% specificity, and 99.4% sensitivity. The
SVM algorithm had 87.5%, 85.3%, and 86.4% specificity, sensi-
tivity, and accuracy, respectively. Furthermore, the DT algo-
rithm demonstrated 87.3% accuracy, 85.4% specificity, and
89.3% sensitivity. Based on the analysis of variance, the five
selected algorithms were significantly different (P < 0.05).
The error rate of classifiers and computation time of imple-
mented models on the given dataset are shown in Figure 3.

The results obtained for the error rate of selected classi-
fiers revealed that the RF algorithm had the highest Kappa
metric of 95.7%. In addition, it has the lowest MAE (0.02),
RMSE (0.015), and RRSE (22%). The results of comparing con-
fusion matrix metrics and area under the curve (AUC)-ROC
of different classifiers are shown in Figures 4 and 5.

According to Figures 4 and 5, the RF algorithm was the
best classifier for predicting ICU admission based on eval-
uation criteria. The SVM algorithm has the best computa-
tion time of processing with 14 s. The results for ten inde-
pendent runs of RF are summarized in Table 6.

Table 6. Performance of RF in Ten Independent Runs

Run Accuracy Specificity Sensitivity

1 99.1425 99.5817 99.77514

2 99.2141 99.458 99.8541

3 99.3236 99.6745 99.75114

4 99.2451 99.8542 99.347

5 99.6173 99.5841 99.471

6 99.657 99.37414 99.3445

7 99.4235 99.335 99.5457

8 99.741 99.421 99.247

9 99.2351 99.9524 99.741

10 99.541 99.3541 99.8242

Std 99.41402 99.55891 99.59008

Min 0.212369 0.21395 0.226258

Max 99.1425 99.335 99.247

Mean 99.741 99.9524 99.8541

5. Discussion

Given the heterogeneity of the clinical manifestations
of COVID-19, it is critical to develop models for predicting
the likelihood of ICU admission by ML techniques. This
study created five ML-based models using the most rele-
vant variables in determining the risk of ICU admission
derived from a correlation coefficient analysis. The tech-
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Error Rate of the Classifiers on the Given Dataset 

Random Forrest

KNN

Decision Tree
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Figure 3. Error rate of the classifiers on the given dataset
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Figure 4. The ROC curve chart of the selected ML algorithms

niques used herein included ANN, DT, KNN, SVM, and RF,
which were trained through the most significant predic-
tors from 1225 laboratory-confirmed COVID-19 patients at
the time of admission. Finally, based on our analysis of se-
lected algorithms, we found that RF with a mean accuracy
of 99.5%, a mean specificity of 99.7%, and a mean sensitiv-
ity of 99.4% have better performance than other ML algo-
rithms in predicting the probability of ICU transfer after

hospital admission.

In the ICU, the need for informed decision-making is
critical, especially in crisis circumstances, such as the cur-
rent COVID-19 pandemic, where the healthcare systems en-
countered an increasing surge of patients and severe short-
age in hospital resources (21, 22). The models developed in
this study could be simply computerized as an alternative
to manual and subjective clinical assessment methods. To
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Figure 5. Confusion matrix calculation for the selected ML algorithms

correctly extract clinical predictors for estimating the po-
tential need for ICU services, we evaluated clinical features
at the time of admission and not at the progressive/severe
course of the disease. In addition, the critical patients at ad-
mission time were discarded from the analysis. Thus, if val-
idated, these features could be applied for predicting the
likelihood to enter in ICU at the first hospitalization. For
this purpose, Feature selection is a significant step to pre-
pare the data before entering into the model (23). Hence,
we identified the most important variables (n = 11) through
correlation coefficient at P-value < 0.05. The most sig-
nificant predictors of ICU admission were older age, high
creatinine, leukocytosis, increased BUN, elevated ASP/ALT,
augmented LDH, dry cough, hypertension, cardiovascular
disorders, diabetes, dyspnea, decreased SPO2, pneumonia,
and high C-reactive protein.

Many studies have focused on determining the key risk
factors for ICU admission (8, 9, 11, 13, 24, 25). The ten top clin-
ical variables predicting ICU risk in reviewed studies en-

compassed age (older age), body temperature (high), oxy-
gen saturation (decreased), neutrophil count and lympho-
cyte count (raised), C-reactive protein (elevated), D-dimer
(increased), ALT and/or AST (augmented), LDH (elevated),
loss of consciousness, and hypertension/cardiovascular
diseases. In general, high compliance was observed be-
tween the results of reviewed studies and the most com-
mon variables in the current study.

In general, the developed ML algorithms in this study,
similar to those reported in the previous studies (26), have
achieved optimum results with an accuracy range of 86.4%
- 90.37%. In particular, the experimental findings showed
that RF had the best performance compared to the other
four ML techniques with the mean accuracy of 99.5%, mean
specificity of 99.7%, mean sensitivity of 99.4%, Kappa met-
ric of 95.7%, and RMSE of 0.015. According to the results of
the previous studies, the ANN and RF techniques have the
most remarkable performance in predicting COVID-19 out-
comes, which is consistent with the present study.

8 Shiraz E-Med J. 2022; 23(5):e117849.
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As a screening instrument for the development of se-
vere disease, model developed in our study has several op-
portunities for clinical use. These models decrease the
existing uncertainty and ambiguity in COVID-19 clinical
practice by presenting measurable, non-subjective, and
evidence-based approaches (12, 18). Accurate ICU admis-
sion prediction can support the sharing of limited hospi-
tal resources and improve the quality of care along with
patient survival chance (12). The timely identification of
at-risk patients could diminish the need for imminent ICU
beds and invasive mechanical ventilators. Moreover, us-
ing proposed model in present study can surge the tolls
of timely ICU transfers, resulting in reduced mortality and
shorter lengths of ICU stay. Designing a scientific and valid
ML-based prediction model would assist in early detection
and effective supportive intervention to improve patient
outcomes, the quality of care, and ultimately a reduction
in the mortality rate of COVID-19 patients. Ambiguity de-
clines due to offering quantitative, objective, and evidence-
based models for risk stratification, prediction, and care
planning (9, 10).

This study had several limitations. First, we retrospec-
tively analyzed a dataset without control over data fields or
incomplete data. Second, the dataset was extracted from a
single hospital with a low sample size of 1225, making the
results ungeneralizable. Third, this study only included 11
clinical features at admission to the hospital. It does not
mean that these should be the only criteria for determin-
ing ICU admission. Longitudinal changes in these clinical
features need to be investigated. Moreover, we only used
five ML algorithms for prediction analyses. Finally, the se-
lected dataset lacked some critical clinical variables, such
as radiological indicators. In the future, the performance
accuracy of our model and its generalizability will be en-
hanced if we test more ML techniques for larger, multicen-
ter, and prospective datasets equipped with more qualita-
tive and validated data.

5.1. Conclusions

We trained and validated different ML algorithms to
predict the need for ICU transfer in COVID-19 hospitalized
patients based on the data collected easily and routinely at
the time of hospital admission. This study first identified
the highly ranked clinical predictors that can predict the
likelihood of ICU admission more precisely. Second, we de-
veloped and compared five ML-driven prediction models
based on these selected predictors. It was observed that the
RF model performed best on classification accuracy com-
pared to the other ML algorithms. This method has the
potential to provide frontline clinicians with an objective
instrument to manage COVID-19 patients more efficiently
in such time-sensitive, resource-demanding, stressful, and

potentially resource-constrained situations. Finally, the re-
sults of comparing the performance of prediction mod-
els in this study were satisfactory to some extent, and we
believe that further investigations are needed to validate
our model for a larger, multi-central, and more qualitative
dataset.
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Table 2. Descriptive Statistics of the Study Variables After Preprocessing a

Variables Values

Qualitative

Blood type

A-, A+ 17, 552

B-, B+ 13, 126

O-, O+ 29, 421

AB-, AB+ 6, 61

Gender

Male 664

Female 561

Cough

Yes 958

No 267

Contusion

Yes 409

No 816

Nausea

Yes 401

No 824

Vomit

Yes 346

No 879

Headache

Yes 312

No 913

Gastrointestinal symptoms

Yes 252

No 973

Muscular pain

Yes 623

No 602

Chill

Yes 591

No 634

Fever

Yes 628

No 597

Pneumonia

Yes 1044

No 181
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Oxygen therapy

Yes 1053

No 172

Dyspnea

Yes 1078

No 147

Loss of taste

Yes 272

No 953

Loss of smell

Yes 305

No 920

Runny noise

Yes 437

No 788

Sore throat

Yes 444

No 781

Other underlying diseases

Yes 735

No 490

Cardiac disease

Yes 306

No 919

Hypertension

Yes 395

No 830

Diabetes

Yes 268

No 957

Smoking

Yes 41

No 1184

Alcohol addiction

Yes 11

No 1214

C-Reactive protein

Positive 1063

Negative 162

Hypersensitive troponin

Positive 58

Negative 1167

ICU admission (outcome)

12 Shiraz E-Med J. 2022; 23(5):e117849.



Shanbehzadeh M et al.

Yes 1055

No 170

Quantitative

Age (y) 57.25 ± 17.8 (18 – 100)

Height 168.53 ± 8.5 (92 - 195)

Weight 75.20 ± 13 (6.5 - 163)

Creatinine 1.39 ± 1.4 (0.1 - 17.9)

Red cell count 4.56 ± 0.9 (1.38 - 13.1)

White cell count 8182.34 ± 4897.4 (1300 - 63000)

Hematocrit 39.20 ± 6.7 (3.6 - 73.9)

Hemoglobin 13.21 ± 2.4 (3.7 - 46)

Platelet count 215493.66 ± 88380.1 (108000 - 691000)

Absolute lymphocyte count 23.74 ± 11.8 (2 - 95)

Absolute neutrophil count 74.52 ± 12.3 (8 - 98)

Calcium 9.68 ± 0.8 (0.9 - 14.1)

Phosphorus 3.5 ± 0.5 (2 - 12.4)

Magnesium 2.16 ± 0.6 (1.14 - 19.1)

Sodium 137.94 ± 5.3 (37 - 157)

Potassium 3.98 ± 0.7 (2.5 - 14.2)

Blood urea nitrogen 42.52 ± 31.7 (0.5 - 251)

Total bilirubin 0.72 ± 0.7 (0.01 - 10)

Aspartate aminotransferase 44.45 ± 53.5 (3.8 - 924)

Alanine aminotransferase 38.29 ± 41.6 (2 - 672)

Albumin 4.02 ± 0.5 (0.2 - 8.9)

Glucose 136.09 ± 74.2 (18 - 994)

Lactate dehydrogenase 555.68 ± 339 (4.6 - 6973)

Activated partial thromboplastin time 28.56 ± 11.4 (1 - 120)

Prothrombin time 12.82 ± 1.9 (0.9 - 46.8)

Alkaline phosphatase 213.12 ± 139.2 (9.6 - 2846)

Erythrocyte sedimentation rate 40.65 ± 28.8 (2 - 258)

a Values are expressed as No. (%) or mean ± SD (range).
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