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Abstract

Background: Dysregulation of thyroid function, manifesting as hyperthyroidism or hypothyroidism, can profoundly impact

an individual's overall health. In this context, artificial intelligence (AI) applications have the potential to revolutionize

diagnostic approaches, treatment strategies, and patient monitoring.

Objectives: This study comprehensively reviews the latest literature on AI applications in thyroid functional and autoimmune

disorders.

Methods: An online search was conducted on databases using search queries crafted with MeSH terms related to AI and

thyroid disorders. After screening, studies aligned with our research focus were selected for this narrative review.

Results: Multiple studies have explored the use of AI technologies, including machine learning (ML) and deep learning (DL), to

enhance laboratory workflows for thyroid function tests (TFT) and improve the accuracy of TFT interpretation by incorporating

clinical data. In imaging, DL-based models have demonstrated the potential to assist less experienced radiologists in

interpreting scintigraphy and ultrasound images. Artificial intelligence has also provided valuable insights into identifying

diagnostic genes for thyroid-related autoimmune disorders and understanding the effects of environmental factors, such as

chemicals, on thyroid gland function. Some ML models have been developed to predict the risk of hypothyroidism following

radioiodine therapy (RAI). Furthermore, AI has shown promise in personalized levothyroxine dose adjustments, predicting

treatment responses, and accurately diagnosing complications such as thyroid-associated ophthalmopathy (TAO). Finally, ML-

based models forecasting the risk of suicide attempts in patients with major depressive disorder (MDD) and predicting

pregnancy outcomes, such as gestational diabetes mellitus (GDM) and preterm delivery, based on TFT results, appear beneficial

in addressing these significant health issues.

Conclusions: The current state of AI in diagnosing and treating thyroid function disorders is promising, with applications

primarily focused on improving diagnostic accuracy, consistency, and personalized treatment approaches. However, challenges

remain that prevent these models from fully substituting professionals. Addressing these challenges is crucial to ensure AI

effectively contributes to the management of patients with thyroid diseases.

Keywords: Thyroid Functional Disease, Hypothyroidism, Hyperthyroidism, Thyroiditis, Artificial Intelligence, Machine

Learning, Deep Learning, Thyroid Function Test, Thyroid-Associated Ophthalmopathy, Personalized Medicine

1. Context

The thyroid gland is the maestro of the endocrine

system, orchestrating the body's metabolism through

its hormonal "batons." Located at the front of the neck,

this butterfly-shaped gland primarily produces

triiodothyronine (T3) and thyroxine (T4), two hormones
that impact all tissues. Additionally, it secretes

calcitonin, a hormone responsible for maintaining

calcium homeostasis. The thyroid's function is regulated

by the hypothalamic-pituitary-thyroid axis, where the

hypothalamus releases thyrotropin-releasing hormone
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(TRH), and the pituitary gland secretes thyroid-

stimulating hormone (TSH) to stimulate thyroid activity

(1). Disruptions in the regulation, production, or
secretion of these hormones can lead to adverse

physiological effects. The most common thyroid
function disorders are hyperthyroidism and

hypothyroidism. Hyperthyroidism is caused by the

overproduction of thyroid hormones, while
hypothyroidism results from insufficient hormone

production. Numerous factors contribute to these
conditions, affecting a significant proportion of the

global population (2, 3).

Integrating artificial intelligence (AI) into various

medical fields holds the potential to revolutionize the

diagnosis, monitoring, and management of thyroid

function disorders (Figure 1). The initial attempts at

computer-assisted diagnosis (CAD) in this domain date

back to 1963, when probability matrices were employed

to differentiate between the diverse etiologies of thyroid

dysfunction using clinical and laboratory data (4). With

the continuous evolution of AI technologies, there is an

increasing capacity to improve healthcare resource

efficiency, support clinical decision-making, provide

personalized recommendations and treatments, and

enhance understanding of complex thyroid pathologies

by leveraging vast datasets (5). In this review, we aim to

present a comprehensive overview of various AI

applications in addressing thyroid function disorders,

rather than focusing on a detailed examination of a

single area.

2. Evidence Acquisition

We crafted search queries by combining a diverse

array of MeSH terms: “artificial intelligence,” “machine

learning,” “deep learning,” “thyroid gland,” “thyroid

hormones,” “thyroid diseases,” “hyperthyroidism,”

“hypothyroidism,” “thyroiditis,” “Graves’ disease,”

“diagnosis,” and “thyroid function test.” These queries

were used to conduct an extensive search in PubMed

and Google Scholar online databases to collect full-text

available human original studies, systematic reviews,

and meta-analyses on the applications of AI in thyroid

function disorders, published in English from January

2014 to May 2024. Various types of studies were included

in this review to deepen the understanding of multiple

aspects of the topic and study methodologies. Studies

published in the last decade were included because the

application of AI in the field of thyroid diseases has

recently gained significant attention, and we aimed to

gather the most up-to-date literature in this field. Our

search covered titles and abstracts to ensure a broad

exploration of relevant literature. After screening the

titles and abstracts, a number of studies aligned with

our research focus were selected to provide this

narrative review.

3. Results

Physicians may utilize an approach involving patient

history, physical examination, laboratory testing,

imaging studies, and biopsies to diagnose thyroid
disorders. Diagnosing thyroid function diseases is

challenging due to the broad spectrum of non-specific
clinical presentations, such as weight changes,

exhaustion, memory and cognitive issues, muscular

pain, etc. Furthermore, it is essential to note that some

patients, for instance elderly people, may not always

display evident clinical symptoms (6, 7).

Thyroid function tests (TFT) are frequently utilized to

diagnose thyroid function disorders, comprising blood

tests for TSH, total and free T3 and T4, and T3 resin

uptake (T3RU). In certain instances, anti-thyroid

antibodies like thyroid peroxidase antibodies (TPO-Ab)

and TSH receptor antibodies (TR-Ab) may also be

considered. Thyroid-stimulating hormone level

assessment through immunoassay is the most prevalent

initial screening method for thyroid dysfunction (8).

However, it is susceptible to various confounding factors

and may not always precisely reflect the actual thyroid

gland function status (9). Artificial intelligence can offer

new opportunities to enhance accuracy, efficiency, and

patient care quality within thyroid laboratory testing.

3.1. Thyroid Function Test and Routine Clinical Laboratory
Data

First, AI can improve TFT immunoassay designs and
mitigate the impact of confounding variables through

in-silico modeling (10). Utilizing machine learning (ML)

technologies is promising for transforming molecular

identification methods for diagnosing thyroid function

disorders. For instance, the deployment of a least
squares support vector machine (LS-SVM) trained by

biomolecular features extracted from serum TSH

infrared spectroscopy data demonstrated a resilient

capability to accurately assess a broad spectrum of

blood TSH levels (11). Furthermore, by analyzing medical
records and clinical datasets, ML presents opportunities

to customize reference ranges and diagnostic

thresholds for TFTs according to physiological variations

in hormone levels. A study has indicated that ML has the

potential to enhance the automated verification process
of TFT results (12).

Second, AI can aid in diagnosing thyroid function

disorders by integrating overall health conditions,

clinical evaluations, and the interpretation of TFT
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Figure 1. Key artificial intelligence (AI)-powered applications in thyroid disorders. The “*” symbol indicates that the application of AI in the management of thyroid nodules is
not explored in the current study, although it is addressed in a separate survey conducted by the authors (5).

results. With advancements in natural language

processing (NLP) technologies, a study assessed the

proficiency of ChatGPT and Google Bard in interpreting

TFT results. The findings revealed that the precision and

reliability of these chatbots fall short of the standards

required for clinical application, confirming that they

are not yet suitable substitutes for professional medical

consultation (13).

Numerous studies have investigated ML and deep

learning (DL)-based predictive and interpretative

models for classifying thyroid dysfunctions. These
models have been trained on various exclusive or

publicly available thyroid disease datasets, primarily

those from the University of California Irvine (UCI)

repository (14-20). Generally, ML models have

demonstrated superior performance compared to DL

models, primarily due to the limitations in the size and

features of datasets used for training DL models (15).

Conducting a comparative assessment of the

performance of different ML models is challenging due

to the significant heterogeneity in model frameworks

and training/testing datasets. However, based on our

review, decision trees, random forests, and artificial

neural networks have shown higher effectiveness in

interpreting and categorizing TFT. Table 1 provides the

performance metrics of the best-performing models

from the included studies.

Most studies have concentrated on evaluating the

performance of ML models in binary classification (e.g.,

illness versus normal) of thyroid function status. Multi-

class categorization remains more challenging due to

the limited data available for minority classes. To

address this issue, researchers have employed two

strategies to manage imbalanced datasets:

Oversampling, which involves augmenting minority

class instances by generating synthetic samples or

duplicating existing ones (17), and under-sampling,

which reduces the majority class instances to match the

minority class size (15).

A promising future direction involves fostering

collaborative efforts across multiple institutions to pool

datasets, creating comprehensive and diverse datasets

that ensure better model generalization and

performance.

On the other hand, it is important to acknowledge
that while extensive datasets provide a wealth of

training data, they can potentially hinder model

performance when dealing with low-quality or complex

data. In such cases, data pre-processing techniques, such

as data cleaning, normalization, and feature
engineering, are commonly employed to enhance

model efficacy (14). Mir and Mittal demonstrated that

the accuracy of thyroid disease classifiers improved

after excluding laboratory features from the training

dataset (18). Specifically, a support vector machine (SVM)

classifier achieved an accuracy of 99.08% in predicting

thyroid disorders within testing cohorts using only

patient history and physical evaluations, eliminating

the need for laboratory-based tests. By contrast, a

bagging classifier trained on the original dataset,

including laboratory results, achieved an accuracy of

98.56%. Although feature selection through DL requires

greater computational resources and is costlier, it holds

significant promise for enhancing future model

performance.

Research has also explored identifying the most

valuable predictors and detectors of thyroid

dysfunction, extending beyond traditional TFTs to

include routine clinical laboratory data and

supplementary diagnostic methods (21, 22, 24, 25). For

example, an ML model was developed to analyze the

effects of various micronutrients and vitamins on TSH

hormone regulation. The study revealed a direct

correlation between TSH concentration and vitamin B9

levels, along with a slightly negative association with

magnesium levels (23). Future research should prioritize

identifying potential molecules that contribute to the

onset of thyroid dysfunction, enabling timely diagnosis

https://brieflands.com/articles/semj-151031
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Table 1. Thyroid Function Tests and Routine Clinical Laboratory Data and Artificial Intelligence-Powered Diagnosis of Thyroid Function Status

First Author,
Year, Reference Aim Technique Dataset Sample Size Performance Metrics

Cheng et al.,
2022 ( 16)

Diagnosis of thyroid
dysfunction from thyroid
datasets (TFT)

DT, LR, XGB, and SVM 21 features, including TFT 11565 Nl and 1170 elevated TSH from 1
center

XGB: AUC 0.87, and acc 0.86

Islam et al.,
2022 ( 17)

Same

CatB, Extra-Trees, ANN,
LGBM, SVC, KNN, RF,
XGB, DT, and
GaussianNB

UCI sick-euthyroid dataset (25
features)

2870 sick and 292 Nl
ANN: F1-score 0.957,
precision 0.957, recall 0.959,
and acc 0.9587

Abbad Ur
Rehman et al.
2021 ( 19)

Same
KNN, NB, SVM, LR, and
DT

DHQ Teaching Hospital
thyroid dataset (10 features) 170 Nl, 66 hyper, and 73 hypo

NB: acc 100%, recall 100%,
and F1-score 100%

Rasitha, 2016
( 14) Same LDA

UCI hypothyroid dataset (29
features)

3481 Nl, 194 compensated hypo, 95
primary hypo, and 2 secondary hypo

Precision 0.996, recall 0.996,
acc 99.62, and ROC 0.996

Yadav and Pal,
2020 ( 20) Same

DT, RF, CART, and
bagging ensemble
model

UCI thyroid disease dataset
(30 features) 3710 patients (2 classes)

Bagging ensemble model:
acc 100%

Chaganti et al.,
2022 ( 15)

Same
RF, LR, SVM, ADA, GBM
and CNN, LSTM, and
CNN-LSTM

UCI thyroid disease dataset
(30 features)

233 primary hypo, 359 compensated
hypo, 346 increasing binding
proteins, 456 concurrent non-
thyroidal illness, and 400 Nl

RF: F1-score 0.99, precision
0.99, recall 0.99, and acc
0.99

Mir and Mittal,
2020 ( 18)

Same Boosting, bagging, NB,
SVM, and J48

21 features, including TFT 489 Nl, 488 hyper, and 487 hypo
from 1 center

SVM: acc 99.08, precision
0.991, recall 0.991, and ROC
0.994

Yoshimura
Noh et al., 2024
( 21)

Diagnosis of thyroid
dysfunctions from
routines

ANN (Prediction one)
and LR

JHEP (11 features), JND (9
features), and Ito (32 features)
datasets including routine lab

20653 GD, 3435 painless thyroiditis,
4266 Nl, and 18937 HT from 1 center

Thyrotoxicosis: AUC 0.977
Hypothyroidism: AUC 0.877

Hu et al., 2022
( 22)

Same GBDT, SVM, LR, and
ANN

EMRs (23 features, including
routine lab)

176727 patients from 4 centers Hyperthyroidism: AUC 93.8%
Hypothyroidism: AUC 90.9%

Ghali et al.,
2020 ( 23)

Prediction of TSH by
macroelements and
vitamins

ANFIS, ANN, and MLR 7 vitamins and
macronutrients

Blood sample of 1 patient ANFIS: R2 0.914

Shin et al., 2023
( 24)

Detection of
hyperthyroidism

LGB 662 pairs of TFT and HR 175 patients (2 classes) from 1 center
Sensitivity 86.14%, specificity
98.28%, NPV 95.32, and PPV
94.57%

Choi et al, 2022
( 25) Same DL

174331 ECGs for training,
48648 for external validation 146672 patients from 2 centers

AUC 0.926 for internal
validation and AUC 0.883 for
external validation

Abbreviations: DT, decision tree; LR, logistic regression; XGB, X gradient boosting; SVM, support vector machine; CatB, CatBoost; ANN, artificial neural network; GaussianNB,
Gaussian naive bayes; LGBM, light gradient-boosting machine; SVC, support vector classifier; KNN, K-nearest neighbors; RF, random forest; LDA, linear discriminant analysis;
CART, classification and regression tree; BP-AdaBoost, back propagation-adaptive boosting; CNN, convolutional neural network; ANFIS, adaptive neuro-fuzzy inference system;
MLR, multiple linear regression; ADA, AdaBoost; GBM, gradient boosting machine; LSTM, long short-term memory; DL, deep learning; NL, normal; AUC, area under curve; acc,
accuracy; TFT, thyroid function tests.

and preventive measures, such as dietary iodine

supplementation.

In another study, a DL algorithm was developed using

diverse electrocardiograms (ECG) to detect subclinical

and overt hyperthyroidism, achieving an area under the

curve (AUC) of 0.926 for internal validation and 0.883 for

external validation. However, the inherent complexity

and lack of transparency in the decision-making

processes of DL models—commonly referred to as the

"black box" problem—may compromise the

generalizability and reliability of their results (25). To

enhance reliability and clinical applicability, future

research should focus on developing explainable AI

systems. These systems can provide greater insight into

the decision-making processes of DL-based models,

ensuring transparency. Additionally, validation using

real-world patient cohorts and comparative studies with

expert physicians are essential to establish trust and

efficacy.

4.2. Ultrasound and Scintigraphy

In the diagnosis of thyroid function disorders,
thyroid scintigraphy plays a pivotal role in providing

valuable insights into the secretory activity of the

thyroid gland. However, accurate interpretation of

thyroid scintigraphy heavily relies on the expertise of

nuclear medicine specialists and is notably time-
consuming (26). Given the promising performance of

DL in medical imaging analysis, several studies have

integrated DL networks to diagnose and differentiate

various thyroid functional states using scintigraphy (27-

30) (Table 2).

Kappa coefficient metrics for DL convolutional neural

networks (DCNNs) have demonstrated a commendably

https://brieflands.com/articles/semj-151031
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Table 2. Ultrasound and Nuclear Medicine & Artificial Intelligence-Powered Diagnosis of Thyroid Function Status

First Author,
Year,
Reference

Aim Technique Dataset Sample Size Performance Metrics

Acharya et al.,
2014 ( 31)

Diagnosis of
thyroid
dysfunctions

SVM, DT, fuzzy
classifier, and
KNN

7 features from US images 232 Nl and 294 HT from 1
center

Fuzzy classifier: acc 84.6%

Zhang et al.,
2022 ( 32) Same DL

Features from US images,
US videos, and 6 features
of TFT

37424 HT and 69089 Nl from 1
hospital By US videos + TFT: AUC 0.949 and acc 0.892

Zhao et al.,
2022 ( 33)

Same DL Features from US images 20666 HT and 18613 non-HT
from 2 centers

Acc 0.892, AUC 0.940, and F1-score 0.892

Vasile et al.,
2021 ( 34)

Same DL Features from US images
767 autoimmune, 672 micro-
nodular, 720 nodular, and 638
Nl from 4 centers

Acc 98.78, and AUC 0.98

Qiao et al.,
2021 ( 28) Same DL

1430 thyroid
scintigraphies

175 NL, 834 GD, and 421
subacute thyroiditis from 1
center

Subacute thyroiditis: F1-score 84.98 %, precision
77.99%, recall 93.33%, and acc 89.00% GD: F1-score 88.62
%, precision 93.36%, recall 84.33%, and acc 92.78%

Yang et al.,
2021 ( 30) Same DL

3389 thyroid
scintigraphies from 3
centers

4 classes of scintigraphy
pattern Overall acc 92.73%,

Zhao et al.,
2023 ( 29)

Same DL 3194 thyroid SPECT
742 Nl, 808 GD, 826 subacute
thyroiditis, and 818 tumors
from 3 centers

Subacute thyroiditis: F1-score 0.958, recall 93.9,
precision 97.6, and AUC 0.992 GD: F1-score 0.981, recall
100.0, precision 96.3, and AUC 0.999

Kikuchi et al.,
2023 ( 27)

Same LGBM 7013 F-18 FDG PET/CT scans 182 hypo, 265 hyper, and 6566
Nl from 1 center

Hypothyroidism: AUC 0.77 Hyperthyroidism: AUC 0.78

Abbreviations: SVM, support vector machine; DT, decision tree; DL, deep learning; KNN, K-nearest neighbors; US, ultrasound; HT, hypothyroidism; TFT, thyroid function tests;
SPECT, single-photon emission computed tomography scan; GD, Graves' disease; LGBM, light gradient boosting machine; F-18 FDG PET/CT, fluorine-18 fluorodeoxyglucose
positron emission tomography; NL, normal; AUC, area under curve; acc, accuracy.

high level of agreement (> 0.715) between DCNN-

generated outputs and definitive diagnoses,

highlighting the precision of these models. For

example, the Residual Neural Network (ResNet)

performed exceptionally well among various CNN

frameworks in a study conducted by Zhao et al. This

model achieved an F1-score of 0.981 and an AUC of 0.993

for diagnosing Graves’ disease based on SPECT images

following 5-fold cross-validation (29).

DCNN-based models have also outperformed junior

nuclear medicine residents, although findings have
shown variability when compared to senior residents

(28, 29). Integrating DL-assisted diagnostic systems

holds promise for aiding less experienced physicians,

who may sometimes overlook subtle features during

scintigraphy assessments (28). Despite this potential,
practical implementation of DL assistance in clinical

settings may face challenges due to the "black box"

problem, a lack of external multicentric validation, and

limited training datasets, particularly since

scintigraphy is an infrequent clinical procedure.

To address these issues, Zhao et al. utilized gradient-

weighted class activation mapping (Grad-CAM) to

generate attentional heat maps, highlighting regions of

the original input image that the model focused on. This

approach improved the interpretability of their

proposed framework (29). Future research should

prioritize incorporating such interpretative

methodologies, like Grad-CAM, to enhance the

transparency and understanding of DL networks,

thereby increasing their trustworthiness and clinical

applicability.

4.3. Thyroid Ultrasound Computer-Aided Diagnosis Systems

Thyroid ultrasound computer-aided diagnosis (CAD)

systems have emerged as powerful tools for the accurate

and efficient diagnosis of thyroid diseases, particularly

thyroid nodules. Computer-aided diagnosis systems can

also assist in detecting diffuse inflammatory changes in

the gland. For instance, ThyroScan, an ML-based CAD

system, extracts significant grayscale features from

thyroid ultrasound images to detect Hashimoto’s

thyroiditis with relatively high accuracy (84.6%) (31). By

incorporating ultrasound videos rather than static

images and generating synthetic, high-dimensional,

detailed instances alongside clinical and serological

data, DL-based models have demonstrated promising

performance in diagnosing thyroid dysfunctions (32,

33).

Deep convolutional neural networks (DCNNs) have

shown superior performance by leveraging transfer

learning, which involves reusing a model trained for

one task in another context. It is important to note that

the framework of CNN layers significantly influences

model performance. For example, adding a dropout

https://brieflands.com/articles/semj-151031
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Table 3. Artificial Intelligence Prediction of Major Depressive Disorder and Pregnancy Outcomes by Thyroid Function Status

First Author,
Year, Reference Aim Technique Dataset Sample Size Performance Metrics

Stroek et al.,
2023 ( 41)

Congenital
hypothyroidism
screening

RF Features from the Deutch
National database

458 CH-T, 82 CH-C, 2332 false-positive
referrals, and 1670 Nl

acc 0.77

Sun et al., 2021
( 42)

Prediction of
pregnancy outcome

LR, RF, XGB, and
DL

Obstetrics and pre- and
post-conception serum TSH
features

3428 delivery from 1 center
XGB: PRETERM BIRTH: AUC 0.812
LOW APGAR SCORE: AUC 0.987, RF:
INDUCTION: AUC 0.650

Araya et al., 2021
( 43) Prediction of GDM PCA

29 thyroidal and non-
thyroidal features in 1 - 2
trimesters

39 pregnancies from 1 center NA

Mennickent et
al., 2023 ( 44)

Same
LR, L-SVM, PLS-
DA, CART, and
XGB

75 thyroidal and non-
thyroidal features in 1-2
trimesters

12 GDM and 54 NGT from 3 centers PLS-DA: AUC 0.940

Zhou et al., 2022
( 45)

Prediction of preterm
delivery

GAM
Features from routine
prenatal examination

3176 preterm birth, 2127 Spontaneous
preterm birth, and 1049 Iatrogenic
preterm birth from 1 center

NA

Zhang et al.,
2021 ( 46)

Prediction of
postpartum
depression

RF, DT, XGB, LR,
and MLP EMRs (32 features)

14187 non-PPD and 1010 PPD from 1 center
for training, 50459 non-PPD and 3513 PPD
from another center for validation

LR: AUC 0.937 training and 0.886
validation

Yuan et al., 2023
( 47) Prediction of abortion LR and XGB 48 features

340 abortions and 677 IVF-treated delivery
from 1 center

XGB: AUC 0.759 and F1-score 0.566

Yang et al., 2023
( 40)

Prediction of suicide
attempt

LASSO
Hamilton depression and
anxiety symptoms and
biological features

1372 non-attempts and 208 attempts from
1 center

AUC 0.72

Li et al., 2021
( 38) Same GBDT

Hamilton depression and
anxiety symptoms and
biological features

1372 non-attempts, 235 recent attempts,
and 111 late attempts from 1 center

RECENT: acc 87% LATE : acc 88%

Qiao et al., 2022
( 39)

Prediction of MDD
prognosis

SVM
Hamilton depression and
anxiety symptoms and TFT
features

2086 MDD from 1 center ROC-AUC 0.86

Abbreviations: GDM, gestational diabetes mellitus; NGT, normal glucose tolerance; LR, logistic regression; XGB, X gradient boosting; SVM, support vector machine; RF, Random
forest; PCA, principal component analysis; L-SVM, linear support vector machine; MLP, multilayer perception; LASSO, least absolute shrinkage and selection operator; CART,
classification and regression tree; GAM, generalized additive model; DT, decision tree; GBDT, gradient-boosting decision tree; DL, deep learning; PLS-DA, partial least-squares
discriminant analysis; EMR, electronic medical record; NL, normal; AUC, area under curve; acc, accuracy; MDD, major depressive disorder.

layer effectively reduces the overfitting problem,

improving model reliability (34). Detailed data from

studies utilizing AI to identify thyroid dysfunctions via

ultrasonography are presented in Table 2.

4.4. Pregnancy and Major Depressive Disorders

To this point, this review has focused on AI

applications for diagnosing thyroid function disorders

in the general population, without accounting for

concurrent conditions or illnesses. Since the symptoms

of thyroid dysfunction often develop gradually,

individuals may remain asymptomatic for an extended

period. Early diagnosis and intervention are therefore

critical to preventing adverse outcomes, particularly in

scenarios such as pregnancy and congenital

hypothyroidism, where thyroid hormone levels are

essential for fetal and neonatal brain development and

pregnancy outcomes (35).

Moreover, untreated thyroid dysfunction can

exacerbate coexisting conditions, such as

cardiovascular, neurological, or psychological disorders

(36, 37). For example, major depressive disorder (MDD)

represents a significant public health concern due to its

impact on quality of life and its association with a

higher risk of suicide. Thyroid function status has

shown a strong correlation with the development of

MDD and response to treatment. Developing ML-based

models to predict the risk of suicidal attempts and MDD

improvement based on thyroid function data could

provide valuable insights into this issue (38-40).

Consequently, the application of AI to address

thyroid dysfunctions within specific subgroups has

garnered increasing attention in the current literature.

Detailed findings are summarized in Table 3.

4.5. Bioinformatics, Exposure, Radioiodine Therapy, and
Levothyroxine Dose Adjustment

Numerous factors contribute to the development of

thyroid dysfunction conditions, including thyroid gland

inflammation, autoimmune processes (e.g., Graves’

disease and Hashimoto’s thyroiditis), iodine intake,

medications, thyroid surgery, radiation therapy,

congenital developmental abnormalities (e.g., thyroid
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agenesis or dysplasia), pituitary disorders, and pituitary

or thyroid tumors (6, 7).

Autoimmune thyroid disorders result from a

complex interplay between genetic predisposition,

dietary influences, coexisting disorders, and

environmental triggers (48, 49). By leveraging ML

techniques in bioinformatics—an interdisciplinary field

combining computer science, mathematics, and

statistics for biological data analysis—new insights can

be gleaned from large-scale biological datasets such as

genomic sequences, protein structures, gene expression

profiles, and regulatory mechanisms. Several studies

have explored the discovery of diagnostic genes

associated with thyroid and related autoimmune

disorders (50, 51) (Table 4). For example, Shen et al.

identified 75 genes linked to hyperthyroidism using a

random walk ML model for gene analysis, achieving an

AUC of 0.90. This model also encoded gene interaction

networks based on existing gene regulation data to

clarify the pathological mechanisms of gene

interactions (52).

In recent years, exposure to endocrine-disrupting

chemicals (EDCs) has become an increasing public

health concern. These chemicals, found in various

environmental sources such as air, water, and food,

disrupt the normal functioning of the endocrine system

by mimicking or blocking the action of natural

hormones in the body (53). Some studies have explored

the development of predictive ML models to screen TSH

receptor agonists and predict their inhibitory or non-

inhibitory activity and mechanisms (54, 55) (Table 4).

Radioiodine therapy (RAI) is a widely used treatment

for hyperthyroidism, particularly in Graves’ disease, as

well as for removing residual thyroid tissue following

thyroid cancer surgery (56). Hypothyroidism is a

common early consequence of RAI, requiring lifelong

thyroid hormone replacement therapy. To address this,

researchers have developed ML models to identify risk

factors associated with early hypothyroidism after RAI

and to screen patients at higher risk. Findings suggest

that male gender, older age, lower radioactive iodine

uptake, smaller thyroid volume, and certain blood

biochemical markers may contribute to an increased

risk of hypothyroidism (57, 58). Additionally, ML models

have been designed to predict the therapeutic dose of

RAI. For instance, random forest (RF) models created for

this purpose have demonstrated strong performance

(58).

Moreover, patients who have undergone

thyroidectomy require exogenous hormone

replacement with levothyroxine (LT4). Adjusting the LT4

dose for these patients necessitates careful

consideration of individual variability in thyroid

hormone requirements, as well as factors influencing

the absorption and metabolism of LT4, to achieve

euthyroidism. Regression and classification models,

such as fuzzy logistic systems and decision trees, have

shown promise in providing personalized approaches

to LT4 dose adjustment (59-61). Future research should

aim to develop models with even higher performance

for this purpose. Table 4 also summarizes investigations

conducted on the performance of AI systems in

predicting post-RAI treatment hypothyroidism and LT4

dose adjustments.

4.6. Thyroid-Associated Ophthalmopathy

Thyroid-associated ophthalmopathy (TAO), also

known as Graves’ ophthalmopathy, is a potentially sight-

threatening ocular condition characterized by upper lid

retraction, lid lag, and eye protrusion. Numerous

studies have evaluated the performance of AI in

extracting eye parametric data from orbital imaging

modalities, particularly computed tomography (CT)

scans and magnetic resonance imaging (MRI), to detect

this disorder and assess its severity (62-64) (Table 5).

These investigations have primarily employed deep

convolutional neural networks (DCNNs) with various

architectures, such as Visual Geometry Group Network

(VGG), Residual Neural Network (ResNet), and

GoogleNet Inception (GoogLeNet). The performance of

these models has been comparable to that of

experienced ophthalmologists. For instance, Karlin et al.

introduced an ensemble DL model that demonstrated

greater accuracy than ophthalmologists in diagnosing

TAO from external orbital images (65).

Researchers have also developed predictive models

for treatment response and post-decompression surgery

outcomes in TAO patients (66, 67). For example, using

dual facial photographs from 109 patients who had

undergone orbital decompression surgery, a generative

adversarial network (GAN) achieved an accuracy of

90.9% and an AUC of 0.957. This model demonstrated

one of the highest performances among predictive

models for surgical outcomes in TAO patients (66). In

another study, Zhai et al. highlighted the potential

utility of T2 mapping and T2 Iterative Decomposition of

Water and Fat with Echo Asymmetry and Least-Squares

Estimation (IDEAL) as predictors for response to

glucocorticoid therapy in patients with active and

moderate-to-severe TAO (67).

The limitations of the mentioned models primarily

arise from the fact that they are mostly trained on

abnormal medical imaging, as healthy individuals

typically do not undergo orbital imaging. This reliance
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Table 4. Artificial Intelligence Applications in Bioinformatics, Exposure, Radioiodine Therapy, and Levothyroxine Dose Adjustment

First Author,
Year,
Reference

Aim Technique Dataset Sample Size Performance Metrics

Atas, 2023 ( 50)
Prediction of
autoimmune
concomitant dx with HT

SVM, RF, LR, KNN,
MLP, and a ML
hybrid model

OMIM, PUBMED, Entrez Gene
on NCBI, NCBI dbSNP, and
SWISS Prot database

162 genes
acc 0.815, precision 0.731,
recall 1.0, and F1-score 0.800

Li et al., 2024
( 51)

HT diagnosis based on
genes

LASSO
HRA001684, GSE29315 and
GSE163203 datasets

2000 highly variant genes NA

Shen et al.,
2021 ( 52)

Prediction of genes of
hyperthyroidism

RW-RVM, RF, ANN,
and NB

DisGeNET 269 genes AUC 0.90

Liu et al., 2023
( 54) Screening Tshr agonists

RF, MLP, SVM, and
GAT

Updated TSHR agonist dataset
from PubChem fingerprints 7 molecular representations RF: AUC 0.984, and acc 0.941

Xu et al., 2022
( 55)

Detection of TSHR
inhibitory chemicals

RF, XGB, and LR Tox21 database 5952 compounds from a cAMP analysis
RF: acc 0.85, recall 0.89, and
AUC 0.92

Gao et al., 2021
( 58)

Prediction of 131i
therapeutic dose

BPNN, RBFNN, SVM,
BP-AdaBoost, and RF

EMRs (17 features) 353 patients from several centers RF: acc 100%

Duan et al.,
2022 ( 57)

Prediction of
hypothyroidism after
RAIT

ML
EMR (138 clinical and lab test
features)

471 GD patients from 1 center AUC 0.74 and F1-score 0.74

Chen et al.,
2019 ( 59)

Levothyroxine dosage
post-thyroidectomy

DT LT4 doses and TSH levels 320 patients from 1 center
Correctly predicted dose
adjustment 75%, confidence
interval = 65% - 82%

Barrio et al.,
2023 ( 60)

Same ANN, RF, 0LS, and LR
Demographic, clinical, and
laboratory data

951 patients from 1 center Met postopTSH goal 45.3%

Hemmati et
al., 2023 ( 61)

Same Fuzzy logic NA
Thyrosim application to simulate
thyroid hormone courses of a virtual
thyroidectomized patient

NA

Abbreviations: HT, Hashimoto’s thyroiditis; GD, Graves’ disease; TSHR, thyroid stimulating hormone receptor; RAIT, radioactive iodine therapy; LT4, levothyroxine; LR, logistic
regression; XGB, extreme gradient boosting; SVM, support vector machine; ANN, artificial neural network; KNN, K-nearest neighbors; RF, random forest; OLS, ordinary least
squares; BP-AdaBoost, back propagation-adaptive boosting; RBFNN, radial basis functions neural Network; MLP, multilayer perceptron; LASSO, least absolute shrinkage and
selection Operator; RW-RVM, random walk-relevance vector machine; GAT, graph attention network; BPNN, back propagation neural network; EMR, electronic medical record;
NL, normal; AUC, area under curve; acc, accuracy.

Table 5. Artificial Intelligence Applications in Thyroid-Associated Ophthalmopathy

First author,
Reference,
Number

Aim Technique Dataset Sample Size Performance Metrics

Lee et al., 2022
( 62)

TAO diagnosis DL Orbital CT scans 99 mild GO, 94 mod-to-severe, and 95
Nl from 1 center

AUC 0.895-0.979

Lin et al., 2024
( 63) Same DL Orbital CT scans

459 mild, 355 severe, and 373 Nl from 1
center

acc 89.5% and AUC 0.96–0.99

Lin et al., 2021
( 64) Same DL Orbital MRI

50 active phase and 110 inactive phase
from 1 center

acc 0.863, precision 0.680,
and F1-score 0.712

Karlin et al., 2023
( 65) Same DL

External orbital
photographs

2288 images from 1 clinical dataset
acc 89.2%, recall 93.4%,
precision 79.7%, and F1 score
86.0%

Yoo et al., 2020
( 66)

Prediction of post-orbital
decompression surgery
appearance

Generative
adversarial network
(GAN)

Facial photographs
109 pairs of matched pre- and
postoperative facial images from
amGoogle image search

acc 90.9% and AUC 0.957

Zhai et al., 2021
( 67)

Prediction of the therapeutic
efficacy of IV glucocorticoids

Binary LR
Orbital MRI and
clinical characteristics

35 responsive and 28 unresponsive
orbit

AUC 0.844

Abbreviations: TAO: thyroid associated ophthalmopathy; LR: logistic regression; DL: deep learning; CT: computed tomograohy scan; MRI: magnetic resonance imaging; NL:
normal; AUC: area under curve; acc: accuracy.

on abnormal cases can lead to sample bias, as the

absence of normal control data may skew the results,
thereby limiting the generalizability of the models. To

overcome these challenges, future research should focus
on training models using larger and more diverse

datasets that include normal controls, as well as other

differential diagnoses for TAO. These models should

integrate both clinical and imaging data to identify
correlations between imaging results and clinical

presentations. Such an approach could expedite the
diagnostic process and help prevent potential
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permanent eye damage or vision loss through earlier

intervention.

5. Discussion and Conclusions

Applying AI to the diagnosis and treatment of

thyroid disorders holds immense potential to

revolutionize patient care. The AI-powered models can

interpret TFT results and provide comprehensive

diagnostic assessments based on clinical and laboratory

data. Most studies have utilized the University of

California, Irvine (UCI) ML repository to train their

interpretive models. The UCI repository is a publicly

available, prominent resource for researchers and

practitioners, offering a diverse collection of datasets

that span various domains, including thyroid disease

datasets that incorporate various TFT components and

clinical variables.

Research has also explored AI applications for

detecting thyroid dysfunction, ranging from routine

clinical laboratory data to other supplementary

diagnostic methods. The training datasets in these

studies mainly consist of laboratory results, alongside

demographic and clinical variables acquired from

electronic medical records of single or multiple centers.

Feature selection engineering allows for identifying the

most valuable variables for training improved models.

Deep learning-based models primarily hold the

potential to enhance the diagnostic accuracy of medical
imaging for thyroid dysfunctions, particularly by

analyzing thyroid scintigraphies and ultrasound

images. DL image processing has also performed
excellently in diagnosing and evaluating the severity of

TAO from orbital CT scans. However, since imaging
modalities for assessing thyroid function disorders are

relatively uncommon, the lack of large, diverse, and

balanced datasets remains a significant challenge in
training such models. Researchers should collaborate

across institutions to pool datasets and ensure better
generalization.

Artificial intelligence can also aid in predicting

pregnancy complications, improving newborn

screening programs, forecasting treatment responses,

assessing the likelihood of suicidal attempts in patients

with MDD, and optimizing levothyroxine dose

adjustment. To train AI models for these purposes, it is

essential to include not only features of concurrent

conditions, but also TFT results, routine laboratory data,

and demographic, biological, psychosocial, and clinical

variables to create trustworthy models.

While AI technology holds significant potential to

improve the management of thyroid disorders,

challenges such as data quality, model interpretability,

and the need for extensive validation have made it a

long way from replacing specialists. By addressing these

challenges, future research can develop models that

provide a high level of reliability and advance the field

of endocrinology.
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