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Abstract

Background: Multiple sclerosis (MS) is an autoimmune disease in the central nervous system (CNS) that affects the development
and physiological function of the brain and causes memory impairment.
Objectives: Due to the anti-inflammatory and antioxidant role of levothyroxine (L-T4) on myelin production and adult cerebral
function, this study aimed to evaluate the effects of L-T4 on the improvement of cognitive deficits and cerebral inflammation.
Methods: Forty Wistar rats were randomly divided into five groups: (1) sham, (2) L-T4, (3) MS, (4) MS receiving L-T4, and (5) Betaferon.
For MS induction, lysolecithin was injected into the CA1 of the hippocampus. Rats received L-T4 intraperitoneally at a dose of 100
µg/kg in the second and fourth groups. The shuttle box and Morris water maze tests were used to investigate passive avoidance and
spatial memory, respectively. Also, the hippocampal concentrations of total antioxidant capacity (TAC), malondialdehyde (MDA),
tumor necrosis factor-alpha (TNF-α), and c-reactive protein (CRP) were measured to investigate molecular changes.
Results: Path length (P < 0.001, P = 0.0015, and P = 0.002 on days 1 to 3, respectively) and latency time (P < 0.001 on the second
and third days) increased, but the speed of movements (P < 0.001) and time spent in goal quarter decreased in MS-induced groups
(P < 0.001). Treatment with L-T4 for 14 days significantly reversed path length and speed (P < 0.001 and P = 0.0315 on the second
and third days), latency time (P < 0.01), speed (P < 0.001 and P = 0.0038 on the second and third days), and time spent in goal
quarter (P = 0.1203) in the MS group. The hippocampal concentrations of MDA (P = 0.0010), TNF-α (P = 0.0251), and CRP (P = 0.0065)
were significantly lower in the MS group treated with L-T4 than in the MS group. Also, the hippocampal concentration of TAC was
significantly increased (P = 0.0375) in the MS group receiving L-T4.
Conclusions: It seems that treatment with L-T4 can prevent cognitive impairment caused by MS induction. Ameliorative effects
of L-T4 may be due to the reduction of inflammation and oxidative stress. Therefore, L-T4 can be used as an effective agent in the
treatment of MS.
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1. Background

Multiple sclerosis (MS) is a chronic autoimmune
inflammatory disease of the central nervous system (CNS).
It affects the myelin sheet of the nerve fibers and destroys
them with the T and B cell function (1). Around 2.5
million people are affected by MS across the world (2).
In MS, inflammatory cytokine cascades are activated, and
neural fibers myelin sheets are degenerated (3). Recovery
of myelin by oligodendrocyte precursor cells is the only
efficient treatment for MS (4). Even though symptoms
differ between MS patients, most patients experience at
least one of the symptoms, including visual disturbances,

tiredness, muscle cramps, depression, paralysis, vertigo,
tremors, urinary incontinence, cognitive problems, and
imbalance (5, 6).

The hippocampus is one of the main sites involved in
learning and memory. This area is prone to neurological
diseases due to its sensitivity to oxidative damage. On the
other hand, cognitive impairment is seen in more than 65%
of MS patients. Cognitive deficits have been recognized
as one of the disabling clinical complications of MS. The
most common cognitive disorder in these patients is
a decrease in the speed of information processing and
memory loss (7). Considering the high vulnerability of the

Copyright © 2023, Basiratnia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0)
(https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.5812/semj-138014
https://crossmark.crossref.org/dialog/?doi=10.5812/semj-138014&domain=pdf
https://orcid.org/0000-0002-0449-6440
https://orcid.org/0000-0002-1345-2052


Basiratnia E et al.

hippocampus and its ability to regenerate, investigating
the mechanisms involved in this process can provide a
good study framework (3).

Studies have shown that tumor necrosis factor-alpha
(TNF-α), which causes myelin damage (8), increases in
patients with MS (9). Ozenci et al. showed that the
number of TNF-α secreting cells is higher in patients
with MS than in healthy individuals (10). Consequently,
reducing this cytokine is invaluable in controlling MS
(11, 12). Increased oxidative stress plays a significant role
in the pathogenesis of neurodegenerative diseases (13).
Malondialdehyde (MDA) as an index of lipid peroxidation
and total antioxidant capacity (TAC) as an antioxidant
index are considered indicators of oxidative stress (14).
Based on the evidence, MDA and TAC concentrations vary
greatly from their normal values in MS patients (15).

Also, MS patients suffer from autoimmune thyroid
disease (1). Triiodothyronine (T3) and thyroxine (T4),
as thyroid hormones (TH), are critical for the growth
and functioning of the CNS. They are involved in the
regular differentiation of neurons and the preservation
of optimal cognitive ability in various conditions (16).
The proliferation and development of oligodendrocytes
(OLs) precursors into their final products, which produce
myelin sheets, are affected by TH concentration (17).
Besides, THs play a vital role in the development of
the nervous system from prenatal to adulthood (18).
Furthermore, THs play a vital role in the development and
migration of OLs, which are responsible for myelination
(11). Research has indicated a strong correlation between
demyelinating diseases of the CNS and THs (13). It has
been proposed that treatments involving THs could be
beneficial for memory impairments in MS patients (15).

2. Objectives

This study examined the impact of L-T4 medication on
cognitive deficits in an experimental model of MS.

3. Methods

3.1. Drugs: Lysolecithin, levothyroxine, and Betaferon

All reagents were of analytical purity. The assay kits
for c-reactive protein (CRP), TAC, and MDA were purchased
from Teb Pazhouhan Razi (TPR). Also, TNF-α kits were
purchased from Diaclone (France).

3.2. Animals

Forty male Wistar rats (prepared by Animal Care and
Breeding Center, Zahedan University of Medical Sciences,
Zahedan, Iran) were used in this study. Rats (four per

cage) were maintained in the laboratory at 23 ± 2°C
with a relative humidity of 25% in a 12 h light/dark
cycle (light on at 7:00 a.m.) for a week before the
experiment. Animals had free access to water and
standard laboratory feed. All experimental protocols were
performed according to the regulations of the Ethics
Committee of the Zahedan University of Medical Sciences,
Zahedan, Iran (IR.ZAUMS.REC.1396.163).

3.3. Experimental Design

Animals were randomly divided into five groups: (1)
sham group, for which stereotaxic surgery was performed,
and a Hamilton needle was inserted into the skull, without
any other treatment; (2) levothyroxine (L-T4) group, for
which L-T4 at a dose of 100 µg/kg dissolved in 0.2 mL of
normal saline was injected once a day for ten consecutive
days; (3) MS group, for which the animals underwent
stereotactic surgery and insertion of a guide cannula in
the CA1 region of the hippocampus, followed by injecting
2 µL of lysolecithin (LPC) dissolved in 0.9% saline into the
guide cannula for induction of demyelination; (4) MS +
L-T4 group, for which rats received 2µL of LPC, followed by
L-T4 treatment; and (5) positive control (MS + Beta) group,
for which rats received 2 µL of LPC, followed by Betaferon
treatment. The vial of Betaferon was dissolved in 2 mL
of distilled water, and subcutaneous doses were injected
at 0.25 µg/kg for 10 days. All procedures were performed
between 8:00 and 12:00 a.m. The experimental design is
shown in Figure 1.

3.4. Passive Avoidance Test

A shuttle box containing two sections, a light chamber
(20 × 20 × 30 cm) and a dark chamber (20 × 20 × 30
cm) was provided. An opening guillotine door separated
the two compartments (6 × 6 cm). The description of the
experiment is found elsewhere (19, 20). The initial latency
(IL) on the third day and the step through latency (STL)
on the fourth day were recorded as indices of the passive
avoidance memory test (19).

3.5. Morris Water Maze

Spatial memory was evaluated by the Morris
water maze (MWM) apparatus. The description of the
experiment is presented elsewhere (19, 21). Briefly, a black
circular pool (140 cm in diameter and 70 cm in height)
was filled with tap water (24 ± 1°C) to a depth of 60 cm and
was positioned in a room comprising extra maze visual
cues. A hidden circular platform (12 cm in diameter) was
submerged 1.5 cm beneath the surface of the water and
located in the center of the southeast quadrant. Several
parameters, for example, latency to find the hidden
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Figure 1. Parameters and time intervals in the experimental design

platform, path length, swimming speed, and time spent
in the target quadrant, were recorded (14).

3.6. Measurement of CRP and TNF-α Concentrations

At the end of the behavioral tests, all rats were
euthanized with a lethal dose of ketamine (100 mg/kg)
and decapitated. Cerebral tissue was completely removed
from the skull and quickly placed on ice. The hippocampus
of rats was carefully separated from the rest of the brain
under a stereoscope. After washing with saline solution
and tris buffer, it was homogenized with a homogenizer
at 5,000 rpm for 5 minutes (22). The homogenized
solution was centrifuged, and phenyl methyl sulfonyl
fluoride solution was used as a protease inhibitor. After
centrifugation, the supernatant was separated with a
sampler. Then, the tissue concentrations of CRP and
TNF-α concentrations in the hippocampus were measured
using ELISA kits (ZellBio Biotechnology Company, Lonsee,
Germany), according to the manufacturer’s instructions
(23).

3.7. Measurement of Malondialdehyde and Total Antioxidant
Capacity Concentrations

Malondialdehyde and TAC concentrations were
measured by MDA and TAC ELISA kits according to the
manufacturer’s instructions (Teb Pazhouhan Razi) (21).

3.8. Statistical Analysis

Statistical analysis was done using the Graph Pad
Prism 7.0 software. Data on MDA, TAC, CRP, and TNF-α
concentration were analyzed by one-way ANOVA. However,
shuttle box and MWM data were analyzed by one-way
repeated-measures ANOVA, followed by Tukey’s post hoc
test. The results were presented as the mean ± SEM and
regarded as significant at P values less than 0.05.

4. Results

4.1. Comparison of Initial Latency and Step-Through Latency in
Passive Avoidance Test

Figure 2 shows IL and STL measurements in the passive
avoidance test in all groups. The IL time to move from
the light to the dark compartment of the shuttle box
was similar in all groups before exposure to electrical
stimulation. This variable showed slightly higher in the MS
group, but it was not significant. Also, STL after 24 h was
significantly lower in the MS group than in the sham group
(P < 0.001). A 100 µg/kg of L-T4 (P < 0.001) and 0.25 µg/kg
of Betaferon (P < 0.001) could increase STL significantly
compared with the MS group.

4.2. Comparison of Mean Latency Time to Find a Hidden
Platform in the MWM Test

The average latency time to find the hidden platform
was significantly higher in the MS group than in the sham
group (*** P < 0.001). This parameter was significantly
lower in the MS group treated with L-T4 (## P = 0.0071 and
## P = 0.0086 on the second and third days, respectively)
compared to the MS group (Figure 3).

4.3. Comparison of the Mean Distance Traveled to Find the
Hidden Platform in the MWM Test

The effect of LPC on traveled distance during
acquisition trials is shown in Figure 4. Data analysis
using one-way repeated-measures ANOVA showed that
the distance traveled was significantly higher in the
group treated with LPC on the first, second, and third
days of training than in the sham group (P < 0.001, P =
0.0013, and P = 0.0002, respectively). The average distance
traveled was significantly lower in the MS + Levo group
than in the MS group on the second and third days (P
= 0.0188 and P = 0.0004, respectively) during the three
days of the acquisition trial. The distance traveled was not
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Figure 2. Comparison of initial latency and step-trough latency in the passive avoidance test in the studied groups (n = 8). One-way repeated-measures ANOVA, followed by
Tukey’s post hoc test. *** P < 0.001 multiple sclerosis (MS) vs. sham, ### P < 0.001 MS + Levo and MS + Beta vs. MS.

significantly different between the MS + Levo group and
the MS+ Beta group.

4.4. Comparison of the Mean Speed of Movement to Find the
Hidden Platform on Training Days

The effect of LPC on speed during acquisition trials
is shown in Figure 5. A one-way repeated-measures
ANOVA and Tukey post-hoc tests showed that the speed of
movement to find the hidden platform was significantly
lower in the MS group on the first, second, and third days
of training than in the sham group (P < 0.001). The mean
speed was significantly higher in the MS + Levo group than
in the MS group on the second and third days during the
three days of acquisition trials (P = 0.0038, P < 0.001).

4.5. Comparisonof the Time Spent in the TargetQuadrant on the
Test Day in the MWM Test

The probe trial was conducted 24 hours after the last
acquisition day. One-way ANOVA demonstrated significant

differences among groups. Tukey’s post hoc test revealed
that the MS group spent significantly less time than the
sham group in the target quadrant (P < 0.001) (Figure
6). The mean time spent in the target quadrant was
significantly higher in the MS + Levo (P = 0.0399) and MS +
Betaferon groups (P = 0.0048) than in the MS group in the
probe trial.

4.6. Comparison of CRP Concentrations in Hippocampus Tissue

The concentrations of CRP were significantly higher (P
< 0.001) in the MS group than in the sham group. Also, this
parameter was significantly lower in the MS + Levo group
than in the MS group (P = 0.0065; Figure 7).

4.7. Comparison of TNF-α Concentrations in Hippocampus
Tissue

The mean hippocampal TNF-α concentration was
significantly higher in the MS group than in the sham
group (P = 0.0005). The values were significantly lower in
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Figure 3. Comparison of mean swimming latency time to find a hidden platform in the Morris water maze, mean ± SEM (n = 8). One-way repeated-measures ANOVA, followed
by Tukey’s post hoc test). *** P < 0.001 multiple sclerosis (MS) vs. sham, # P < 0.05, ## P < 0.001 MS + Levo vs. MS.

the groups treated with L-T4 (P = 0.0251) and Betaferon (P
= 0.0003) than in the MS group (Figure 8).

4.8. Comparison of TAC Concentrations in Hippocampus Tissue

The average concentration of TAC in the hippocampus
is shown in Figure 9. Hippocampal TAC concentration was
significantly (*** P = 0.0008) lower in the MS group than in
the sham group. Also, TAC was significantly higher in MS
groups treated with L-T4 (# P = 0.0375) and Betaferon (###
P = 0.0008) than in the MS group.

4.9. Comparison of MDA Concentrations in Hippocampus
Tissue

The average concentration of MDA in the hippocampus
is shown in Figure 10. The hippocampal MDA
concentration was significantly higher in the MS group
than in the sham group (*** P < 0.001). Also, the MDA
concentrations were significantly lower in the MS groups

treated with L-T4 (### P = 0.0010) and Betaferon (### P <

0.001) than in the MS group.

5. Discussion

The current study confirmed that the administration
of LPC has a negative impact on the learning and memory
of rats, as demonstrated by the results of the MWM and
PAT tests. Demyelination was induced in this study by
injecting LPC into the CA1 region of the hippocampus.
The study revealed that injecting 2 µL of LPC directly into
the CA1 region of the hippocampus impairs the learning
and spatial memory performance of the hippocampus.
The PAT test, conducted in a shuttle box, did not show
any significant difference between the groups in terms of
IL, which indicates the animals’ ability to learn behavior.
However, STL, which represents the animals’ ability
to consolidate memory information and recall it, was
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Figure 4. Comparison of mean distance traveled to find the hidden platform in the Morris water maze (MWM) test during training days in the studied groups, mean ± SEM (n
= 8). One-way repeated-measures ANOVA, followed by Tukey’s post hoc test. ** P < 0.01, *** P < 0.001 multiple sclerosis (MS) vs. sham, # P < 0.05, ## P < 0.01, ### P < 0.001
MS + Levo and MS + Beta vs. MS.

significantly improved in the MS group treated with
L-T4 and interferon β (positive control) compared to
the MS group. The MWM test is used to measure spatial
memory. The distance and time taken to find the hidden
platform were significantly increased, and the speed of
movement to find the hidden platform was decreased in
the MS group. The results indicated that injecting L-T4
into the hippocampus improved learning and memory
impairment after LPC injection in the CA1 region of the
hippocampus. In the MWM test, administering L-T4
reduced the time spent to find the hidden platform and
increased the time spent in the target quadrant on the
probe day. In contrast, injecting L-T4 at 100 µg/kg and
Betaferon at 0.25µg/kg reduced the concentration of MDA
and increased TAC in the MS groups treated with L-T4 and

Betaferon. It was also observed that TNFα and CRP levels
increased in the MS group. However, in the MS group
treated with L-T4 and Betaferon, TNF-α concentrations
decreased.

The structural organization of the hippocampus is
one of the most important gray matter regions of the CNS
in MS (24). Cognitive impairment is a significant factor
affecting the quality of life in individuals with MS. There
is a consensus that the health of the hippocampus plays a
crucial role in spatial memory (25). In contrast, damage to
the hippocampus can result in spatial memory disorders.
Dysfunctions in neurotransmitters and disturbances in
GABA and adenosine concentrations, as well as redox
systems in the CNS caused by THs dysfunction, can
hinder neurogenesis and CNS growth (26). Therefore,
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Figure 5. Comparison of average speed of movement to find the hidden platform in Morris water maze (MWM) test, mean ± SEM (n = 8). One-way repeated-measures ANOVA,
followed by Tukey’s post hoc test. *** P < 0.001 multiple sclerosis (MS) vs. sham, ## P < 0.01, ### P < 0.001 MS + Levo and MS + Beta vs. MS.

maintaining stable concentrations of THs can help
prevent the development of neurodegenerative diseases.
Pharmacokinetic analyses have shown that L-T4 can cross
the blood-brain barrier (27), which is usually impermeable
to triiodothyronine (T3). Mostly, T3 in cerebral tissue is
locally produced through the conversion from T4. Besides,
L-T4 administration raises both serum and cerebral
concentrations of free T4 and T3 (26).

Previous studies have demonstrated that injecting
LPC into the CA1 region of the hippocampus leads to
impairment in learning and memory (28). This study
also observed learning and memory impairment in rats
after LPC injection, consistent with previous findings.
Administration of LPC causes neuronal loss in various
parts of the hippocampus and results in cognitive
impairment (29). Injecting LPC into the CA1 region
of the hippocampus triggers microglia to produce

pro-inflammatory cytokines (30). Besides, L-T4 can inhibit
neuro-inflammation by suppressing the production
of TNF-α and CRP. Also, L-T4 has neuroprotective
effects and may have potential benefits for treating
neuro-inflammation induced by MS. In addition, THs play
a significant role in the organization and function of the
brain throughout life (31). Although their effects during
embryonic development are well-documented (32), their
impacts on cerebral function in adults, particularly during
puberty, are less understood (31).

Other studies showed that L-T4 plays an important role
in the development of remyelination after injuries. The
absence of these hormones causes a decrease in myelin
production (33). Also, THs can enter brain tissues through
the choroid carriers and affect all types of cells in this
area (34). Myelination is a TH-dependent process and plays
an important role in the production and development
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Figure 6. Comparison of the time spent in the target quadrant on the test day in the
Morris water maze (MWM) test. *** P < 0.01 multiple sclerosis (MS) vs. sham, # P <

0.05, ## P < 0.01 MS + Levo and MS + Beta vs. MS.
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Figure 7. Comparison of the c-reactive protein (CRP) concentrations in
homogenous hippocampus fluid in the studied groups (n = 8). *** P < 0.001
multiple sclerosis (MS) vs. sham, ## P < 0.01 MS + Levo and MS+ Beta vs. MS.
Comparisons were made with a one-way ANOVA, followed by a Tukey post hoc test.

of OLs (35). Since remyelination needs initialization of
the initial stages of myelination (36), remyelination in
the MS may also require THs (37). In particular, L-T4
could prevent the damage caused by LPC injection in
optic chiasma in the demyelination phase, indicating the
role of THs in the destruction of inflammatory-induced
myelin. THs are likely to affect myelin health by acting
on immune cells (38). High concentrations of T4 suppress
T cell transcription and greatly reduce the production of
pro-inflammatory cytokines (39). Thus, THs retain the
proliferation and differentiation of OLs progenitor cells
into OPC by reducing pro-inflammatory cytokines (40).

The structure and organization of cellular skeletal
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Figure 8. Comparison of tumor necrosis factor-alpha (TNF-α) concentrations in
homogeneous hippocampus fluid in the studied groups (n = 8). *** P < 0.001
multiple sclerosis (MS) vs. sham, # P < 0.05; ### P < 0.001 MS + Levo vs. MS.
Comparisons were made with a one-way ANOVA, followed by a Tukey post hoc test.
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Figure 9. Comparison of total antioxidant capacity (TAC) concentrations in
homogeneous hippocampus fluid in the studied groups (n = 8). *** P < 0.001
multiple sclerosis (MS) vs. sham, # P < 0.05; ### P < 0.001 vs. MS, comparisons
were made with a one-way ANOVA, followed by a Tukey post hoc test.

proteins, as well as the extracellular matrix (41), affect
the process of demyelination and remyelination. Several
lines of evidence suggest that memory repair in rats
treated with L-T4 suppresses gene expression of the
beta-amyloid precursor protein. Also, THs stimulate
neuronal proliferation and survival and increase the
activation of the phosphoinositide-3 kinase/protein
kinase-B (PI3K/Akt) pathway. Subsequently, these functions
of L-T4 could be associated with neuroprotection (42).

Furthermore, L-T4 has been shown to increase
brain-derived neurotrophic factor (43). As a possible
action mechanism, L-T4 improves memory by regulating
cholinergic function, protecting the brain against
damaging effects of free radicals, and protecting
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Figure 10. Comparison of malondialdehyde (MDA) concentrations in
homogeneous hippocampus fluid in the studied groups (n = 8). *** P <

0.001 multiple sclerosis (MS) vs. sham, ### P < 0.001 vs. MS. Comparisons were
made with a one-way ANOVA, followed by a Tukey post hoc test.

hippocampal neurons from apoptosis (44). As known,
THs participate in scavenging oxygen free radicals
by increasing non-enzymatic antioxidant molecules
(45). This group of antioxidants increases the level of
antioxidant enzymes such as superoxide dismutase
(SOD), catalase, and glutathione peroxidase (46). They
stimulate the unpaired mitochondrial protein, which is a
non-enzymatic antioxidant molecule (47).

A significant increase in MDA concentrations in the
MS group compared to the sham group showed that
free radicals were produced during the disease period,
and the incidence of lipid peroxidation was due to
oxidative stress. In the MS group treated with L-T4, MDA
concentrations showed a significant decrease compared
to the MS group. This finding suggests that L-T4 may
affect oxidative stress. The antioxidant properties of L-T4
reduce oxidative damage and lipid peroxidation, thereby
reducing the MDA index. A decrease in MDA and an
increase in SOD levels after 6 months of treatment with
L-T4 have been previously shown (48). This study showed
that TNF-α and CRP concentrations increased in the MS
group. Tumor necrosis factor-alpha, as a strong stimulant,
reduces interleukin-6 production, which is a powerful
stimulant for the production of CRP (49).

On the other hand, the concentration of CRP in the
MS group receiving L-T4 decreased significantly. Tumor
necrosis factor-alpha plays a dual role in patients with
MS; it increases with the degradation of myelin; on the
other hand, this agent plays a protective role in the
nerves by increasing the proliferation of oligodendrocytes
and stimulating the reuptake of myelin. One possible
explanation may be the existence of two TNF-α receptors

for different signaling paths (P55, P57) (50). The neuronal
protective function of the TNF-α P57 receptor by induction
of SOD protects neurons from reactive oxygen species
(ROS) (51).

Fu et al. declared that L-T4 is effective in reversing
learning and memory deficits in a mouse model of
beta-amyloid-induced Alzheimer’s disease (44). In
examining the level of cholinesterase, it has been shown
that the injection of L-T4 into rats leads to an increase
in the cholinergic function of the hippocampus (27).
These results suggest a direct connection between two
signaling systems. The cholinergic signal in the CNS was
very vital for cognitive processes (52). Thyroid hormones
control the transcription of the genes and the expression
of signaling secondary proteins (53). These are important
for many metabolic processes, including vital signaling
systems for learning, memory, and synapse molding,
including reelin (43), choline acetyltransferase receptors,
and NMDA receptors (53). Thus, the ability of THs to
control gene expression can help cell signaling cascades
for learning and memory. More studies are needed to find
other pathways explaining the effects of L-T4 on cognitive
deficits caused by MS.

5.1. Conclusions

The present study showed that the injection of
LPC in the CA1 region of the hippocampus causes
cognition decline and neuronal damage, followed by
increased inflammation and free radicals. Treatment
with L-T4 improved passive avoidance memory through
its antioxidant activity. Also, L-T4 ameliorated spatial
memory by decreasing the concentration of hippocampal
inflammatory cytokines such as TNF-α and CRP.
Treatment with L-T4 improved passive avoidance and
spatial memories because of its anti-inflammatory
and antioxidant activity, increased the level of TAC of
the hippocampus, and reduced MDA, TNFα, and CRP
concentrations.
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