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Abstract

Background: Managing infections caused by extensively drug-resistant (XDR) or multidrug-resistant (MDR) Klebsiella

pneumoniae poses a significant challenge in hospitals and medical centers.

Objectives: The present study investigated the efficacy of common and older antibiotics, including fosfomycin and colistin,

among clinical isolates of K. pneumoniae.

Methods: In this cross-sectional study, 43 XDR K. pneumoniae isolates were obtained from 215 urine samples collected at Milad

Hospital, Tehran, Iran, between September 2023 and November 2024. Antimicrobial susceptibility testing against fosfomycin

and other antibiotics was performed using the disk agar diffusion test in accordance with CLSI recommendations. Susceptibility

to colistin was determined using colistin broth disk elution and chromogenic agar. The presence of mgrB, bla VIM, bla NDM, bla

KPC, bla OXA-48, and bla IMP genes was identified using polymerase chain reaction (PCR).

Results: The incidence rates of imipenem (IMP) and meropenem (MEM) resistance in K. pneumoniae isolates were 90.7% and

93%, respectively. The prevalence of bla IMP, bla VIM, bla KPC, and mgrB was 25.6%, 8%, 69.8%, and 93%, respectively. No bla NDM or

bla OXA-48 genes were detected. The rates of sensitivity to fosfomycin and colistin were 39.5% and 7.1%, respectively. Additionally,

32.6% of K. pneumoniae isolates were intermediate to fosfomycin.

Conclusions: The high rate of resistance to colistin and most other antimicrobial agents among our K. pneumoniae isolates

must be considered due to the potential for antibiotic treatment failure and increased mortality and morbidity in elderly

patients in healthcare settings. The relatively low rate of susceptibility to fosfomycin suggests the need for using another

appropriate antibiotic in combination with fosfomycin for effective treatment of urinary infections.
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1. Background

Klebsiella pneumoniae, a gram-negative bacillus of the

Enterobacteriaceae family, is responsible for a wide

range of infections, including urinary tract infections

(UTIs), pneumonia, burn infections, septicemia, and

meningitis. The bacterium is the second most common

cause of UTIs (1, 2). Unfortunately, in recent years, with

the global emergence of antibiotic resistance among

pathogens, the bacterium’s susceptibility to current

antibiotics has decreased dramatically. It is estimated

that the global drug resistance rate of K. pneumoniae has

reached as high as 70%, and the infection-related fatality

rate has also reached 40% to 70% (3). In recent years,

multidrug-resistant (MDR) K. pneumoniae and

carbapenem-resistant Klebsiella pneumoniae (CRKP) have

emerged as major global public health problems (3, 4).

Therefore, managing infections caused by antibiotic-
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resistant K. pneumoniae is problematic due to the

bacterium’s intrinsic and acquired resistance to a broad

spectrum of drugs, particularly in elderly,

immunosuppressed individuals, or infants with

immature immunity (3, 5). The use of older

antimicrobial agents such as fosfomycin and colistin

has been proposed to combat MDR Enterobacteriaceae,

particularly in healthcare settings (6). In adult patients

attending emergency departments between 2010 and

2016, fosfomycin susceptibility among all uropathogens

was 87.8%, and higher for Escherichia coli (97.5%) (7).

2. Objectives

The present study aimed to characterize a collection

of extensively drug-resistant (XDR) K. pneumoniae strains

isolated from urine samples in terms of antimicrobial

resistance and to evaluate the in vitro efficacy of

fosfomycin and colistin against carbapenem-resistant K.

pneumoniae.

3. Methods

3.1. Sample Collection and Bacterial Identification

From a total of 215 urine specimens processed, 43

non-duplicate XDR clinical K. pneumoniae strains were

collected from inpatients and outpatients at different

wards of Milad Hospital, Tehran, Iran, between

September 2023 and November 2024. The isolates were

identified using bacterial culture and standard

biochemical tests. In summary, the suspected isolates

were streaked on MacConkey and blood agar plates

(Merck, Germany) and incubated at 37°C for 24 hours.

Bacterial species were identified using standard

biochemical methods (8).

3.2. Antimicrobial Susceptibility Test

Antimicrobial susceptibility was performed on

Mueller-Hinton agar using the Kirby-Bauer disk

diffusion technique according to the Clinical and

Laboratory Standards Institute’s (CLSI, 2024) guidelines

for the following antibiotics: Ceftriaxone (30 mg),

ceftazidime (30 mg), cefotaxime (30 mg), ciprofloxacin

(5 mg), trimethoprim-sulfamethoxazole (23.75/1.25 mg),

gentamicin (10 mg), clindamycin, and piperacillin-

tazobactam (110 mg). Results were interpreted using

CLSI 2015 disc diffusion cut-offs for E. coli in urinary tract

isolates (9). Multidrug-resistant was defined as

resistance to ≥ 3 antibiotic classes; XDR as resistance to

all except 1 - 2 classes. Fosfomycin susceptibility was

tested by disc diffusion method using fosfomycin

trometamol disc (200 μg, BD BBL, Franklin Lakes, New

Jersey) containing 50 μg G6PD on Mueller-Hinton agar.

Escherichia coli ATCC 25922 and Pseudomonas aeruginosa

ATCC 27853 were used as control strains. Results were

interpreted using CLSI 2015 disc diffusion cut-offs for E.

coli in urinary tract isolates: ≥ 16 mm as sensitive, 13 - 15

mm as intermediate, and ≤ 12 mm as resistant (9).

3.3. Detection of Colistin Resistance

Colistin susceptibility was identified using broth disk

elution and chromogenic agar (CBDE) as described in

CLSI ver30 (10). Briefly, in the CBDE method, four glass

tubes were used, each containing 10 mL of cation-

adjusted Mueller-Hinton broth (HI-media). The first tube

served as a growth control (no antibiotic disc added).

One disc of colistin sulfate (10 μg, BD BBL, Franklin

Lakes, New Jersey) was added to the second tube, two

discs to the third tube, and four discs to the fourth tube.

The tubes were incubated at room temperature for 30 -

45 minutes to elute colistin from the medium. Colonies

from blood agar were used to prepare a 0.5 McFarland

solution in normal saline, and after proper mixing, 50

μL inoculum was added to each tube. The test tubes

were mixed thoroughly and incubated at 37°C for 24

hours (10). Pseudomonas aeruginosa ATCC 27853 was used

as a negative control. Additionally, bacterial cultivation

was done on colistin Chromagar media (CHROMagar™

COL-APSE, France), and the growth of green-blue

colonies was investigated after 24 hours of incubation at

37°C. The presence of mgrB was also determined using

specific primers and polymerase chain reaction (PCR) as

described previously (11).

3.4. Detection of Carbapenem Resistance

3.4.1. Phenotypic Method

Confirmation of carbapenem-resistant strains was

performed using disk diffusion, following the Kirby-

Bauer disk diffusion method according to CLSI 2024

guidelines (12). The isolated strains were also screened

for carbapenem resistance using imipenem (IMP) and

meropenem (MEM) discs. Isolates showing an inhibition

zone diameter of ≤ 19 mm were considered screening

test positive and labeled as carbapenem-resistant

Enterobacteriaceae (CRE).
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3.4.2. Genotyping Method

Overnight bacterial culture was used for DNA

extraction using the DNA Extraction Kit (QIAGEN,

Germany) in accordance with the manufacturer’s

instructions. Briefly, a single colony from a fresh blood

agar plate was inoculated into 5 mL of Luria-Bertani (LB)

broth and incubated overnight at 37°C with shaking. A

1.5 mL aliquot of the overnight culture was centrifuged

at 10,000 × g for 5 minutes, and the bacterial pellet was

resuspended in the appropriate lysis buffer provided in

the kit. After lysis and protein digestion, DNA was

purified using spin columns and eluted in 50 μL of

nuclease-free water. The extracted DNA was quantified

using a NanoDrop spectrophotometer and stored at

-20°C until further use. The carbapenemase genes (bla

VIM, bla NDM, bla KPC, bla OXA-48, and bla IMP) were

detected using conventional PCR (13). Each 25 μL PCR

reaction contained 12.5 μL of 2× PCR Master Mix

(Amplicon, Denmark), 1 μL of each primer (10 pmol/μL),

2 μL of template DNA, and nuclease-free water up to 25

μL. The PCR cycling conditions were as follows: Initial

denaturation at 94°C for 5 minutes; 35 cycles of

denaturation at 94°C for 30 seconds, annealing at the

primer-specific temperature for 30 seconds, and

extension at 72°C for 1 minute; followed by a final

extension at 72°C for 7 minutes. The PCR products were

separated by electrophoresis on a 1.5% agarose gel

stained with ethidium bromide and visualized under UV

illumination. A 100 bp DNA ladder (Fermentas,

Lithuania) was used as a molecular size marker. Positive

controls included K. pneumoniae ATCC BAA-1705 (for bla

KPC), and negative controls used nuclease-free water

and E. coli ATCC 25922 were included in each run to

ensure assay validity.

3.5. Statistical Analysis

Statistical analysis was conducted using SPSS

software (version 25, Co Ltd, Tokyo, Japan). Continuous

variables were presented as mean ± standard deviation,

while nominal and categorical variables were expressed

as frequency percentages. The Pearson chi-square test

was used to compare qualitative variables between

groups. Results were deemed statistically significant if

P-values were ≤ 0.05.

4. Results

In this study, a total of 43 K. pneumoniae isolates were

collected from urine samples of inpatients (n = 37,

86.04%) and outpatients (n = 6, 14.3%) who were referred

to Milad Hospital, Tehran. Samples were isolated from

females (n = 20, 46.5%) and males (n = 23, 53.5%), with no

significant differences found regarding gender and

antimicrobial resistance. The age distribution of

patients was 19 - 40 years (n = 6, 13.9%), 41 - 60 years (n =

8, 18.6%), and 61 - 80 years (n = 28, 65.1%). A significant

difference was observed between age groups and

antimicrobial resistance (P = 0.03).

Based on our results, more than 90% of K. pneumoniae

isolates were phenotypically confirmed as

carbapenemase producers, with 93% and 90.3%

resistance to MEM and IMP, respectively. Carbapenemase

genes were detected in 92.7% of isolates using PCR. The

most common genes identified were bla KPC (69.8%),

followed by bla IMP (25.6%), and bla VIM (8%). No bla

NDM or bla OXA-48 genes were detected. Moreover, the

co-existence of genes was observed in combinations of

bla IMP with bla VIM (4.6%), bla IMP and bla KPC (11.6%),

and bla IMP, bla KPC, and bla VIM (2.3%). More than 80%

of K. pneumoniae isolates were determined to be

MDR/XDR.

As shown in Table 1, the highest level of resistance

was observed against ciprofloxacin (100%), followed by

ceftazidime (97.7%), cefotaxime (97.7%), cefoxitin (86%),

and gentamicin (88.4%). Additionally, 92.9% (26/28) of all

K. pneumoniae isolates were resistant to colistin. Except

for one case, the results of the two phenotypic methods

(chromogenic agar and CBDE) were consistent. The

mgrB gene was detected in 93% (n = 40) of bacterial

isolates. Among the IMP and MEM-resistant K.

pneumoniae, 97.5% and 100% were also resistant to

colistin (Table 2).

Significant differences were observed between age

groups and antimicrobial resistance (P = 0.03). In Table

2, associations between fosfomycin susceptibility and

MEM resistance (P = 0.04) and bla KPC presence (P =

0.05) were noted. The rate of sensitivity to fosfomycin

was 39.5%. Furthermore, fosfomycin-intermediate

resistance was detected among 32.6% of bacterial

isolates. Additionally, 62% of carbapenemase-producing

K. pneumoniae were also resistant to fosfomycin.

5. Discussion

One of the major challenges in healthcare settings is

the effective treatment of infections caused by MDR and

XDR K. pneumoniae (14, 15). This has dramatically
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Table 1. Antimicrobial Susceptibility Results of 43 Klebsiella pneumoniae a

Antimicrobial Agents
Number of Isolates

Resistance Sensitive Intermediate

IMP 39 (90.7) 3 (7) 1 (2.3)

MEM 40 (93) 3 (7) 0

TZP 40 (93) 2 (4.7) 1 (2.3)

CAZ 42 (97.7) 1 (2.3) 0

FOX 37 (86) 4 (9.3) 2 (4.7)

CTX 42 (97.7) 1 (2.3) 0

SXT 36 (83.7) 3 (7) 4 (9.3)

GM 38 (88.4) 5 (11.6) 0

AN 18 (41.9) 15 (34.9) 10 (23.3)

CIP 43 (100) 0 0

CL 25 (58.1) 18 (41.9) 0

Colistin 42 (97.7) 1 (2.3) 0

FOS 12(27.9) 17 (39.5) 14 (32.6)

Abbreviations: IMP, imipenem; CL, clindamycin; TZP, piperacillin-tazobactam; GM, gentamycin; CAZ, ceftazidime; FOX, cefoxitin; SXT, trimethoprim-sulfamethoxazole; CTX,
cefotaxime; CIP, ciprofloxacin; MEM: meropenem; AN, amikacin; FOS, fosfomycin.
a Values are expressed as No. (%).

Table 2. Susceptibilities of Different Antibiotics Against Klebsiella pneumoniae Isolates a

Antibiotic
Fosfomycin Statistics

P-Value
Resistant (n = 9) Susceptible (n = 18) Intermediate (n = 16)

IMP 0. 08

Resistance 8 (88.9) 15 (83.3) 16 (100)

Sensitive 1 (11.1) 2 (11.1) 0 (0.0)

Intermediate 0 (0.0) 1 (5.5) 0 (0.0)

MEM 0.04

Resistance 9 (100) 15 (83.3) 16 (100)

Sensitive 0 (0.0) 3 (16.6) 0 (0.0)

TZP 0.73

Resistance 9 (100) 16 (88.9) 15 (93.75)

Sensitive 0 (0.0) 2 (11.1) 1 (5.5)

CAZ 0.49

Resistance 9 (100) 17 (94.4) 16 (100)

Sensitive 0 (0.0) 1 (5.5) 0 (0.0)

FOX 0.09

Resistance 8 (88.9) 13 (72.2) 16 (100)

Sensitive 0 (0.0) 4 (22.2) 0 (0.0)

Intermediate 1 (11.1) 1 (5.5) 0 (0.0)

CTX 0.49

Resistance 9 (100) 17 (94.4) 16 (100)

Sensitive 0 (0.0) 1 (5.5) 0 (0.0)

SXT 0.8

Resistance 8 (88.9) 15 (83.3) 13 (81.25)

Sensitive 0 (0.0) 2 (11.1) 1 (5.5)

Intermediate 1 (11.1) 1 (5.5) 2 (12.5)

GEN 0.16

Resistance 9 (100) 14 (77.7) 15 (93.75)

Sensitive 0 (0.0) 4 (22.2) 1 (5.5)

CL 0.16

Resistance 6 (66.6) 7 (38.8) 11 (68.75)

Sensitive 3 (33.3) 11 (61.1) 5 (31.25)

AMS 0.57

Resistance 9 (100) 16 (88.8) 16 (100)

Sensitive 0 (0.0) 1 (5.5) 0 (0.0)

Intermediate 0 (0.0) 1 (5.5) 0 (0.0)

KPC 0.05

Positive 7 (77.7) 9 (50) 14 (87.5)

Negative 2 (22.2) 9 (50) 2 (12.5)

Colistin 0.32

Resistance 9 (100) 16 (88.8) 14(87.5)

Sensitive 0 (0.0) 2 (11.1) 2 (12.5)

AN

Resistance 6 (66.6) 7 (38.8) 5 (31.25)

Sensitive 1 (11.1) 6 (33.33) 8 (50)

Intermediate 2 (22.2) 5 (27.7) 3 (18.75)

Abbreviations: IMP, imipenem; CL, clindamycin; TZP, piperacillin-tazobactam; GM, gentamycin; CAZ, ceftazidime; FOX, cefoxitin; SXT, trimethoprim-sulfamethoxazole; CTX,
cefotaxime; CIP, ciprofloxacin; MEM: meropenem; AN, amikacin; FOS, fosfomycin; GEN, gentamycin.

a Values are expressed as No. (%).

increased mortality rates, particularly among elderly

and immunocompromised individuals (16-18). In recent

years, the use of older antibiotics such as fosfomycin

and colistin has been proposed as an alternative for
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treating UTI infections caused by XDR K. pneumoniae. In

the present study, the highest percentage of K.

pneumoniae isolates were from urine samples of

patients aged 61 - 80 years (65.1%). The isolates exhibited

exceptionally high resistance to carbapenems (IMP:

90.7%; MEM: 93%), consistent with prior Iranian studies

reporting carbapenem resistance rates exceeding 70%

(19, 20). We also found that the vast majority (83%) of K.

pneumoniae isolates were classified as MDR/XDR. In this

regard, we determined a high prevalence of resistance

to various groups of antibiotics, including third-

generation cephalosporins [ceftazidime (97.7%),

cefoxitin (86%), and cefotaxime 97.7%)], aminoglycosides

[gentamicin (88.4%)], penicillin and beta-lactamase

inhibitors [piperacillin-tazobactam (93%)],

trimethoprim-sulfamethoxazole (83.7%), and

fluoroquinolones [ciprofloxacin (100%)]. Additionally, a

very low number of K. pneumoniae isolates (7.1%) were

sensitive to colistin, suggesting that colistin is not an

effective drug for empiric treatment of K. pneumoniae

infections. The relatively high rates of drug-resistant

MDR/XDR K. pneumoniae observed in different studies in

Iran (19-21) might be due to several factors, including the

widespread use of broad-spectrum antibiotics in

healthcare settings for empiric treatment of infections,

prolonged antimicrobial therapy, and unnecessary

antibacterial prescriptions.

We identified a high rate of resistance to colistin

(93%) using the CBDE and chromogenic agar methods.

The CBDE, as a simple and low-cost phenotypic method,

can be used as a reference method in laboratories.

Additionally, the results of molecular tests for detection

of mgrB showed the role of chromosomal genes in

colistin resistance. This aligns with Iranian studies

attributing colistin resistance to the overuse of last-line

antibiotics and clonal dissemination of resistant strains.

The high concordance between phenotypic methods

(CBDE and chromogenic agar) and the mgrB detection

rate (93%) suggests that chromosomal mutations, rather

than plasmid-mediated mechanisms, dominate colistin

resistance in these isolates, a pattern observed in other

Iranian studies (21).

Based on our findings, clindamycin and fosfomycin

seem to be the optimal choices against KPC-KP (Table 1).

In recent decades, fosfomycin-tromethamine has been

introduced as a potential alternative therapy for chronic

bacterial UTIs caused by MDR Enterobacteriaceae (22).

Other studies have shown the efficacy of fosfomycin

ranging from 39% to 100% on carbapenemase-producing

strains of K. pneumoniae (23, 24). For example, Endimiani

et al. (18) assessed the in vitro effectiveness of

fosfomycin against 68 bla KPC-possessing Klebsiella

pneumoniae (KpKPC) isolates, including 23 strains that

were not susceptible to tigecycline and/or colistin. Their

findings revealed that 93% of the overall KpKPC isolates

were susceptible to fosfomycin (18). Although the rate of

susceptibility to fosfomycin was lower in our KpKPC

isolates, the relatively high prevalence of fosfomycin-

intermediate KpKPC (32.6%) in the current study is

concerning and should be taken into consideration. It is

proposed that prolonged and intensive use of

antibiotics in healthcare settings can lead to the spread

of resistance to fosfomycin via mobile elements and

resistance genes (25, 26). Adjusting the dosage of the

medication and combination therapy could help

maintain the effectiveness of fosfomycin in the

treatment of urinary infections caused by KpKPC.

The dominance of bla KPC (69.8%) contrasts with

studies from other parts of Iran and South Asia, where

bla NDM and bla OXA-48 are more prevalent. For

instance, Hashemizadeh et al. (21) reported bla NDM as

the predominant carbapenemase in southwestern Iran,

while bla KPC is more common in the United States and

Greece. The absence of bla NDM and bla OXA-48 in this

cohort may reflect localized clonal spread or hospital-

specific antibiotic pressure. Notably, the co-occurrence

of bla IMP with bla KPC and bla VIM (11.6% and 4.6%,

respectively) suggests horizontal gene transfer, a

phenomenon increasingly reported in high-resistance

settings.

5.1. Limitations

Our study has several limitations. It was conducted in

only one hospital (Milad Hospital, Tehran), which limits

the generalizability of the findings to other hospitals

and regions within Iran or globally. The relatively small

sample size may not fully capture the diversity and

resistance patterns of K. pneumoniae in the broader

population. All isolates were obtained exclusively from

urine samples, and the study does not include isolates

from other clinically relevant sources (e.g., blood,

respiratory tract, wounds), potentially overlooking

differences in resistance profiles from other infection

sites. Additionally, the study did not track prior

antibiotic use, which may have influenced culture

positivity and resistance profiles.

This study showed a high level of antibiotic

resistance in K. pneumoniae to different classes of
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antibiotics, including older antibiotics such as colistin.

Additionally, the relatively high level of fosfomycin-

intermediate carbapenemase-resistant K. pneumoniae is

concerning. It is proposed that the use of fosfomycin as

an alternative drug should be in combination with

another appropriate antibiotic. Moreover, there is an

urgent need for heightened awareness among

physicians and microbiologists, active infection control

committees, appropriate antimicrobial treatment,

improvement of health status, and surveillance of drug-

resistant isolates to better control the emergence and

spread of pan-drug-resistant isolates of K. pneumoniae in

hospitals.
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