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Abstract

Background: Today, the COVID-19 pandemic is ever-increasingly challenging healthcare systems globally with many uncertainties
and ambiguities regarding disease behavior and outcome prediction. Thus, machine learning (ML) algorithms could be potentially
demanding to tackle these challenges.
Objectives: The present study aimed to construct and compare two prediction models based on statistical and computational ML
algorithms to predict mortality in COVID-19 hospitalized patients and, finally, adopt the best-performing algorithm, accordingly.
Methods: Having considered a single-center registry, we scrutinized 482 records of laboratory-confirmed COVID-19 hospitalized
patients admitted from February 9, 2020, to December 20, 2020. The most important clinical parameters for COVID-19 mortality
prediction were identified using the Phi coefficient technique. In the next step, two statistical and computational ML models, ie,
logistic regression (LR) and artificial neural network (ANN), were evaluated through the metrics derived from the confusion matrix.
Results: Predictive models were trained using 16 validated features. The results indicated that the best performance pertained to
the ANN classifier with a positive predictive value (PPV) of 0.96, a negative predictive value (NPV) of 0.86, the sensitivity of 0.94,
specificity of 0.94, and accuracy of 0.93.
Conclusions: According to the results, ANN predicted mortality in hospitalized patients with COVID-19 with an acceptable level
of accuracy. Therefore, it would be extremely reasonable to develop intelligent decision support systems to early detect high-risk
patients, helping clinicians come up with proper interventions.
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1. Background

In December 2019, the novel coronavirus disease
(COVID-19), detected initially in Wuhan China, rapidly
spread all over the world. As a result, the world health or-
ganization (WHO) declared this outbreak a pandemic in
January 2020 (1, 2). Unfortunately, the aggressive dissem-
ination of this contagious viral infection resulted in ma-
jor global challenges such as the shortage of hospital re-
sources and exhaustion of healthcare providers, which ne-
cessitates developing accurate prediction models to both
effectively triage patients and also maximize the use of
limited resources. Besides, healthcare administrators and
clinicians count on different computational and statistical

models to effectively and accurately predict uncertainties
in hospital and medical settings (3-5).

The clinical outcomes of the novel virus range from
asymptomatic or mild symptoms to serious complications
and even death in some cases. For example, in some pa-
tients with a set of mild to moderate symptoms, a severe
form of the disease emerges, which requires advanced risk,
stratification models. Using prediction models, profes-
sionals promptly identify patients in the early stages of the
disease, which, in turn, minimizes the mortality rate (6, 7).

Several different statistical and computational meth-
ods can be used to develop a mortality prediction model,
including but not limited to logistic regression (LR), linear

Copyright © 2022, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited.

http://dx.doi.org/10.5812/semj.119172
https://crossmark.crossref.org/dialog/?doi=10.5812/semj.119172&domain=pdf
https://orcid.org/0000-0003-3770-2375
https://orcid.org/0000-0002-5094-6385
https://orcid.org/0000-0002-7678-8573
https://orcid.org/0000-0003-4591-2209
https://orcid.org/0000-0002-3419-1947


Nopour R et al.

regression, Cox regression, and machine learning (ML) al-
gorithms (8, 9). To diminish pandemic-related challenges,
health care providers worldwide apply ML, and statistical
models to early predict COVID-19 deterioration (7, 10, 11).
Machine learning, a branch of Artificial Intelligence (AI),
facilitates extracting high-quality prediction models from
the mining of huge raw datasets (12) and serves as a valu-
able tool in medical research to improve predictive model-
ing and reveal new contributing factors to a specific out-
come (12, 13). In addition, ML algorithms may minimize
uncertainties and ambiguities by offering evidence-based
medicine for risk analysis, screening, prediction, and care
plans; they also support reliable clinical decision-making
through health care quality improvement (14, 15). In this
regard, supervised classification of learning algorithms
(both statistical and computational) can be utilized to ad-
dress these uncertainties by providing patient risk strati-
fication for tailored clinical decision-making support (ie,
measuring the probability of a disease, assessing disease
likelihood, forecasting disease spread, and predicting fa-
tality) (8, 9, 16-18).

Machine learning algorithms, which analyze the in-
puts and outputs of complex processes, can provide pre-
diction models that perform better than traditional ones.
Also, they can detect nonlinear connections, improve
multifactor algorithms, and upgrade methodologies for
model validation (19, 20). Machine learning-based predic-
tion models have successfully achieved early detection of
disease trends and outbreaks, forecasting of disease be-
haviors and outcomes, and estimation of patient survival
and patients’ responses to supportive therapies during the
pandemic (19, 21). In this regard, with the onset of the
current pandemic, researchers used ML to design and im-
prove models for predicting poor disease outcomes and
early detection of patient condition deterioration (such
as ICU admission, mechanical intubation, or even death).
Hence, these models greatly helped frontline therapists
and decision-makers opt for the most effective supportive
and therapeutic plans at the right time and place (15, 22,
23).

2. Objectives

Since different laboratory, clinical, and epidemiolog-
ical features affect the survival or death of COVID-19 pa-
tients, it is important to understand these factors to re-
duce the mortality rate to a greater extent (24). Besides,
the large volume of multidimensional data may perplex
therapists in identifying the most important factors (25).
Therefore, ML algorithms ease developing prediction mod-
els due to their numerous feature selection and classifica-
tion capabilities (13, 26). Therefore, we aimed to develop

and compare two statistical and computational ML meth-
ods for predicting mortality among hospitalized patients
with COVID-19.

3. Methods

This retrospective, single-center study aimed to de-
velop a prediction model based on two ML algorithms for
mortality risk classification in hospitalized COVID-19 pa-
tients. It was conducted in four stages as follows: 1- data
understanding, 2- patient selection, 3- preprocessing and
data reduction, and 4- model development and evaluation.

3.1. Data Understanding

In this retrospective study, a COVID-19 hospital-based
registry database from Imam Khomeini hospital, Ilam
city, west of Iran, was thoroughly reviewed. Needless
to say, the study was approved by the ethical committee
board of Ilam University of Medical Sciences (Ethics code:
IR.MEDILAM.REC.1399.294). Plus, only the patients admit-
ted from January 9, 2020 to January 20, 2021 with a pos-
itive RT-PCR test for COVID-19, who met our inclusion cri-
teria, were included. Then three health information man-
agement (HIM) experts quantitatively and qualitatively in-
vestigated case records based on 54 risk factors under
six main classes: patients’ demographics (five variables),
clinical manifestations (14 variables), comorbidities (seven
variables), laboratory parameters (26 variables), treatment
(one variable), and outcome (one variable). The data fields
for each class have been illustrated below:

- Demographics: Gender, age, weight, height, and
blood type.

- Clinical manifestations: Cough, contusion, nausea,
vomiting, headache, gastrointestinal (GI) symptoms, mus-
cular pain, chills, fever, dyspnea, loss of taste, loss of smell,
runny nose, and sore throat.

- Comorbidities: Pneumonia, cardiac disease, hyper-
tension, diabetes, smoking, alcohol addiction, and other
underline diseases.

- Laboratory parameters: Creatinine, red cell count,
white cell count, hematocrit, hemoglobin, platelet count,
absolute lymphocyte count, absolute neutrophil count,
serum levels of calcium, phosphorus, magnesium,
sodium, and potassium, blood urea nitrogen (BUN),
total bilirubin, aspartate aminotransferase (ASP), ala-
nine aminotransferase (ALT), albumin, glucose, lactate
dehydrogenase (LDH), activated partial thromboplastin
time, prothrombin time, alkaline phosphatase, erythro-
cyte sedimentation rate (ESR), C-reactive protein, and
hypersensitive troponin.

- Treatment: Oxygen therapy.
- Outcome: Death (yes/no).

2 Shiraz E-Med J. 2022; 23(6):e119172.



Nopour R et al.

3.2. Patient Selection

Eligible patients who matched the inclusion criteria
comprised a total of 12885 cases suspected to have COVID-
19, referred to Imam Khomeini hospital’s ambulatory and
emergency departments (EDs), of whom 3350 cases were
confirmed by RT-PCR. Based on exclusion criteria, finally,
482 records entered the study (306 and 176 of whom would
survive and die, respectively). The exclusion criteria were
as follows: (1) non-COVID-19 or non-hospitalized cases or
patients with unknown disposition, (2) patients who were
18 years old or younger, (3) incomplete case records (miss-
ing data more than 70%), and (4) admission time before
January 9, 2020 or after January 20, 2021. To ensure pri-
vacy and confidentiality of information, we promised to
use unique identification codes for every patient through-
out data collection and data presentation.

3.3. Preprocessing and Data Reduction

First, incomplete case records with great missing data
(more than 70%) were excluded from analysis. Also, the
remaining missing values were imputed using the mean
or mode of each variable. Noisy and abnormal values, er-
rors, duplicates, and meaningless data were checked by
two HIM experts (M. SH and L. E), two infectious disease
specialists, and a hematologist. When there were different
interpretations on data preprocessing, we contacted the
corresponding physician. Moreover, we initially omitted
some features that were not common for model construc-
tion for better and easier analysis of the database before
training the prediction models. Feature selection is char-
acterized by the process of identifying and removing un-
needed or redundant variables from the original dataset
without any major loss of information. In the case of high-
dimensional data, feature selection is deemed to be one of
the key steps in data mining and pattern recognition. It
enhances learning efficiency, increases prediction perfor-
mance, and minimizes the complexity of model training
via input optimization (27-29). To determine the most im-
portant factors for predicting mortality among hospital-
ized patients, the Phi correlation coefficient was used at P <
0.01 to specify a meaningful relationship between each in-
put variable (mortality determinants) and output variable
(death or survival) (30, 31).

3.4. Model Development and Evaluation

In the present study, two types of prediction models,
including statistical BLR and computational ANN, were im-
plemented.

Logistic regression: This model can be utilized to de-
termine probable relationships between independent and

dependent variables. Frequently, they can be used in two-
valued output classes (ie, dichotomous variables), such as
the relationship between several factors affecting Coron-
avirus disease (COVID-19: code 0 or non-COVID-19: code 1).
A simple formula for this method has been shown in Equa-
tion 1, where "P" denotes the possibility of output occur-
rence; b0 is the intercept, and b1 is the coefficient of the in-
put (or X in the formula), which belonged to the training
dataset (32, 33).

(1)P =
eb0+b1×x+...

1 + eb0+b1×x+...

In this study, the Forward LR method of BLR was ap-
plied to develop the prediction model in IBM SPSS Statis-
tical software, V 25. Then its performance was assessed us-
ing two quantitative criteria, including true positive (TP),
false positive (FP), false negative (FN), true negative (TN),
and log-likelihood (Equation 2).

L (P, Y ) =

∫ N

i=1

[Yi (lnP (Yi)) + (1− Yi) ln (1− P (Yi)]

(2)

The log-likelihood function is a method for determin-
ing the underlying model’s goodness of fit using sample
data. It can also be defined as the difference between the
probabilities of the expected and observed outputs’ occur-
rences. It is, of course, necessary to emphasize that the
smaller this amount is, the better the algorithm can per-
form. In Equation 2, P (Yi) is the probability of the ob-
served output occurrence, associated with the (i) value that
belongs to the Y dependent variable. Also, L(P, Y) is Log-
likelihood, and 1- P(Yi) is the probability of non-observed
output occurrence.

Artificial neural networks: Artificial neural networks
(ANNs) are a set of computing algorithms that emulate the
functions of biological neural networks. The components
of the models are nodes, weights, and layers (input, hid-
den, and output layers) (34, 35). The three structural lay-
ers of this model are associated with predictor variables,
weighted nodes connecting the input and output layers,
and dependent variables, respectively (36). Moreover, ac-
tivation methods are necessary to determine the link be-
tween different nodes in ANNs’ functional configurations
that can be simulated using different mathematical func-
tions (37).

Multilayer perceptron-ANNs (MLP-ANNs) are the sim-
plest and most commonly used ANN architectures thanks
to their structural flexibility, good representational capa-
bilities, and a large number of trainable algorithms (28,
29). In this research, therefore, the backpropagation type
of MLP-ANN configuration was applied owing to its low er-
ror rate in predicting output variables, as well as its exten-
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sive use in the literature (38). Also, we applied the tans-
ing activation method to connect weighted nodes in ANNs.
In this study, the ANN was designed in MATLAB software R
2013 to predict mortality among hospitalized patients with
COVID-19, using 70% of data for ANN training and 15% for
each of validating and testing the model developed. We
first determined the number of inputs and outputs in each
two input and hidden layers, which were associated with
the number of independent and dependent variables, re-
spectively. Subsequently, we placed one node in one hid-
den layer and then measured its performance based on
different criteria, including sensitivity, specificity, and ac-
curacy. In each step, we added a node and measured its
performance. Then the best configuration of ANNs was se-
lected by comparing different nodes and the number of
the hidden layer(s). Finally, training and validating mean
squared errors (MSE) and the area under the ROC curve
(AUC) of ANN were determined as final key parameters
of the prediction models. Hence, to compare the perfor-
mance of the models in predicting mortality, we applied
some criteria such as positive predictive value (PPV), nega-
tive predictive value (NPV), sensitivity, specificity, and accu-
racy, which were obtained from the confusion matrix and
AUC-ROC curve.

4. Results

4.1. Patient Profiles

By applying the exclusion criteria, finally, a total of 482
eligible hospitalized COVID-19 patients were chosen as fol-
lows: 288 (59.75%) were male, and 194 (40.24%) were female.
Also, the median age of the participants was 57.25 years (in-
terquartile: 18 - 100). Moreover, 150 (31.12%) and 332 (68.87%)
were hospitalized in the ICU and general wards, respec-
tively. Regarding the outcome, 382 (79.25%) recovered, and
100 (20.74%) succumbed to the disease.

4.2. Feature Selection

Based on the Phi coefficient correlation between each
death determinant and the output variable (survival (0)
and (death (1)), 16 variables were recognized as the most
important predictors of mortality in hospitalized COVID-
19 patients at P < 0.01), as shown in Table 1.

Based on the correlation coefficient, the variables of
ICU hospitalization (ϕ = 0.628, P < 0.001), activated partial
thromboplastin time (ϕ = 0.648, P < 0.001), length of hos-
pitalization (ϕ = 0.432, P < 0.001), pleural fluid (ϕ = -0.534,
P < 0.01), and absolute lymphocyte count (ϕ = 0.472, P <
0.001) represented much higher correlation coefficients
than other variables (P < 0.01).

4.3. Logistic Regression

Using the Forward LR method of BLR, five steps were
taken in the prediction model. Table 2 depicts the table of
the Model of IF-Removed.

As it can be seen in Table 2, entering the ICU hospitaliza-
tion variable into the first step resulted in a log-likelihood
of -126.59, assigning this variable as the first to enter into
the model. Also, by entering other important variables in
next phases into the model, we demonstrated that the log-
likelihood rate reduced till the final step (ie, 5th step). In
this step, the log-likelihood of the loss of smell, which was
entered into the model as the latest variable, was obtained -
53.974. Simultaneously, other variables suggested the min-
imal value of log-likelihood in this step at P < 0.01 (df = 1).

Figure 1 represents the predictive power of BLR in de-
termining the probability of survival and death in hos-
pitalized patients with COVID-19 based on the aforemen-
tioned five-step process described in the previous section.

As shown in Figure 1, vertical vertices demonstrate the
number of BLR’s iterations in each step for death predic-
tion whereas horizontal vertices are possible BLR values at
which the predicted cases would be categorized into cer-
tain groups. For example, a predicted probability of > 0.5
was regarded as "dead," while values less than 0.5 predicted
the "survival" of hospitalized COVID-19 patients.

At the cut-off value of 0.5, the symbols of 0 and 1 rep-
resented survived, and dead cases, respectively, and each
symbol equated to 10 cases of interest. Hence, we com-
pared steps 1 and 5 of BLR and noticed that the addition of
those five important variables to the BLR model caused the
representative cases associated with survived hospitalized
patients (0) to recede from the threshold (0.5), especially in
high BLR iterations. Therefore, the difference between the
probability predicted by the model and the expected rate
reduced (ie, log-likelihood reduction). Also, the represen-
tative cases related to demised hospitalized patients (1) in
step 5 were closer to 1 compared to their distance from the
threshold in step 1 (ie, log-likelihood reduction and conse-
quently, the model’s performance augmentation). Besides,
comparing the final step of BLR with step 1 based on the TP,
FP, TN, and FN values revealed that truly classified cases (TP
= 133 and TN = 252) in step 5th significantly increased com-
pared to respective values in step 1st (TP = 105 and TN = 173).
However, the number of falsely classified cases was lower
in step 5th (FP = 55 and FN = 43) than in step 1st (FP = 134
and FN = 71), indicating a much higher efficiency in step
5th than in step 1st regarding the correct classification of
survived and dead COVID-19 hospitalized patients.

4.4. Artificial Neural Network

It should be noted that the addition of sigmoid nodes
to the hidden layer(s) for ANN training and subsequently,
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Table 1. The Most Influential Factors in Predicting Mortality in Patients with COVID-19

No. Variables Type of Variable Correlation Coefficient P-Value

1 Cough Qualitative (binominal) 0.168 0.001

2 Contusion Qualitative (binominal) 0.144 0.001

3 Oxygen therapy Qualitative (binominal) 0.169 < 0.001

4 Length of hospitalization Quantitative 0.432 < 0.001

5 Dyspnea Qualitative (binominal) 0.119 < 0.001

6 Runny nose Qualitative (binominal) 0.185 < 0.001

7 Loss of taste Qualitative (binominal) 0.244 < 0.001

8 Loss of smell Qualitative (binominal) 0.248 < 0.001

9 Erythrocyte sedimentation rate Quantitative 0.539 0.001

10 Pleural fluid Qualitative (binominal) -0.534 < 0.001

11 ICU hospitalization Qualitative (binominal) 0.628 < 0.001

12 Blood sodium Quantitative 0.307 0.001

13 Absolute lymphocyte count Quantitative 0.472 < 0.001

14 Activated partial thromboplastin time Quantitative 0.648 < 0.001

15 Other underlying diseases Qualitative (binominal) 0.153 0.001

16 Sore throat Qualitative (binominal) 0.121 0.01

Table 2. The Model of IF-Removed

Model IF Term Removed

Variables Model Log-Likelihood Change in -2 Log-Likelihood df P-Value of the Change

Step 1

ICU hospitalization -126.159 93.357 1 0.000

Step 2

ICU hospitalization -101.285 72.725 1 0.000

Pleural fluid -79.481 29.117 1 0.000

Step 3

ICU hospitalization -86.167 53.983 1 0.000

Pleural fluid -75.454 32.558 1 0.000

Absolute lymphocyte count -64.922 11.494 1 0.001

Step 4

Length of hospitalization -59.175 10.402 1 0.001

ICU hospitalization -82.764 57.580 1 0.000

Pleural fluid -72.316 36.684 1 0.000

Absolute lymphocyte count -61.584 15.219 1 0.000

Step 5

Length of hospitalization -54.961 9.640 1 0.002

Loss of smell -53.974 7.667 1 0.006

ICU hospitalization -76.821 53.361 1 0.000

Pleural fluid -68.117 35.953 1 0.000

Absolute lymphocyte count -57.403 14.523 1 0.000
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Figure 1. Steps 1 and 5 of BLR

measuring its performance showed that the architecture
of 16-20-10-1 (16 input variables as the input layer, 20 and 10
sigmoid nodes in hidden layers of 1 and 2, respectively, and
1 output as the target layer) offered much better function-
ality compared to other architectures concerning different
performance criteria.

The results of MSE measurement for ANN (Figure 2)
showed that the ANN acquired the best performance at
16th training repetition (six steps before reaching the best
validation (22nd epoch)). As noted, the best validation
performance was achieved in 22nd training epoch (MSE
= 0.037122). In this step thus, the MSE of ANN training
and testing was close to the validation performance (0.01
< MSE < 0.1) (Figure 2). The error histogram for the ANN
algorithm has been depicted in Figure 2.

The error histogram with 20 bins was utilized to clas-
sify the training and validate and test various states of the
ANN. As indicated in Figure 2, approximately 200 samples
with the error rate of -0.00111 and more than 100 samples
with the error rate of 0.0904 were used to train the ANN.
Also, the error rate was set in these two amounts to validate
and test the subset of the dataset. The presence of some
outliers in the databases directed a few portions of train-
ing and testing data into 0.914 and -0.8247 points of the er-
ror histogram diagram, slightly decreasing the ANN’s per-
formance.

4.5. Comparison of Two Selected Methods

The results of comparing the performance of two se-
lected methods via the confusion matrix demonstrated
that the ANN correctly predicted the outcome of 92.9% of
hospitalized patients; however, 79% of the patients were
correctly classified in the 5th step of the BLR technique.
Also, the incorrectly classified samples in ANN and BLR’s
5th step included FP = 1.9% vs. 11.4% and FN = 5.2% vs. 8.9%,
respectively, revealing the lower rate of incorrectly classi-
fied samples in the ANN method. The results of PPV, NPV,

sensitivity, specificity, and accuracy of the ANN and BLR
techniques have been presented in Figure 3.

As shown in Figure 3, the ANN had a higher prediction
performance than the BLR. The AUCs of the two different
methods, AUC-ROC of the ANN, and the results of the con-
fusion matrix have been shown in Figure 4.

Based on Figure 4, the percentages of the cases cor-
rectly classified in the training, validation, and test phases
were 92.3%, 95.8%, and 93.1%, respectively. The validation
(with 95.8% of TP+TN) and training (with 92.3% of TP+TN)
of the confusion matrix presented the best and poorest
performances, respectively. Figure 4 also demonstrated
that the ANN technique (AUC = 0.90) was better than the
BLR technique (AUC = 0.65) in terms of prediction perfor-
mance. Besides, the ROC diagram of the ANN was closer to
the vertical axis (ie, the TP value). Overall, comparison of
the two prediction models based on the confusion matrix,
PPV, NPV, sensitivity, specificity, accuracy, and AUC revealed
that the ANN model performed better in predicting death
among hospitalized COVID-19 patients.

5. Discussion

It is believed that the early prediction of possible death
due to COVID-19 based on novel, objective, and scientific
techniques can help tackle the cumbersome burden of the
disease on healthcare systems by effectively triaging crit-
ically ill patients and optimally managing the scarce hos-
pital resources (15, 27). Therefore, the present study’s pur-
pose was to retrospectively develop and validate two statis-
tical and computational ML models based on the most rele-
vant determinants of COVID-19 mortality. For this purpose,
we applied two ML models (statistical: BLR and computa-
tional: ANN) to predict mortality among hospitalized con-
firmed COVID-19 patients based on the clinical data avail-
able in the registry database of Ilam University of Medical
Sciences. The most important mortality predictors were
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Figure 2. The MSE of different states of the dataset and error histogram bar of the ANN

Figure 3. Some performance criteria in the two selected methods

Figure 4. The ANN’s confusion matrix and AUC-ROC

Shiraz E-Med J. 2022; 23(6):e119172. 7
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determined using the Phi coefficient at P < 0.01, leading
to the identification of sixteen final variables as the most
important predictors.

Investigating the BLR model’s performance using the
confusion matrix and log-likelihood demonstrated that in
5th step, the model’s performance was superior compared
to step 1st, with TP = 133, TN = 252, FP = 55, FN = 43, and
the average log-likelihood of -61.6. On the other hand, the
best performance of the ANN model was obtained with the
structure of 16-20-10-1 with the MSE of 0.037122, validated at
the 22nd training iteration. At this point, the classification
of a large number of samples delivered a near zero value,
as observed in the error histogram, with TP = 281, TN = 167,
FN = 9, and FP = 25 in the total confusion matrix. Compar-
ison of the two selected algorithms regarding the confu-
sion matrix (as a common performance criterion) demon-
strated that the structure of 16-20-10-1 in ANN resulted in a
better performance compared with the 5th step of BLR.

So far, several studies have evaluated the applicabil-
ity of ML techniques in predicting mortality in patients
with COVID-19. For instance, Karthikeyan et al. retrospec-
tively studied the clinical data of 2779 confirmed or sus-
pected COVID-19 patients to construct an intelligent pre-
diction model via selected ML algorithms. Finally, the ANN
model attained the best performance with an accuracy of
96% (39). Furthermore, Das et al. conducted a retrospective
analysis on chest X-ray data of 3299 COVID-19 subjects and
showed that the ANN model, with an accuracy of 0.981%
and AUC- ROC of 0.886, claimed the best predictive ability
(40). Also, Yadaw et al. assessed the performance of four ML
algorithms, including LR, RF, SVM, and eXtreme Gradient
Boosting (XGBoost), using a dataset of 3841 patients to pre-
dict COVID-19 mortality. In the above-mentioned model,
XGBoost with an AUC of 91% and LR with AUC of 78% gained
the best and worst performance among other models de-
veloped (24). Gao (2020) conducted a retrospective analy-
sis on the data of 2520 COVID-19 hospitalized patients. The
results showed that the ANN model yielded the best perfor-
mance with an AUC-ROC of 0.9760 in predicting COVID-19
patients’ physiological deterioration and death compared
with other models developed by LR, support vector ma-
chine (SVM), and gradient boosted decision tree (15). Vaid
et al., (26) also compared the efficiency of the logistic re-
gression with L1 regularization (LASSO) and ANN-MLP mod-
els in predicting mortality among 4029 confirmed COVID-
19 patients. Ultimately, the best performance was reported
for the modified ANN-MLP model with the sensitivity of
90.7%, specificity of 91.4%, and AUC-ROC of 0.963 (41). An et
al. achieved the best COVID-19-related mortality predictive
performance using the ANN technique with RMSE of 5.9451
and MAE of 4.6354 (41). Similarly, we observed the best per-
formance for the ANN model with PPV of 0.96%, NPV of 0.86,

sensitivity of 0.94, specificity of 0.94, and accuracy of 0.93.
Studies have also reported some important clinical

variables (predictors) for COVID-19 patients’ mortality
through leveraging a feature selection analysis technique.
It should be noted that the features selected are regarded
as inputs for developing ML-based models for predict-
ing mortality among COVID-19 patients. Apparently, the
strongest predictive variables include age (7, 19, 24, 40, 42-
45), ICU hospitalization (15, 27, 40, 42), low oxygen satu-
ration (decreased SPO2) (6, 7, 10, 19, 22, 27, 45), dyspnea
(7, 10, 40, 43), loss of taste/smell, hypertension (19, 24, 27,
40, 44, 45), cardiovascular diseases (24, 27, 40, 42, 44, 46),
raised ALT and/or AST (22, 24, 40, 46, 47), elevated LDH (21,
22, 40, 43), and raised leukocyte/neutrophil count (15, 22,
24, 40, 42, 44, 48). In the present study, the most impor-
tant variables (COVID-19 mortality predictors) were identi-
fied based on correlation coefficients at the level of P < 0.01
(ie, feature selection). These variables included ICU hos-
pitalization, activated partial thromboplastin time, length
of hospitalization, pleural fluid, and absolute lymphocyte
count. In general, these variables were relatively in line
with the results of previous studies that have categorized
and prioritized these parameters.

Interestingly, the selected computational ML algo-
rithm (ie, the ANN model) could predict mortality in
COVID-19 patients with acceptable performance, which, in
turn, can help optimally use limited hospital resources for
treating patients with more critical conditions and assist
professionals to provide more qualitative care, reducing
medical errors accordingly. The models proposed in this
study may facilitate the early detection and effective man-
agement of COVID-19 patients, minimizing the death rate
in them. Also, developing a valid anticipative model may
enhance the quality of care and increase the survival rate
of COVID-19 patients. Therefore, mortality prediction and
risk analysis models can greatly contribute to identifying
high-risk patients, followed by the adoption of the most ef-
fective and reliable support and treatment plans. Besides,
quantitative, objective and evidence-based models for risk
stratification, mortality prediction, and care plan develop-
ment would efficiently obviate uncertainties and ambigui-
ties. These models also offer a better strategy for clinicians
to lessen disease complications and improve patient sur-
vival likelihoods.

Despite timely and accurate identification of high-risk
cases, the present study faced some limitations that may
have caused classification bias as follows. First, we dealt
with a retrospective dataset that might lack any unfilled
and imbalanced data fields. Second, this study was con-
ducted at a single center and on merely 482 data, so the
generalizability of the proposed model is subjected to cer-
tain limitations. Third, we used only two ML algorithms for
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clinical-based prediction analyses, and last but not least,
the selected dataset lacked some important clinical vari-
ables such as radiological parameters. To sum up, the per-
formance of our model will be enhanced if more classifi-
cation techniques are tested using larger, multicenter, and
prospective datasets in the future.

5.1. Conclusions

In this study, we developed and evaluated two ML-
based prediction models for in-hospital mortality in
COVID-19 patients using the most important clinical char-
acteristics (16 predictors). It was observed that the ANN
model performed best in terms of classification accuracy
compared to the BLR algorithm. The proposed model
can be suitably used to anticipate the mortality risk of
hospitalized COVID-19 patients, allowing for the optimal
allocation of restricted hospital resources. Also, this model
could automatically identify high-risk patients as soon as
they are admitted and hospitalized. To conclude, the ML
algorithms coupled with qualitative and comprehensive
hospital databases can be beneficial in the timely and
accurate mortality risk stratification of COVID-19 patients.
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