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Abstract

Context: The diagnostic methods for diabetes mellitus (DM), a chronic metabolic disorder characterized by elevated blood

sugar levels, are rapidly evolving thanks to artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL).

This review explores the applications of AI in risk assessment and diagnosing different types of diabetes.

Evidence Acquisition: The review highlights the effectiveness of various ML models, including support vector machines

(SVMs), random forests (RFs), and DL techniques like convolutional neural networks (CNNs), in achieving high diagnostic
accuracy. Challenges include limited data availability, interpretability of complex models, and the need for standardized

performance metrics.

Results: Machine learning methods like SVMs and RFs are highly effective at diagnosing different types of diabetes, and DL

techniques like CNNs also show great promise.

Conclusions: Overall, AI has immense potential to revolutionize diabetes diagnosis by facilitating risk assessment and early

detection, improving treatment efficacy, and preventing severe complications.
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1. Background

Diabetes mellitus (DM) encompasses a group of

chronic metabolic disorders characterized by sustained

elevations in blood sugar (glucose) levels (1).

Hyperglycemia, a hallmark of diabetes, leads to severe

complications such as retinopathy, heart disease, kidney
failure, and mucormycosis infections. In 2017, 425

million people had diabetes, resulting in 4 million

deaths. These numbers are projected to rise, burdening

healthcare systems (2-4).

There are three main classifications of DM: Type 1

diabetes (T1DM), type 2 diabetes (T2DM), and gestational

diabetes (GDM) (5). Type 2 diabetes, the most prevalent

form, is characterized by progressive insulin resistance

and declining insulin secretory capacity. Gestational

diabetes is a temporary condition during pregnancy

that resolves after childbirth (1, 6). Effective diabetes

management across all classifications depends on

timely diagnosis (7).

Artificial intelligence (AI) is a rapidly evolving field

with expanding applications in prediction, risk

assessment, and early diagnosis of diabetes. Machine

learning (ML) algorithms hold immense potential to

revolutionize clinical practice by automating diagnoses

(8). Diabetes care is at the forefront of adapting and

integrating ML technology, offering promising potential

for improving patient outcomes (8, 9).

1.1. Artificial Intelligence in Medicine
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This paper delves into the use of AI in medicine.

Artificial intelligence, a discipline within computer

science, develops systems and methods for data analysis

across diverse applications (10, 11). This section provides

a brief review of several popular computational

intelligence paradigms.

Machine learning is a core AI technique for pattern

recognition within specific datasets. Through data

fitting, machines can "learn" and apply this knowledge

to similar future scenarios (12).

1.2. Applications of Machine Learning in Medicine

Diagnosis of diabetes greatly benefits from ML

techniques in medicine. Machine learning aids in

identifying high-risk individuals for specific diseases.

Recent successes include utilizing ML algorithms to

predict diabetes at an early stage using electronic health

record data (13).

Machine learning encompasses two prominent

forms: Artificial neural networks (ANNs) and deep

learning (DL), with the latter being more complex.

Inspired by the biological brain's structure and

function, ANNs consist of interconnected nodes

(neurons) that process information using mathematical

functions (14).

Deep learning employs ANNs to model and analyze

data. It uses layered nonlinear units to learn intricate

patterns from large datasets, eliminating the need for

manual feature engineering. Subcategories include

convolutional neural networks (CNNs), recurrent neural

networks (RNNs), stacked autoencoders (SAEs), and deep

belief networks (DBNs) (15). Deep learning approaches

like CNNs have been successful in tasks such as

predicting diabetic retinopathy from retinal scans,

highlighting their potential to improve early diabetes

diagnosis and care (16, 17). Natural language processing

(NLP) enables computers to understand and generate

human language. It is used in tasks such as speech

recognition, language translation, sentiment analysis,

and text summarization. Subcategories include syntax

analysis, semantics analysis, named entity
identification, machine translation, and question

answering (18, 19). Natural language processing models,

like ChatGPT, find diverse applications in medical

sciences, covering diagnostics, research, treatment,

decision-making, and scholarly writing. However, the

reliability of ChatGPT in scientific writing is

questionable due to its potential for generating

unreliable references (20, 21).

1.3. Artificial Intelligence in Type 2 Diabetes Mellitus

Artificial intelligence has significant potential to

enhance healthcare for diabetic patients. Machine

learning, particularly in the context of T2DM, aids in

early diagnosis, assisting both doctors and patients (22).

Researchers have extensively explored various ML

models to identify risk factors associated with the

disease (23, 24).

2. Objectives

This study reviews the effectiveness of various ML

models in achieving improved diagnostic accuracy and

risk factor identification. As research in this field

continues to evolve, we can expect even more

sophisticated ML approaches to emerge, paving the way

for a future of preventative T2DM care.

3. Methods

A literature review was conducted using the PubMed,

Scopus, and Web of Science databases. These reliable

tools were chosen due to their extensive healthcare-

related content. The review focused on English-language

documents published between 2019 and 2024. To curate

relevant studies, we employed a comprehensive search

query comprising the following keywords:

Diabetes, Diabetes mellitus, DM, Diabetic, T2DM,

T1DM, Artificial intelligence, AI, Deep learning, Machine

learning, Computational intelligence, Data mining,

Pattern recognition, Neural network, Reinforcement

learning, Diagnosis*, Identify, Detect*.

The inclusion and exclusion criteria for selecting the

appropriate papers are mentioned in Table 1.
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Table 1. The Inclusion and Exclusion Criteria Used for Screening the Gathered
Articles

Inclusion Criteria Exclusion Criteria

Last 5 years Duplicate articles

English articles Studies with incomplete data
or unannounced outcome

Research done on diabetes mellitus patients Unrelated study designs
including literature

Cohort or case-control studies
Review, case reports, book
chapters

Related to the applications of artificial
intelligence in the diagnosis of diabetes
mellitus in patients

Studies with no access to their
full text or abstract

3.1. Performance Metrics

Algorithm transparency and clinical assessment are

crucial for vulnerable populations. Reported

performance metrics varied across studies, with

accuracy, F1 score, and AUC commonly employed for

model evaluation.

Accuracy measures the proportion of correct

predictions by a model. However, it can be misleading

for imbalanced datasets, where predicting all

observations as the majority class can inflate the

accuracy score (25).

The F1 score is a machine-learning metric that

combines precision and recall. It assesses a model’s

accuracy by considering its class-wise performance

rather than its overall performance. Precision measures

how many of the predicted positive instances were

actually positive. Recall measures how many of the

actual positive instances were correctly predicted. The F1

score is the harmonic mean of precision and recall,

ranging from 0 to 1, with a score of 1 representing the

best possible performance (26).

Area under the curve (AUC) assesses model

performance across various thresholds. It is applicable

to classifiers providing confidence scores or

probabilities. A perfect model achieves an AUC of 1,

while a model with no discriminatory power results in

an AUC of 0.5 (26).

4. Results

4.1. Analysis of Artificial Intelligence Models for Diagnosis

Among the 68 articles on AI-based diagnosis, 32

lacked full-text access and were excluded. The remaining

36 studies explored a variety of ML and DL models.

Figure 1 highlights the growing interest in AI for

diabetes diagnosis.

From these 68 articles, only 36 had access to full text,

and 32 were discarded from this study.

Table 2 presents the details of the included studies.

4.2. Machine Learning Techniques

4.2.1. Support Vector Machines (SVMs)

support vector machine is an ML method primarily

used to classify data by finding a maximum decision

boundary to separate data from different classes. The

strengths of SVMs are their ability to handle high-

dimensional features and various types of unstructured

data, such as text and images. However, SVMs struggle

when classes overlap significantly and when high

dimensionality leads to overfitting, resulting in poor

generalization to new data (61).

SVM performance is promising, with studies

achieving high accuracies. For instance, Wang et al.

employed SVMs with radial basis function (RBF) kernels

and achieved accuracies exceeding 90%, highlighting

the importance of proper kernel selection in model

performance (62). Similarly, Ellouze et al. reported 80%

accuracy, while Zee achieved an exceptional 99.3%

accuracy by using internal and external validation,

demonstrating potential for practical applicability (45,

50).

However, Iparraguirre-Villanueva et al. observed a

lower accuracy of 56%, highlighting potential

limitations with specific datasets or parameter tuning

(52). Further investigation into SVM kernel selection,

optimization techniques, and generalizability using

larger and balanced datasets alongside adequate

validation could be beneficial (Appendix 1).

4.2.2. Random Forests (RFs)

Random forest is an ML method that combines

multiple decision tree outcomes to report the best

single result. Similar to SVM, RF can be used in

classification and regression tasks and can handle high-

dimensional spaces. However, the complexity of RFs in

generating explanations decreases their interpretability

(63). These models consistently demonstrate strong

performance. Islam et al. achieved an outstanding F1

score of 0.99, signifying excellent classification ability

(36). Similarly, Nguyen et al. reported an accuracy of 85%
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Figure 1. Number of published articles in each year till February 2024

and an AUC of 0.94, showcasing RFs' capability for

accurate diabetic/non-diabetic case identification (56).

Studies by Shaukat et al. (accuracy: 78.79%) and Xiang et

al. (accuracy: 85%) suggest that RFs might benefit from

dataset-specific optimization for peak performance (40,

59). Although increasing the number and depth of trees

by using larger datasets can improve the algorithm's

robustness, it should be considered that it leads to

longer training times and requires more memory than

other algorithms (63). See Appendix 2 for detailed

results.

4.2.3. K-Nearest Neighbors (KNNs)

This ML method finds the most probable prediction

by grouping the inputs. The inputs that have the least

distance on the chart are gathered in a group. The value

of the group is determined by the mean or the majority

vote of each group participant. . K-nearest neighbors's

simplicity and ease of implementation make it a good

choice for real-world applications, such as in the

medical field, where understanding the decision-

making process is essential for trusting the model

outcomes. However, its simplicity struggles to handle

large, imbalanced, and complex data (45).

K-nearest neighbor results show considerable

variation. Samreen reported a high accuracy of 94.87%,

and Ellouze et al. achieved a moderate accuracy of 77%

(38, 45). Conversely, Iparraguirre-Villanueva et al.

observed a lower accuracy of 66.7% (52) (Figure 2). This

variability emphasizes the sensitivity of KNNs to data

characteristics and parameter selection. Further

research could explore techniques for optimal K-value

selection and distance metric choice for enhanced

performance. See Appendix 3 for detailed results.

4.2.4. Logistic Regression

Logistic regression (LR) is a discriminative model for

binary classification that models the probability of an

input belonging to a class using a logistic function. It

employs coefficients to predict probabilities. Logistic

regression is a straightforward algorithm, making it

accessible to apply, train, and interpret. However, it

assumes linear relationships between variables and log

odds of outcomes, which can reduce its flexibility and

suitability for real-world data (57, 64).

Logistic regression yielded mixed results. Islam et al.

achieved an accuracy of 66.2% using LR, whereas Salem

Alzboon et al. reported an accuracy of 61.3% and an AUC

of 0.828 (29, 53). However, Villanueva et al. documented

a lower accuracy of 55.5% for LR (52). These findings

suggest limitations of LR in specific scenarios,

potentially due to dataset linearity assumptions.

Exploring regularization techniques and feature

engineering could be beneficial for improving LR's
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Figure 2. Machine learning vs deep learning: A comparison of performance metrics on research papers

effectiveness in diagnosing diabetes. See Appendix 4 for

detailed results.

4.2.5. Neural Networks (NNs)

Neural networks predict the outcome of interest by

passing input information through layers of

interconnected neurons with learnable weights. Each

neuron applies an activation function to the weighted

sum of inputs, enabling complex nonlinear mappings.

Through forward and backward propagation, NNs learn

to minimize a loss function, adjusting weights to

generate accurate predictions (15).

The performance of NNs varied considerably. Liu

achieved an accuracy of 92% using a MATLAB Neural

Network, while Salem Alzboon et al. reported an

accuracy of 61% for a general neural network (32, 53).

Garcia-Dominguez et al. documented a moderate

accuracy of 86% for a neural network (51). These

variations highlight the dependence of NN performance

on factors like network architecture, training data size

and quality, and hyperparameter tuning. Studies by

Srivastava et al. (accuracy: 89.31%) and Rabie et al.

(accuracy: 92%) further showcase the potential of NNs

with careful optimization (39, 48). See Appendix 5 for

detailed results.

4.3. Deep Learning Techniques

Deep learning approaches, including CNNs and

RNNs, demonstrated promising results in some studies.

Their ability to automatically learn from data without

manual feature extraction and labeling makes these

techniques suitable for tasks where defining features is

challenging, such as medical image processing.

However, clinical applicability remains difficult due to
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Figure 3. Scatter plots of performance metrics for machine learning and deep learning models in early diabetes detection

the complexity of interpreting and identifying errors or

biases in the models (16, 17).

Anaya-Isaza and Zequera-Diaz achieved an accuracy
of 85.83% using CNNs, while Ellouze et al. reported an

accuracy of 97% for LSTMs (a type of RNN) (43, 45).

Conversely, Önal et al. documented a lower accuracy of

83.33% for a CNN, suggesting that DL techniques might

require substantial data for optimal performance (58).

Further research into data augmentation techniques

and transfer learning could be beneficial for improving

the generalizability of DL models in diabetes diagnosis.

See Appendix 6 for detailed results.

4.4. Ensemble Methods

A limited number of studies explored ensemble

methods. Duc et al. combined SVM and an artificial

neural network, achieving an accuracy of 93.8% (55).

Deepa and Ranjeeth Kumar reported an accuracy of

80.6% for an ensemble method, indicating their

potential effectiveness in diabetes diagnosis (54).

Further investigation into ensemble methods that

combine the strengths of different algorithms is

warranted.

Figure 3 presents three scatter plots that analyze the

performance of various AI models designed to diagnose

DM at an early stage. These plots utilize three key

metrics: Area Under the Curve, F1 score, and accuracy.

The upper left scatter plot depicts the relationship

between F1 score and AUC. Here, we observe that all the

models achieve relatively good performance, with F1 and

AUC scores consistently exceeding 0.65. The upper right

scatter plot focuses on the models' accuracy compared

to their F1 score. Interestingly, most data points reside

above the diagonal line, signifying that overall accuracy

tends to be higher than the F1 score. This implies that

the models excel at correctly classifying the majority of

cases but might struggle with specific subgroups within

the data. For example, a model might be adept at

identifying healthy individuals yet less proficient at

distinguishing between pre-diabetic and diabetic

patients. The lower scatter plot explores the models'

performance using both AUC and accuracy. This plot

reveals a positive finding: A cluster of data points

occupies the upper right quadrant. This positioning

signifies that a substantial portion of the models exhibit

both high AUC and high accuracy, effectively

differentiating between individuals with and without

DM. Notably, a few models stand out in the upper right

corner, achieving exceptionally high values for both

metrics.

Figure 4 presents a comparative analysis of the

algorithms implemented within various ML models. The

evaluation emphasizes the F1 score and AUC as the

primary performance metrics. This choice is driven by

the critical need to accurately identify pre-diabetic and

diabetic individuals within a population. Notably, the

results demonstrate that many models achieve F1 scores

and AUCs exceeding 80%. This high performance
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Figure 4. F1 score, this line chart compares the F1 score of different machine learning models.

suggests significant promise for the real-world

application of these AI models in clinical settings. Their

ability to accurately identify pre-diabetic and diabetic

patients can significantly improve preventative

measures and patient outcomes.

The F1 score is a metric that balances precision and

recall. Area Under the Curve represents the probability

that the model will rank a positive instance higher than

a negative instance. Accuracy is the proportion of

correct predictions made by the model.

Figure 2 shows a grouped bar chart comparing the

performance metrics of various research papers. Each

bar group represents a paper by a specific author, and

the bars within each group represent performance on

three metrics: F1 score, accuracy, and AUC. These metrics

are color-coded for easy differentiation.

5. Discussion

In summary, AI, particularly ML and DL, can

revolutionize diabetes management. Machine learning

methods (SVMs, RFs) excel in diagnosis, while CNNs

show promise.

Multiple publications have addressed the topic of

our review, exploring AI applications in DM diagnosis to

various extents. A significant number of them aimed to

review studies with ML algorithms to screen

complications of DM, such as cardiovascular

complications and diabetic retinopathy (65). As

mentioned earlier, DL models, especially CNNs, are

widely used for medical imaging recognition and have

shown promising outcomes. Most of these studies used

CNN-based models trained on multi-center medical

imaging datasets or public datasets, such as the Indian
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Diabetic Retinopathy Image Dataset (66). Other papers

have investigated the potential of diabetes prediction

and early detection to initiate timely intervention and

improve outcomes by utilizing ML-based models. Since

there is a broad spectrum of risk factors, symptoms, and

signs for this disorder, various features are used in each

article (67). Some of these models were trained on data

extracted from electronic medical records as a large,

real-time clinical data source (68). Much effort has been

made to identify the most weighted demographic,

clinical, or laboratory features for developing a

predictive model with maximum accuracy. Parameters

such as blood sugar level, BMI, triglyceride level, HbA1c,

and pregnancy have showcased the most predictive

value (69). Our study is not limited to a particular

diagnostic method, as we have compared various AI-

powered advancements in the field of DM diagnosis.

According to our results, the accuracy of the model

increased when DL and ML techniques were used

simultaneously. However, there are challenges to

overcome. The lack of sufficient data, especially for

specific groups or rare types of diabetes, can hinder the

effective use of AI. Understanding complex AI models,

particularly DL ones, is a concern for healthcare

providers who need to understand why the models

make certain predictions. Additionally, the lack of

standard methods to measure AI performance makes it

difficult to compare different studies.

To maximize the benefits of AI in diabetes care, we

need to address these challenges. Gathering more data

while protecting patient privacy is essential. Research

on making AI models more understandable, such as

using explainable AI (XAI), can help build trust and

facilitate the broader adoption of AI in healthcare.

5.1. Future Research Directions and Open Challenges

Advancing AI in DM diagnosis and addressing

evolving challenges requires further research in several

key areas. The following research directions can help

improve the efficiency and reliability of AI systems in

this field.

First, developing sustainable AI models necessitates

the availability of rich and high-quality data. Future

studies should focus on expanding datasets to include a

broader range of populations and clinical scenarios.

Additionally, the collection of longitudinal data and

real-world evidence can enhance the generalizability of

AI algorithms in diabetes diagnosis (70).

Second, researchers should explore methods to

identify and mitigate biases and errors in diabetes

diagnosis algorithms. Promoting transparency in

algorithm development and decision-making processes

can build trust among stakeholders. Moreover, the

interpretation of AI models is crucial for clinical

acceptance. Future research should concentrate on

developing explanatory AI techniques that provide

insights into how the model makes its predictions. By
improving the interpretability of the model, doctors can

better understand and trust the recommendations of AI

systems when diagnosing diabetes (71). Third, to

facilitate the adoption of AI tools in clinical practice,

future research should explore ways to seamlessly

integrate these systems into existing healthcare

workflows. Collaboration between AI researchers and

healthcare providers can help adapt AI solutions to the

specific needs and constraints of the clinical

environment, ultimately improving the utility and

impact of AI in diabetes diagnosis. Pursuing these lines

of research can advance the field of AI in diagnosing

diabetes, ultimately improving patient outcomes and

healthcare (72).

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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Table 2. Delves Deep into the Effectiveness of Various Machine Learning (ML) and Deep Learning (DL) Algorithms for Diagnosing Diabetes Mellitus

Author
Publication

Year
Sample Size Selected Features AI Model Model Algorithm F1score AUC Accuracy

Albahli, S. ( 27) 2020 253, 395
FBS, HbA1c, gamma-GTP, BMI, TG, age, uric acid, sex, physical activity, drinking,

smoking, and family history
ML

K-mean clustering +

LR
Unmentioned Unmentioned 0.9753

Eyasu, K. et al.
( 28)

2020 12 Unmentioned
NLP (Data

mining)

J48 0.95 Unmentioned 0.9515

PART 0.944 Unmentioned 0.9451

JRip 0.947 Unmentioned 0.9473

Islam, M. et al.
( 29)

2020 1570
Type of place, electricity, wealth index, age, education, working status,

smoking, arm circumference, taking medicine, weight, and BMI
ML

SVM Unmentioned 0.662 0.929

RF Unmentioned 0.593 0.923

Linear discriminant

analysis
Unmentioned 0.66 0.926

LR Unmentioned 0.682 0.925

NN Unmentioned 0.68 0.928

Bagged classification

and regression tree

(Bagged CART)

Unmentioned 0.6 0.943

Kopitar, L. et al.
( 30)

2020 3723

A set of 58 variables that were not mentioned specifically. Generally, it

includes an INDRISC (FR) questionnaire, physical activity (at least 30 min

during the day), fruit and vegetable consumption, a history of

antihypertensive drug treatment, a history of high blood glucose levels, and a
family history of diabetes.

ML

Linear regression Unmentioned 0.854 Unmentioned

Regularised

generalised linear

model (Glmnet)

Unmentioned 0.859 Unmentioned

RF Unmentioned 0.852 Unmentioned

eXtreme gradient

boosting (XGBoost)
Unmentioned 0.844 Unmentioned

Light gradient

boosting machine
(lightGBM)

Unmentioned 0.847 Unmentioned

Li, Y. et al. ( 31) 2020 147 Unmentioned ML SVM Unmentioned Unmentioned 0.9722

Liu, Y. ( 32) 2020 650 groups
FBS, 2-hpp, clinical symptoms: Thirst, dry mouth, excessive drinking,
polyphagia, polyuria, weight loss, family history, smoking and drinking ML

MATLAB Neural
Network Unmentioned Unmentioned 0.92

Al Masud, F. et
al. ( 33)

2021 306 Age, area of residence, standard growth rate, HbA1c, hypoglycemia, adequate
nutrition, autoantibodies, sex, and family history of type 1 and 2 diabetes

ML Ranker analysis, data
mining

Unmentioned Unmentioned Unmentioned

Deepa, S.N and
Banerjee, Abhik
( 34)

2021 900 Images of the tongue ML CNN + SVM 0.9831 Unmentioned 0.9782

Dietz, B. et al.
( 35)

2021 2371 T1-weighted whole-body MRI, sex, age, BMI, insulin sensitivity, and HbA1c DL Dense CNN Unmentioned 0.87 Unmentioned

Islam, M. et al.
( 36)

2021 492 Retinal images DL CNN Unmentioned 0.662 Unmentioned

Lee, W.S. et al.
( 37)

2021 1000 Synthetic glucose profiles

ML
Shallow neural

network
Unmentioned Unmentioned 0.873

DL

Multilayer perceptron

(MLP)
Unmentioned Unmentioned 0.9

CNN Unmentioned Unmentioned 0.865

RNN Unmentioned Unmentioned 0.0866

Samreen, S. ( 38) 2021 520
Age, sex, polyuria, polydipsia, sudden weight loss, weakness, polyphagia,
genital thrush, visual blurring, itching, irritability, delayed healing, partial

paresis, muscle stiffness, alopecia, and obesity
ML

NB Unmentioned 0.95 0.8961

KNN Unmentioned 0.98 0.9487

LR Unmentioned 0.97 0.9269

SVM Unmentioned 0.99 0.9833

DT Unmentioned 0.96 0.9685

RF Unmentioned 0.99 0.9833

Adaboost(AB) Unmentioned 0.98 0.9641

Gradient boost (GB) Unmentioned 0.99 0.9717

Srivastava A.K,
et al. ( 39)

2021

Unmentioned. Pima

Indian diabetes
dataset

Unmentioned ML DNN 0.8931 0.9236 0.9474

Xiang, Y. et al.
( 40)

2021 165 Fundus images, tongue appearance, and pulse characteristics ML RF 0.76 Unmentioned 0.85

Zhang,k. et al.
( 41)

2021
57672 cases and
115344 retinal

images

Fundus images, age, sex, height, weight, BMI, and blood pressure
DL RF Unmentioned Unmentioned 0.93

ML CNN Unmentioned Unmentioned 0.861

Alshari, H. and
Odabas, A. ( 42)

2022 14682
Physical activity, dietary, smoking features, alcohol consumption,
hypertension, age, gender, race, marital status, education level, annual family
income, and the ratio of family income to poverty guidelines

ML

XGBoost 0.748 0.842 0.846

LightGBM 0.749 0.843 0.846

CatBoost 0.737 0.836 0.836

Neural networks 0.721 0.821 0.829

Anaya-Isaza, A.
and Zequera-
Diaz, M ( 43)

2022 167 Foot thermography DL CNN 0.8583 Unmentioned 0.8278
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Author
Publication

Year
Sample Size Selected Features

AI
Model

Model Algorithm F1score AUC Accuracy

Balasubramaniyan, S. et
al. ( 44)

2022 2675
Tongue images: Tongue shape and color, fissure identification, fur

color and fur thickness, tooth markings, and red dot
DL CNN 0.99 Unmentioned 0.984

Ellouze, A. et al. ( 45) 2022 768

Pregnancy, plasma glucose concentration, diastolic blood pressure,

triceps skinfold thickness, insulin, mass, pedigree of diabetes, and

age

ML

KNN 0.77 0.76 0.77

SVM 0.8 0.87 0.8

DT 0.76 0.79 0.75

DL

RNN 0.93 0.95 0.93

CNN 0.9 0.92 0.9

Long short-term

memory (LSTM)
0.97 0.99 0.97

Long short-term

memory (LSTM)
0.95 0.97 0.95

Fufurin, I. et al. ( 46) 2022

1200 infrared exhaled

breath spectra from 120

volunteers

Exhaled breath samples and using IR breath spectra DL CNN Unmentioned 0.99 0.997

Hossain, E. et al. ( 47) 2022 Unmentioned
Number of pregnancies, BMI, insulin levels, age, glucose, skin fold

thickness, blood pressure, and diabetes pedigree function
ML KNN & LightGBM 0.84 0.936 0.891

Rabie, O. et al. ( 48) 2022 829
Age, BMI, glucose, the number of pregnancies, blood pressure, skin

foldthickness, two-hour insulin, and pedigree diabetes function
DL DNN 0.92 Unmentioned 0.9307

Ullah, Z. et al. ( 49) 2022 253680

Comprised a total of 22 features: Blood pressure, high cholesterol,

BMI, smoking, Stroke, heart diseases, fruits, veggies, heavy alcohol
consumption, any health care, sex, age, etc.

ML
Nearest neighbor
(SMOTE-ENN) 0.98 0.98 0.9838

Zee, B. et al. ( 50) 2022 2221 Retinal imaging with a non-mydriatic fundus camera ML SVM Unmentioned 0.993 Unmentioned

Garcia-Dominguez, A et
al. ( 51)

2023 1019
Diastolic blood pressure, systolic blood pressure, glucose, height,
LDL, waist circumference, TG, education, insulin, gender,

cholesterol, and age

ML Neural network 0.86 0.934 0.86

Iparraguirre-Villanueva,
O.et al. ( 52)

2023 768
Number of pregnancies, glucose level, diastolic blood pressure,
thickness of skin folds, insulin levels, BMI, genetic history of

diabetes, and age

ML

Nearest

neighbor(NN)
Unmentioned 0.667 0.753

Naïve Bayes(NB) Unmentioned 0.677 0.461

Decision tree(DT) Unmentioned 0.602 0.708

LR Unmentioned 0.555 0.698

SVM Unmentioned 0.56 0.67

Salem Alzboon, M. et al.
( 53)

2023 768

Data set of 8 demographics and clinical details: Age, gender,

number of pregnancie, BMI, blood pressure, skin thickness, insulin

level, and glucose concentration

ML

LR 0.613 0.828 Unmentioned

DT 0.567 0.665 Unmentioned

RF 0.576 0.811 Unmentioned

KNN 0.56 0.776 Unmentioned

NB 0.64 0.808 Unmentioned

SVM 0.583 0.822 Unmentioned

GB 0.528 0.636 Unmentioned

Neural network 0.61 0.825 Unmentioned

Deepa,K. and Ranjeeth
Kumar, C .( 54)

2023 Unmentioned Unmentioned ML

DT Unmentioned Unmentioned 0.77

KNN Unmentioned Unmentioned 0.773

LR Unmentioned Unmentioned 0.793

Ensemble method Unmentioned Unmentioned 0.806

Duc, L. et al. ( 55) 2023 Unmentioned Unmentioned ML SVM + ANN Unmentioned 0.96 0.938

Nguyen et al. ( 56) 2023 2153

Gender, age, MI, waist circumference, hip circumference, systolic

blood pressure, diastolic blood pressure, FBS, 2-hPP, total

cholesterol, TG, HDL and insulin

ML RF 0.94 0.94 0.85

Nilashi, M. et al. ( 57) 2023 768

Number of pregnancy, 2-hPP, diastolic blood pressure, triceps skin

fold thickness, 2 hours serum insulin, BMI, diabetes pedigree
function, and age

DL DBN Unmentioned Unmentioned 0.9832

Önal et al. ( 58) 2023 68
Full irtis images, the iris segmentation from raw images, the

segmentation of the pancreatic region in the iridology chart
DL CNN 0.8333 Unmentioned 0.8

Shaukat, Z.et al. ( 59) 2023 768

Number of pregnancies, plasma glucose concentration,diastolic

blood pressure,triceps skinfold thickness,2-hour serum
insulin,BMI,diabetes pedigree function, and age

ML

DT 0.72 0.839 0.7186

KNN 0.72 0.697 0.723

RF 0.78 0.832 0.7879

LR Unmentioned 0.848 0.7966

SVM 0.79 0.723 0.7922

Zhang, J. et al. ( 60) 2023 820

A set of nine clinical feature: Admission glucose, BMI > 28,

cardiovascular disease, age, NAFLD, ALT, HDL-C < 1.03, UA, and
smoking

ML LR 0.357 0.819 Unmentioned

z Abbreviations: AUC, area under curve; KNN, K nearest number; SVM, support vector machines; RF, random forest; CART, classification and regression tree; XGBoost, extreme

gradient boosting; CNN, convolutional neural network; MLP, multilayer perceptron; DT, decision trees; AB, adaboost; DNN, deep neural network; GB, gradient boost; RNN,

recurrent neural network; LSTM, long short term memory; SMOTE-ENN, synthetic minority over-sampling technique–edited nearest neighbor; NB, naive bayes; ANN, artificial

neural network; ML, machine learning;DL, deep learning; LR, logistic regression; AI, artificial intelligence .


