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Abstract: 

In this paper we establish a numerical solution to the classical SIR mathematical model of 
HIV transmission dynamics using the traditional Euler’s method. We will discuss the mathe-
matics behind the model and various tools for judging effectiveness of policies and control 
methods. We will complete the paper with a computer simulation of the model equations 
using the model parameters. From the result, the epidemic can be controlled within a finite 

time.  

 
 

Introduction: 

One of the most basic procedures in the 

modeling of diseases is to use a com-

partmental model, in which the popula-

tion is divided into different groups. The 

SIR Model is used in epidemiology to 

compute the amount of susceptible, in-

fected, and removed/recovered people in 

a population. It is also used to explain 

the change in the number of people 

needing medical attention during an epi-

demic. It is important to note that this 

model does not work with all diseases. 

For the classical SIR HIV model to be ap-

propriate, once a person has been in-

fected with the disease, they would re-

main infected and later die of disease of 

or off natural death. This is true because 

presently there is no known medical cure 

for HIV. The so called Antiretroviral 
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Drugs (ARD) only burst the immune sys-

tems of the infected paper against sec-

ondary infections. Though, the ARD slow 

the sero-conversion period because they 

produce T-cells which are the in-

ducer/helper cells and this increases the 

CD4+ counts. 

1.1. Assumptions 

The SIR Model is used in epidemiology to 

compute the amount of susceptible, in-

fected, removed people in a population. 

This model is an appropriate one to use 

under the following assumptions (5): 

1) The population is fixed. 

2) The only way a person can leave the 

susceptible group is to become infected. 

The only way a person can leave the in-

fected group is to be placed under Anti-

retroviral Therapy (ART). 

3) Age, sex, social status, and race do 

not affect the probability of being in-

fected. 

4) There is no inherited immunity. 

5) The member of the population mix 

homogeneously (have the same interac-

tions with one another to the same de-

gree). 

2.1. SIR Formulas 

The model starts with some basic nota-

tions: 

S(t) is the number of susceptible indi-

viduals at time t 

I(t) s the number of infected individuals 

at time t 

R(t) is the number of removed individuals 

at time t 

N is the total population size. 

The assumptions lead us to a set of dif-

ferential equations. 

  

 

where k is the removed rate (with 

greater or equal to zero), α is the prob-

ability of becoming infected, λ is the 

number of people infected person comes 

in contact with in each period of time on 

average, β is the average number of 

transmissions from an infected person in 

a time period (with β greater or equal to 

zero), and 

N(t)= S(t)+I(t)+R(t)                           

(4) 

From these equations (1,5), we can dis-

cover how the different groups will act as 

t→∞ 

We can see from equation (1), that the 

susceptible group will decrease over time 

and approach zero. From equation (3), 

we know that the removed group in-

crease and will approach N over time. 

How the infected group behaves is more 

complicated. We start by taking the inte-

gral of equations (3) from 0 to t, which 

gives us 

                                    

                                  

(5) 

We then manipulate equation (4) to get 
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R(t)=N(t)-S(t)-I(t)                           

              (6) 

By combining equations (5) and (6) we 

get 

             (7) 

When we take the integral from zero to 

infinity of right hand side i.e. , 

that this integral is less than infinity, 

since the amount of people in a group 

must be finite. By combining this integral 

with equation (7), we get that as t goes 

to infinity 

                  

Since S(∞) goes to zero, and  , 

which is equal to R(∞) , goes to zero. 

Thus as t goes to infinity I(t)→0 as given 

by [5]. 

The rate of change of the infected group 

is not always negative or zero as it is in 

the susceptible group, nor is strictly posi-

tive or zero like the removed group. 

Whether the rate of change is positive or 

negative depends on k and S(t). We can 

see from equation (2) when βS(t) is less 

than k then the rate of change for the 

infected group is negative. If βS(t) is 

greater than k then the rate of change 

for the infected group is positive. Finally, 

if βS(t)  is equal to k, then the rate of 

change for the infected group is zero. 

By applying Euler’s method of systems, 

we can solve the differential equations. 

The solutions to the differential equations 

are:  

 

where , Sn+1, In+1 and Rn+1 are the 

number of susceptible, infected and re-

moved people at time (n+1). ∆t is a 

small change in time or time steps, and 

will be equal to one from now on.(6) It is 

important to note, that researchers and 

health officials first collect data on who is 

in what group at a given period of time. 

The amount of people in a group does 

not come from equations (8), (9), and 

(10). These equations are primarily used 

to calculate β and k. 

The removed group includes people who 

receive drugs and those who used a pre-

ventive measure (like the condom). We 

can therefore replace equation (3), with 

one equation for people who received 

ARD and one equation for those who 

used the condom. To do this we actually 

start by splitting the removed rate k, into 

two removed rates. These rates are kD 

(the removed rate for those who received 

ARD) and kc (the removed rate for those 

that used the condom). We now can re-

place the rate of change for the removed 

group. In its place, we have two equa-

tions, one for drugs (Dt ) and the other 

for condom ( Ct).(4) Specifically, 
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Using Euler’s method for systems, the 

solutions to the above equations become 

 

where Dn+1 and Cn+1 are the number 

of people that received ARD and used the 

condom respectively, at time (n+1) . 

Again, we will have ∆t be equal to one. 

2.2. Basic Reproductive Ratio 

An important part of modeling diseases is 

the Basic Reproductive Ratio, denoted as 

R0. The Basic Reproductive Ratio is im-

portant since it tells us if a population is 

at risk from a disease. R0 is affected by 

the infection and removal rates, i.e. β,k 

and is obtained by . When R0 

>1, the occurrence of the disease will 

increase. When R0<1 the occurrence of 

the disease will decrease and the disease 

will eventually be eliminated. When 

R0=1, the disease occurrence will be 

constant.(3, 5) 

The Basic Reproductive Ratio also helps 

us predict who will not become infected 

at all. This is done by looking how the 

SIR model behaves as t→∞. Mathemati-

cians 

Kermack and McKendrick came up with 

the equation , 

where S∞ is the amount of people who 

will always remain in the susceptible 

group.(8) 

Members are recruited into S-class 

through natural birth (b) and we assume 

is proportional to the natural population 

N. Death is explicit and occur in all com-

partments, there is an additional disease 

induced death rates in the I and R com-

partments denoted by a0 and a1 respec-

tively. Now, if we incorporate these pa-

rameters into our governing model equa-

tions, we would have a new set of equa-

tions representing this situation. Equa-

tions 1-3 become thus: 

  

Integrating both sides of (13) we have 

thus, 

  

 

Appling Euler’s method of systems of 

equations, we have; 

 

 

 3. Stability analysis of the free equilib-

rium states 

We will establish the stability of free 

equilibrium states using Routh-Hurwitz 

stability condition. The equilibrium points 

are 
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 The Jacobian matrix associated with the 

systems of equations above is given as  

 

  

               

 

             

By Routh-Hurwitz stability conditions, the 

disease is locally asymptotically stable 

under these two conditions. 

3.1 Numerical Simulation of the Dif-

ference Equations 

In this section, a computer based pro-

gram is developed and used to generate 

the data using the difference equations 

equivalent to the differentials equations 

in (11-13). We fix some of the parame-

ters and vary some of the key interest 

parameters and these will enable us to 

see whether or not the derived difference 

equations have biological meaning. With 

the computer simulation we  see physi-

cally what is happening through the 

graphs and should be able to conclude 

whether or not the stability of free equi-

librium states established in the previous 

section is correct or not. 

First we consider k=0 and β=0.5, 

 

Figure 4.1: A graph showing the rate of infec-
tive when k=0 and β=0.5. 

From the graph we observe that the rate 
of infective increases over time this is 
because k=0 (means no intervention) 

and   β=0.5 (means, high incidence 
rate). That is, when there is no interven-
tion in a population with high incidence 
rate, the epidemic would persist. 

Now, we consider a situation when k=0.7 
and β=0.1, 

 

 Figure 4.2 Rate of infective for k=0.7 and 

β=0.1 
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Figure 4.3: Treatment rate when k=0.7 and 
β=0.1 

From the two graphs, we can see that 
when there is high treatment rate 
(k=0.7) and low incidence rate (β=0.1), 
the rates of infected and removed classes 
approach zero over a finite time. 

  

Conclusion: 

We have seen in the above section, the 

result for computer simulations of the 

model equations using the model pa-

rameters which confirmed that our out-

put is consistent and can be applied in 

solving real world situations. We have 

seen also from figures 4.1, 4.2 and 4.3 

that with our model and the conditions 

imposed, the deadly scourge can be to-

tally eradicated.  Hence, this research 

work confirmed that ART and condom 

could be useful methods for the control 

and eradication of HIV/AIDS in this our 

generation so that our children may have 

HIV free generation. The stability analy-

sis is based on the use of the basic re-

production number called R0 that is we 

use the idea of Diekmann by using the 

next generation operator method. The 

model is found to be locally asymptoti-

cally stable under the given conditions 

that mean the disease can be controlled 

under such conditions. In fact we can 

eradicate the deadly scourge if this 

model is critically implemented. 

Mathematicians and medical experts 

should intensify efforts at finding a cure 

for AIDS. The research emphasis on the 

one and only one cure of AIDS that is, 

“totals abstinence from unprotected sex 

and mutual fidelity”.  Therefore we con-

clude with the following recommenda-

tions: 

• We recommend that government and 

other agencies should co-opt mathemati-

cians in their HIV/AIDS programmes. 

• Mathematical models like ours should 

be applied in solving HIV/AIDS problems. 

• Government, NGOs and individuals 

should fund and encourage mathematical 

researches for HIV/AIDS   

• The national response to the HIV/AIDS 

epidemic must be strengthened and ex-

panded to ensure balance in interven-

tions between urban and rural areas, as 

well as in intervention strategies – Pre-

vention, Treatment and Care for people 

living with HIV/AIDS.  

• Definite intervention should be de-

signed to target people with primary and 

secondary level education especially us-

ing mass media campaigns that they will 

be responsive to.  

• The extent of adoption and implemen-

tation of HIV/AIDS education curricula 

should be assessed and strengthened in 

order to reduce the prevalence among 

people with primary and secondary level 

education that is in school.  

• Emphasis should continue to focus on 

the youth to ensure a sustained down-

ward trend in new infections.  

• There should be increased efforts to 

expand quality comprehensive HIV/AIDS 

prevention, treatment, care and support 

services.  
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• In view of the large number of AIDS 

orphans with its attendant burden, com-

prehensive care and support programmes 

should be packaged and adequately de-

livered on sustainable basis.  

• Focused research in sites/states with 

consistently low and high prevalence 

would facilitate the identification of pos-

sible factors for appropriate intervention 

strategies.  
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