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Abstract

Background: The p28 is a small-sized cell-penetrating peptide derived from bacterial protein azurin and can function as a cancer-
specific anti-proliferative agent. It can penetrate cancer tissues easily without involving the immune system, and increase the intra-
cellular concentration of p53.
Objectives: In this study, we have expressed and purified recombinant p28, then evaluated its anti-proliferative and pro-apoptotic
effects on Raji cancer cell line.
Methods: The p28 gene was amplified and cloned into pTZ57R cloning vector and was sequenced subsequently. Afterward, it was
transformed into E. coli BL21 bacterial host by using pET-28a expression vector. Peptide purification was carried out using Ni-NTA
chromatography system. Bradford, SDS-PAGE, and western blotting assays were applied to assess the concentration and expression
level of the recombinant peptide. The proficiency of p28 in inhibition of tumor growth and induction of apoptosis in cancerous
cells was investigated by evaluating the Raji and HEK-293 cells treated with different concentrations of p28.
Results: The overexpression of the p28 peptide in the bacterial host was confirmed by SDS-PAGE and western blotting. Moreover,
Bradford assay revealed desirable concentrations of the recombinant p28 before and after dialysis. The MTT and PE-Annexin V apop-
tosis assays indicated the specific function of p28 in impeding the proliferation of cancerous cells and triggering the apoptosis.
Conclusions: The p28 induces apoptosis in cancerous cells but not in normal control cells. In summary, p28 is a non-immunogenic
small peptide that can penetrate cancerous cells preferentially, impede the cell proliferation, and induce the apoptosis. Overall,
these findings suggest p28 as a promising anticancer drug.
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1. Background

Azurin, as a redox protein found in Pseudomonas aerug-
inosa (1), is a type I copper-containing protein, transferring
electrons in the denitrification pathway (2). This water-
soluble 14 kDa protein (3) has shown anticancer effects
both in vivo and in vitro via forming a complex with the
tumor suppressor protein “p53” (4). The formation of this
complex leads to the stabilization of p53 and a subsequent
increase in its cellular concentration (5). Experimental
investigations by site-directed mutagenesis have revealed
key-points in azurin-p53 complex formation. Studies sug-
gest that two methionine residues (Met44 and Met64) lo-
cated in one of the hydrophobic patches of azurin play
a critical role in stabilizing the flexible L1 and s7-s motifs
of p53 (6, 7). Azurin is considered a potential anti-cancer

agent that favorably enters cancerous cells at a signifi-
cantly higher rate compared with normal cells (6). In spite
of this remarkable advantage, in vivo studies have high-
lighted the immunogenic responses induced by azurin,
as its major drawback (8). Nevertheless, further investi-
gations led to the discovery of oligopeptide fragments of
azurin, which have therapeutic traits equal to the whole
protein (i.e. similar cytotoxic and target specific delivery
capabilities) along with minimized immunogenicity (9,
10).

The p28, a cell-penetrating peptide (CPP), is a truncated
derivative of azurin with retained antitumor activity. This
peptide is the principal for the internalization of azurin
into target cells (11). Moreover, CPPs are a category of small
peptide molecules acting as potential delivery agents for
various types of cargoes, including therapeutic proteins,
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peptides, and nucleic acids (12, 13). In fact, CPPs work in
an energy-dependent manner (14) and can penetrate can-
cerous cells, specifically by distinguishing between nor-
mal and malignant vasculatures and lymphatic tissue (15).
As mentioned earlier, p28 is an essential factor by which
azurin advantageously penetrates into cancerous cells (11,
16). Indeed, p28 is a 2.9 kDa fragment of azurin (residues 50
- 77) that exerts its anti-proliferative effects through bind-
ing to and elevating the intracellular concentration of p53
(17) without any interference with Mdm2 binding or down-
stream ubiquitination process (10, 18, 19). Studies indi-
cate that the tumoricidal activity of p28 results from its
residues 11 - 18 (61 - 69 of azurin) (10). Additionally, p28
makes impressions on cell proliferation by arresting cell
cycle at G-M interphase via increasing the intracellular lev-
els of cyclin-dependent kinase inhibitors p21 and p27, sug-
gesting a likelihood that p28 could interfere with the bind-
ing of MDM2 to p53. Indeed, this elevation is as a result of
the formation of the complex between p28 and p53wt/mut

DNA-binding domain (DBD) (6, 18, 20), which subsequently
leads to a decline in proteasomal degradation of p53 (10, 21,
22).

The antitumor proficiency of p28 is assessed on a vari-
ety of cancerous cells in pre-clinical studies (9, 17, 22). These
investigations have revealed that p28 can induce a G2-M
interphase arrest in the cell cycle (23). Apart from its im-
pact on the status of p53 and CDK-inhibitors, p28 also func-
tions in non-p53-mediated mechanisms to inhibit tumor
growth. After its penetration into endothelial cells, it de-
velops a direct antiangiogenic effect, which causes tumor
neoangiogenesis to be halted (24, 25). Notably, p28 can
cross through the endothelial tissue and the blood-brain
barrier, suggesting its capability of saturating the brain
parenchyma dose-dependently (26).

2. Objectives

In this study, the pro-apoptotic and anti-proliferative
effects of the recombinant p28 was studied on Raji
(Burkitt’s lymphoma; p53mut) and HEK-293 (normal con-
trol) cell lines.

3. Methods

3.1. Reagents, Bacterial Strains, Plasmids, and Cell Lines

The primers were synthesized by Metabion (Germany).
The T4 DNA ligase, NdeI, and BamHI were purchased from
Fermentas (Litvanya). The MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide), Polyvinylidene di-
fluoride (PVDF) membrane, 3, 3-diaminobenzidine (DAB),
Dimethyl sulfoxide (DMSO), Kanamycin, Ampicillin, and

Anti-his-tag antibody were obtained from Sigma-Aldrich
(USA). Luria-Bertani medium was purchased from HiMedia
(India). The Ni-NTA resin was provided by QIAGEN (Ger-
many). The pTZ57R vector, pET28a expression vector, and
E. coli strains were provided by Diagnostic Laboratory Sci-
ences and Technology Research Center (Iran). P. aerogi-
nosa strain was kindly gifted by Microbiology Lab of Medi-
cal Laboratory Sciences Department of Shiraz University of
Medical Sciences. Raji and HEK-293 cell lines were obtained
from Pasteur Institute of Iran. DMEM and RPMI cell cul-
ture media and fetal bovine serum were purchased from
Thermo Scientific (USA). The PE-annexin V apoptosis detec-
tion kit was purchased from BD biosciences (USA).

3.2. PCR Amplification and Cloning of p28 Gene in pTZ57R

Specific primer pairs [p28-forward (5’-
GAATTCCGCCCACCTGCCT-3’) and p28-reverse (5’-
AAGCTTTCATGCAGCGGATCG-3’] were designed by using
Allele Id version 7.5 (Primer Biosoft, USA) for PCR amplifi-
cation and sequencing of p28 gene. The 84 bp fragment of
p28 was isolated from P. aeruginosa genome extracted by
boiling method, and amplified by end-point PCR.

DNA fragments were cloned into pTZ57R cloning vec-
tor. Afterward, E. coli DH5a competent cells were trans-
formed with the pTZ57R /p28 plasmid construct. The
cloning was authenticated by Sanger sequencing.

3.3. Expression of the Recombinant p28

The p28 gene was sub-cloned into pET-28a plasmid vec-
tor and transformed into BL21 (DE3) strain of E. coli. The bac-
teria were cultured on an agar plate containing Kanamycin
(50 mg/mL). A single colony was inoculated in 5 mL of
LB broth culture containing Kanamycin (50 mg/mL). After
the incubation, the expression of the heterologous protein
was induced by the addition of IPTG (1 mM). After 4 hours of
incubation, bacteria were centrifuged and the pellets were
resuspended in binding buffer (50 mM NaH2PO4, 500 mM
NaCl, 10 mM imidazole, and 8 M urea, pH 8). Finally, cells
were lysed by 6 × 30 seconds of sonication followed by 30-
second intervals for cooling on ice, and finally, have been
evaluated by SDS-PAGE.

3.4. Peptide Purification and Renaturation

Peptide purification was performed using Ni-NTA chro-
matography system. Bacterial lysates containing His-
tagged p28 peptides were loaded on Ni-NTA columns. Then
the column was washed with 5 mL washing buffer (50 mM
NaH2PO4, 500 mM NaCl, 50 mM imidazole, and 8 M urea,
pH 8) and subsequently the recombinant p28 peptide was
eluted using 2 mL of elution buffer (50 mM NaH2PO4, 500
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mM NaCl, 250 mM imidazole and 8 M urea, pH 8). After the
elution, the fractions were assayed by SDS-PAGE.

Urea (8M) was used to solubilize the formed inclusion
bodies. The obtained peptides were dialyzed against a se-
ries of binding buffers containing 5, 3, 1.5, and 0 M concen-
trations of urea in order to remove the residual urea and to
achieve the optimal biological activity of the peptide. The
concentrations of the purified peptides were determined
using Bradford assay.

3.5. Western Blot Analysis

A fraction of purified p28 peptide (16µL) was diluted in
4µL of sample buffer, incubated for 5 minutes at 90°C, and
then assayed by SDS-PAGE. By utilizing a semi-dry transfer
unit, the sample was transferred onto a PVDF membrane.
The membrane was treated with 5% skim milk (i.e. block-
ing buffer) at 4°C for 2 hours. Then the membrane was
washed by TBST buffer (50 mM Tris-base, 150 mM NaCl, and
0.05% Tween 20), and incubated with anti-His-tag antibody
conjugated with HRP for 1 hour. Finally, DAB was added to
the surface of the membrane.

3.6. Cell Culture

Raji and HEK-293 cell lines were cultured in RPMI 1640
and DMEM complete media, respectively and grown at 37°C
and 5% CO2.

3.7. Cytotoxicity Assay

The cytotoxicity of the recombinant p28 peptide was
determined by MTT assay. The HEK 293 cells were used as
a normal control group to evaluate the non-specific toxi-
cities of the recombinant p28 peptide, while Raji cell line
was utilized to evaluate the cytotoxicity of p28 as cancer-
ous cells.

In brief, cells were seeded into 96-well plates at a den-
sity of 8,000 cells/well and incubated for growth. After-
ward, they were treated with different concentrations of
the p28 peptide (0.5, 1, and 2 µM) and incubated for 24
hours. Then 20 µL of MTT (5 mg/mL) was added to each
well, followed by 4 hours of incubation for crystal forma-
tion. Finally, 100 µL of DMSO was added to each well and
absorbance was measured at 490 nm wavelength using Sat
Fax 2100 microplate reader (Stat Fax, USA). The MTT assay
was carried out in triplicate for each concentration of p28.

3.8. Apoptosis Assay

Cells were seeded into 24-well plates to reach the con-
fluency of 80%. Then they were treated with the recom-
binant p28 peptide at the concentration of 2 µM. After 24
hours of incubation, apoptosis levels were evaluated using
PE-annexin V apoptosis detection kit.

3.9. Statistical Analysis

GraphPad Prism 7.03 (GraphPad Software, Inc.) was
used for all analyses. One-way ANOVA was the method of
choice for the statistical assessment of the apoptosis and
MTT assay results.

4. Results

4.1. Primer Design and PCR Amplification of p28 Gene

The primers were designed based on the known se-
quence of p28 in P. aeruginosa. Figure 1 represents the
agarose gel electrophoresis of p28 PCR amplification.

Figure 1. PCR amplification of p28 gene. Lane M: size marker (100 - 3000 bp), lane 1:
NTC, lane 2: p28 (84 bp).

4.2. Expression and Purification Analysis of the p28 Peptide

pET28a-p28 expression vector was constructed and ex-
pressed as a soluble and functional peptide in E. coli. Figure
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2A demonstrates the 15% SDS-PAGE analysis of expressed
p28 peptide at 3 kDa. Furthermore, SDS-PAGE and subse-
quent western blotting assays were used to confirm the pu-
rification of the p28 peptide (Figures 2B and 3).

Figure 2. A, SDS PAGE analysis of small scale for expression of the p28 peptide. Lanes
1: p28 peptide expression after the induction with 1 mM IPTG. The P28 peptide with
3 kDa molecular weight was overexpressed. Lane M: size marker (10 - 180 kDa). Lane
2, 3: pre-induced protein expression that IPTG was not added and then there was no
overexpression and uninduced untransformed bacteria, respectively. B, purification
of the p28 peptide using Ni-NTA purification system. Lane1: elution fraction 4, lane
2: elution fraction 3, lane 3: elution fraction 2, lane 4: elution fraction 1, 3 kDa peptide
of p28 was purified, M: size marker (10 - 180 kDa).

Quantifications by Bradford assay showed a concentra-
tion of 0.05 mg/mL of purified p28 and a concentration of
0.03 mg/mL renatured p28 after dialysis.

Figure 3. Verification of the production of the p28 peptide by western blotting. Lane
1: the p28 peptide with 3kDa molecular weight, lane M: size marker.

4.3. MTT Assay

MTT assay was used for the determination of p28 cy-
totoxic effects in vitro. Target cells were treated with
p28 peptide in a series of concentrations (0.5, 1, and 1.5
µM) for 24 hours. The MTT results are shown in Figure
4. The results suggest that, compared to the untreated
groups, the treatment with p28 peptide had significant
anti-proliferative effects on Raji cells in a dose-dependent
manner (P < 0.0007), while its cytotoxicity on HEK-293
cells was insignificant (P > 0.9999).

4.4. Apoptosis Assay

The pro-apoptotic effects of the p28 peptide on cancer
cells investigated based on PE-annexin V apoptosis detec-
tion method. Raji and HEK-293 cells were treated with the
peptide for a 24-hour period and then evaluated by a flow
cytometry instrument (BD FACSCalibur, USA).
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Figure 4. The effect of p28 on the viability of Raji and HEK-293 cell lines. The cells
were treated with p28 at concentrations of 0.5, 1, and 2 µM, and their viability was
evaluated by MTT assay after 24 hours. The results show a statistically significant
reduction in viability of Raji cells treated with 1 and 2 µM of p28 (P < 0.0007), but
no significant reduction in viability of treated HEK-293 cells (P > 0.9999). (One-way
ANOVA followed by Sidak post-hoc test was used for statistical analysis).

Apoptosis assay results are shown in Figure 5. The re-
sults suggest that treating the cells with p28 increases the
apoptosis rate up to 25 ± 3% in Raji cells with a signifi-
cant difference compared to untreated control cells (P <
0.0001). No significant effects on the apoptosis rate of HEK-
293 normal cells treated with p28 peptide were observed in
comparison to untreated control cells (P > 0.6).
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Figure 5. Apoptosis was induced by p28 on Raji and HEK-293 cell. The cells were
treated with p28 at concentrations of 0.5, 1, and 2 µM, and their apoptosis level was
evaluated by PE-annexin V flow cytometry assay after 24 hours. The results show a
statistically significant increase in the number of apoptotic Raji cells treated with
0.5, 1, and 2 µM of p28 (P < 0.0001). No significant changes were observed in apop-
tosis in treated HEK-293 cells (P > 0.6). (One-way ANOVA followed by Sidak post-hoc
test was used for statistical analysis).

5. Discussion

One of the most important missions in the field of
biomedical sciences is to search, find, and develop effective
strategies for the treatment of cancer. To date, chemother-
apeutic agents have been among the most common ap-
proaches for the treatment of various types of cancer. How-
ever, their lack of specificity in targeting cancer cells has
brought numberless difficulties to the patients who are be-
ing treated with them (27). As an ongoing process, several
scientific groups worldwide are carrying out large- and
small-scale researches to discover and develop more effi-
cient therapeutic agents. Consequently, a number of can-
didate drugs have been introduced (28). Targeted cancer
therapy is described as the utilization of the agents that are
involved in certain cellular signaling pathways or bound
to specific molecular targets and inhibit the proliferation
of cancer cells (29). Recently, peptide-based therapeutics
have been considered promising candidates for cancer tar-
geted therapy (15). These peptides are receiving attentions
mainly due to their small molecular size, efficient tissue
penetration, low toxicity, and non-immunogenic nature
(30, 31).

Azurin, a bacterial protein found in P. aeruginosa, (2)
can preferentially penetrate malignant cells, stabilize the
tumor-suppressor p53 protein, and induce apoptosis in the
target cells (5, 6). Nevertheless, azurin is potentially an im-
munogenic molecule and its employment as a therapeu-
tic agent might not be reasonable (8). The p28, a peptide
fragment of azurin, has shown specific cell penetration
and anti-proliferative effects in cancer cells, similar to the
whole protein; however, it does not provoke immunogenic
responses (9, 17, 21). Several studies have reported that p28
forms a complex with either the DBD or NH2-terminal do-
main of p53 and elevates its intracellular concentration (18,
23). These studies emphasize that the p28-mediated eleva-
tion of p53 cellular levels occurs rather post-translationally
and mainly to a reduction in the activity of proteasome (4,
6, 7, 18).

The p28 has shown to be one of the most promising
anti-cancer peptides in preclinical studies (17). Thus it was
the subject of clinical trials for the treatment of solid tu-
mors. Results from phase I clinical trials revealed that p28
was highly efficient as a therapeutic agent in the treatment
of p53+ metastatic solid tumors, indicating its promising
potential of being used as an anti-cancer drug (26). In this
study, we isolated p28 gene from its original source, cloned
it in an expression system, and expressed its recombinant
peptide in E. coli Bl21. We obtained pure functional p28 pep-
tide by utilizing Ni-NTA chromatography column and dial-
ysis membrane. By optimizing the expression conditions,
we achieved the highest yields of p28 production. These

Shiraz E-Med J. 2019; 20(7):e85190. 5

http://emedicalj.com


Abuei H et al.

processes were confirmed by SDS-PAGE, western blotting,
and Bradford assays. Finally, to evaluate the apoptotic and
cytotoxic effects of p28, we performed in vitro experiments
using Raji and HEK-293 cell lines.

So far, the anticancer effects of p28 has been mainly
studied on p53 wild-type cell lines such as MCF-7 with
promising results (4, 10). Such cell lines are expected to
undergo anti-proliferative effects of p28 readily. In the
present study, we selected Raji as our cancerous cell line
because of its mutant p53 status. The p53 protein in Raji
cell line, has a mutation in its residue 213, while this mu-
tation has no interference with p28 - p53 complex forma-
tion (23, 32). The cytotoxicity evaluation by MTT assay re-
vealed that p28 peptide strongly inhibited the prolifera-
tion of Raji cells, while it had minimal effects on the non-
cancerous HEK-293 cells. Apoptosis investigations were
consistent with MTT assay results. The p28 induced apop-
tosis in the cancerous cells but not in the normal control
cells.

5.1. Conclusions

In summary, despite the mutation in p53 protein in
Raji cell line, it seems that there is no obstacle for the for-
mation of p28 - p53 complex in these cells. Thus p28 can
induce apoptosis in Raji cell line, suggesting its potential
proficiency as an anticancer agent for the treatment of
Burkitt’s lymphoma. However, in vivo anticancer effects of
the p28 peptide on Burkitt’s lymphoma cells remains to be
further investigated.
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