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Abstract

Context: Cognitive disorders are one of the most common neurological problems that can be caused by lifestyle patterns, especially
sedentary lifestyle, poor nutrition, exposure to a variety of toxins or diseases.
Evidence Acquisition: There are various strategies recommended for the prevention and treatment of these disorders, including
drug therapy, psychological therapy, dietary pattern changes, and physical activity.
Results: It seems that physical activity with biological mechanisms can have beneficial effects on the central nervous system and
improve cognitive function, including enhanced learning and memory, as well as reduced depression and anxiety.
Conclusions: Of the major mechanisms that physical activity can affect cognitive function include increased neurogenic factors,
decreased oxidative stress, decreased inflammatory mediators, and mitochondrial biogenesis. Therefore, it is recommended that
people with cognitive impairments can use physical activity as an appropriate strategy to prevent and treat cognitive impairment
problems.
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1. Context

The positive physiological effects of physical activity

(PA) have caused this type of intervention to be consid-

ered as an appropriate way to treat some diseases, espe-

cially chronic non-communicable diseases (1, 2). Although

the positive effects of physical activity on neurogenesis

and cognitive function are less popular than on physiolog-

ical functions, recent studies have shown that PA can have

positive effects on cognitive function through structural

and functional changes in the brain, especially in the hip-

pocampus (3), this two to three sessions of moderate to vig-

orous PA per week can elevate hippocampus neurogenesis

and reduce the weakening process of cognitive function-

ing (4, 5).

One of the benefits of PA on cognitive function is it af-

fects the life expectancy. In this regard, it has been reported

that PA can have positive effects on cognitive functioning

from childhood to old age (6). An important point to note

is that those cognitive functions such as attention or cog-

nitive flexibility that are dependent on brain maturation

and those that are dependent on experiences, for exam-

ple, memory, are more likely to be affected and are more

susceptible to PA. Therefore, having a lifelong PA is a great

strategy to maintain cognitive function, especially in old

age (7).

A review on how PA affects the nervous system and

cognitive function suggests that PA, with their different

nature, may affect the brain and its functions through

molecular mechanisms, of which antioxidant, anti-

inflammatory, and anti-apoptotic effects can be noted (8,

9). In this study, we have attempted to investigate the

molecular mechanisms by which PA can affect cognitive

functions.

2. Evidence Acquisition

2.1. The Effect of PA on Neurogenesis and Cognitive Function

One of the main effects of PA on the nervous system

is neurogenesis (7). Recent studies have shown a signifi-
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cant association between neurogenesis and PA. The main

molecular mechanisms to justify the improvement of cog-

nitive functions induced by PA are the stimulation of neu-

rotrophin production and neurogenesis. Neurotrophins

are a family of growth factors primarily identified by their

ability to protect neuronal survival (10). The family con-

sists of at least four mammalian proteins, including neu-

ral growth factor (NGF), brain-derived neurotrophic fac-

tor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4.5

(NT4.5), which mainly form the activities of the nervous

system and affect the peripheral and central nervous sys-

tems. In addition to protecting neuronal survival, neu-

rotrophins regulate the maintenance and differentiation

of neurons as well as the fate of cell division and neuronal

death (11). Furthermore, neurotrophins are important reg-

ulators of neuronal growth and morphology. Although

neurotrophins have been originally described as growth

and survival factors, there are clear reasons to support

their involvement in neural plasticity (12). Neurotrophins

have a role in adaptive regulation of stimulation and inhi-

bition of signaling, as well as changes in neural network

reorganization, which are essential components of learn-

ing and memory. Among the neurotrophins, brain-derived

neurotrophic factor (BDNF) has received more attention

than others. BDNF was first isolated from the brain in

1982 and synthesized in 1989 (13). Adult BDNF is a secre-

tory protein of 120 amino acids that is abundant through-

out the brain and is mostly expressed in the hippocam-

pus, brain cortex, cerebellum, thalamus, hypothalamus,

and striatum (14). BDNF mediates a variety of functions,

including neuronal survival, neurogenesis, cell death, ax-

onal growth, connectivity, and plasticity. Also, it regulates

physiological stimuli, such as light input to the eye, rapid

stimulation or exercise, and BDNF synthesis. Thus, BDNF

can convert physiological inducers of neural activity into

molecular and morphological changes in the nervous sys-

tem (15, 16).

Various studies have shown that some factors, such as

PA and its induced stress, as well as diet, can affect the ex-

pression of many neurotrophic factors. PA enhances recep-

tors and growth factors of the brain and prevents the de-

cline of brain stem cells in the middle age.

Increased expression of the BDNF gene and its specific

receptor (tyrosine kinase receptor B) in the hippocampus

after aerobic exercise have been reported in animal mod-

els (17). Brain-derived neurotrophic factor levels have been

shown to decrease in the pathology of Alzheimer’s disease

and depression. Animal studies have shown that daily PA

releases various neuro trophies, especially BDNF, in the

brain, which is associated with increased learning speed

and better retention after one week (18). The effects of PA

on memory and learning are largely regulated by IGF-1 and

BDNF (19). By inducing IGF-1 and BDNF, PA can enhance

learning and memory, which is a possible mechanism of

increased expression of NMDA receptors in new neurons.

Exercise also reduces depressive-like behaviors in mater-

nal separation rats by altering hippocampal NMDA recep-

tor subunits (20, 21). NMDA receptors and the noradrener-

gic system (NE), peripheral IGF-1 (circulating), and possibly

central derived IGF-1 (in the brain), mediate the induction

of hippocampal BDNF by PA (22, 23).

These results suggest that BDNF signaling must be ac-

tivated to elicit the effects of PA on hippocampal plasticity

(24). Researchers, using IGF-1 inhibition, have found that

IGF-1 signaling, along with BDNF, plays a key role in the ef-

fects of PA on hippocampal-dependent learning and synap-

tic dynamics (25). The effect of voluntary running in rats

has been reported to significantly increase BDNF and neu-

ral plasticity (26).

Voluntary exercise-induced BDNF increases have re-

portedly been associated with improved learning and

memory (27). The complexity of the movements included

in the exercise program can also influence the expression

level of BDNF. It was shown that after 14 days of physical

exercise with a complex exercise pattern, BDNF expression

was greater than that of the group with moderate-intensity

exercise which performed the simple walking as their ex-

ercise program. Accordingly, the complexity of the activity

may affect the process of stimulating BDNF secretion and

justify the difference in neurogenesis after physical pro-

grams with simple to complex motility patterns (28). There

is, however, evidence that compulsive exercises, in the ani-

mal models, can improve learning and are associated with

increased neurotrophin levels (29).

A series of studies in this area show that in rodents, vol-

untary exercise training produces new granule cells in the

hippocampus. These changes affect all aspects of neuroge-

nesis, such as proliferation, differentiation, and life (30).

The positive effect of exercise on hippocampal BDNF

gene expression and cognitive function in a model of neu-

rotoxicity intoxication has been reported.

Aerobic training reduced memory impairment and

learning in the amyloid-induced Alzheimer’s model. On

the one hand, improved memory and learning were asso-

ciated with increased BDNF and CREB gene expression (31).

On the other hand, improvements in learning and mem-

ory have been reported in the exposure to environmental

stressors and toxin without BDNF measurements.
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Four weeks of running on a treadmill significantly re-

duced learning disabilities caused by immobility stress

(32). In diazinon-poisoned rats, resistance training in-

creased the expression of TRKB receptor protein as a spe-

cific BDNF receptor in the hippocampus (33).

2.2. The Effect of PA on Antioxidant Defense and Cognitive Func-

tion

Other mechanisms by which PA can affect the ner-

vous system include the protective role of these exercises

against free radicals and oxidative stress-induced injuries.

PA has beneficial effects against free radical damage and is

considered as an antioxidant intervention both in the hu-

man model and in the animal model (34, 35).

It is well known that the increase in free radicals and

the resulting oxidative stress can predispose the individ-

ual to neurodegenerative injuries such as Alzheimerss and

Parkinson’s disease (36, 37).

PA can promote antioxidant defense and decrease lipid

peroxidation in both young and old people (38). Moderate-

intensity physical activity can not only be beneficial in

protecting against damage caused by oxidative stress, but

it can also reduce the risk of neurodegenerative diseases

(39). In this regard, optional exercise has been reported

to reduce BDNF and negative effects on synapse plastic-

ity, impaired spatial learning, and levels of reactive oxygen

species induced by high-fat diets (40). In obese men, after

aerobic exercise, BDNF levels and also MDA as a marker of

oxidative stress, decreased (41).

There is also evidence that people with bipolar mood

disorder have abnormal oxidative stress status. Also, per-

forming high-intensity physical activity reduces oxidative

stress and subsequently improves their mood. Thus physi-

cal activity can not only increase neurogenesis indices but

also reduce the likelihood of oxidative stress. Resistance

training in rats exposed to diazinon could significantly im-

prove oxidative stress indices in cerebellum tissue (42).

Evidence shows that physical exercise can inhibit ox-

idative stress and increase circulating neurotrophins, es-

pecially BDNF (43). It seems that the neuroprotective effect

of PA is exerted simultaneously by modulating oxidative

stress markers and neurotrophic factors (Figure 1) (44).

3. Results

Studies regarding the effects of physical activity on

cognitive function show that this intervention has a pos-

itive effect on cognitive function and can improve cogni-

tive function such as memory and learning in both animal

models and human subjects.

4. Conclusions

A review of studies on PA and neurogenesis shows

that all types of PA can reduce structural and subse-

quently, functional changes in the central nervous system

through different biological mechanisms. Therefore, it

is recommended that regular physical activity be used as

an economical, accessible, and beneficial strategy to in-

hibit age-related or neurotoxin-induced cognitive impair-

ment. However, further studies are needed to understand

the effects of this nonpharmacological intervention more

clearly.
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Physical activity 

↑Antioxidant defense  

and 

↓RONS  

 

Neurotrophins  

(BDNF, NGF, NT3, NT4)  

↑Neuroprotective effects  

↓Hippocampus damage 

Improvement of cognitive functions 

Figure 1. Role of physical activity, oxidative stress, and neurogenesis. ↑, denotes a rising or increased value; and ↓, denotes a falling or decreased value. Reactive oxygen and
nitrogen species (RONS). Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) neurotrophin-3 (NT3), and neurotrophin-4 (NT4)
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