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Abstract

Chlorpyrifos is an insecticide that can induce acute and chronic toxicity against the heart by affecting acetylcholinesterase (AChE or
acetylhydrolase). The present study investigated the independent and combined effects of aerobic training and eugenol consump-
tion on heart AChE in chlorpyrifos-poisoned rats. A total of 56 healthy Wistar male rats were randomly and equally assigned to sev-
eral groups receiving various treatments: saline healthy-control, corn oil healthy-sham, dimethylsulfoxide (DMSO) healthy-sham,
saline-toxic control, saline-toxic-training, eugenol-toxic control, and eugenol-toxic-training. The study groups with toxic labels ini-
tially received chlorpyrifos injections for six weeks. Then they received other treatments according to their labels (i.e., moderate-
intensity aerobic training five sessions/week for six weeks and/or 250 mg/kg eugenol). Twenty-four hours after the last treatment,
rats were anesthetized, and their left ventricles were collected, frozen, and sent to the laboratory. The data were analyzed using
one-way and two-way analysis of variance (ANOVA). A P-value < 0.05 was considered as a statistically significant difference between
groups. The results showed that chlorpyrifos treatment decreased cardiac AChE. Besides, aerobic training and eugenol supplemen-
tation independently increased cardiac AChE in chlorpyrifos treated rats. The combination of aerobic training and eugenol con-
sumption had no extra effect on the cardiac AChE level compared with each treatment alone in the rats exposed to chlorpyrifos. In
conclusion, aerobic training and eugenol treatment had a positive effect on cardiac AChE in the rats poisoned with chlorpyrifos. So,
these interventions may be beneficial to deter the chronic effects of chlorpyrifos on the heart. Future studies should also take into
account several other factors related to cardiac health.
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1. Background

Nowadays, the widespread use of organophosphorus

insecticides has resulted in the accumulation of toxic ma-

terials, environmental problems, and acute and chronic

poisoning (1). Chlorps, as organophosphorus compounds,

are usually used as agricultural pests, beside their steriliza-

tion and industrial applications. Like other organophos-

phates, chlorpyrifos produces toxic effects mainly by in-

hibiting acetylcholinesterase (AChE or acetylhydrolase) ac-

tivity (2).

AChE is a cholinesterase enzyme in the body, which

catalyzes the breakdown of acetylcholine and some other

choline esters. Previous research showed that elevated

levels of acetylcholine (Ach) in the rats treated with a

cholinesterase inhibitor could increase heart vagal control

and consequently decrease heart failure and ventricular

dysfunction (3). In another study on patients with heart

failure, it was shown that short-term administration of

a cholinesterase inhibitor decreased ventricular arrhyth-

mias and increased heart rate variabilities (4). On the other

hand, the synaptic accumulation of ACh following AChE

inhibition triggered prolonged stimulation of cholinergic

receptors and cardiac problems such as bradycardia, tran-

sitory discontinuation of heartbeats (vagal escape) via the

sinus effect, decreased atrioventricular conduction, and

weakened atrium contractions (5, 6).

Several studies have examined the protective effects of

aerobic exercise and eugenol (an aromatic oil extracted

from cloves) consumption on the heart (7-9); however,

most studies have focused on the brain and neglected the
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heart. Previous studies showed that aerobic exercise and

eugenol supplementation had positive effects on the AChE

level (10-12).

Eugenol has been noted to act as a cytoprotective

agent against As2O3-induced cardiotoxicity (13). On the one

hand, there is inadequate research on the effects of aero-

bic exercise and eugenol consumption on cardiac AChE in

chlorpyrifos-poisoned rats; and on the other hand, some

interventions may have synergic effects when they are ad-

ministered together.

2. Objectives

So, we here aimed to assess the combined effects of aer-

obic exercise and eugenol supplementation on the cardiac

AChE level in the rats treated with chlorpyrifos.

3. Methods

3.1. Ethical Considerations and Animal Housing Condition

The present study was based on a MSc thesis registered

in Islamic Azad University (Central Tehran Branch, Iran),

and it was approved by the university’s Ethics Committee

(no.: 1012911712337521398162268642). Animal experiments

complied with the ARRIVE guideline. This study was con-

ducted according to the National Institutes of Health (NIH)

publication, and all ethical principles regarding labora-

tory animals were considered. Rats were kept in standard

animal houses (12 hours of light and 12 hours of darkness,

23°C ± 3°C temperature, and approximately 50% humid-

ity). The animals were kept in standard cages that their

floors were covered with wooden foil and had free access

to standard food and water.

3.2. Design

Fifty-six healthy Wistar male rats (eight weeks old, 180

- 220 g weight) were randomly and equally assigned to

seven different groups, including saline-healthy-control,

corn oil-healthy-sham, dimethylsulfoxide (DMSO)-healthy-

sham, saline-chlorpyrifos-control, saline-chlorpyrifos-

training, eugenol-chlorpyrifos-control, and eugenol-

chlorpyrifos-training. In the groups receiving chlorpyri-

fos, the animals were treated with chlorpyrifos for six

weeks. Then they received other interventions based on

their group assignments for additional six weeks. At the

end of experiments, all the interventions (i.e., exercise,

chlorpyrifos exposition, and eugenol supplementation)

were discontinued for 24 hours to eliminate their acute ef-

fects. Next, the rats were anesthetized with ketamine and

xylazine (injected intraperitoneally, 30 - 50 mg/kg body

weight ketamine and 3 - 5 mg/kg body weight xylazine).

The left heart ventricle was removed, washed by saline,

cut into three slices, which were immediately frozen in

liquid nitrogen. All the samples were stored at -80°C for

further analysis. The level of AChE in the left ventricle was

measured using a previously described method (14).

3.3. Inducing Toxicity

Chlorpyrifos (C9H11Cl3NO3PS) was purchased from

Sigma-Aldrich (CAS no.: 2921-88-2, the USA). Chlorpyrifos

was first dissolved in DMSO and subsequently diluted

with 0.9% saline in order to avoid DMSO concentration

exceeding the 0.01% v/v final concentration. Finally, DMSO-

dissolved chlorpyrifos was intraperitoneally injected to

rats (3.0 mg/kg) for six weeks (five days/week). The rats in

the DMSO-toxic-sham group received an equal volume of

DMSO diluted in 0.9% saline at the same time and duration

of chlorpyrifos injection.

3.4. Eugenol Supplementation

The animals were fed with eugenol dissolved in corn oil

(250 mg/kg body weight, five days a week for six weeks) by

gavage (15). Corn oil-toxic-sham group received 10 mg/kg

of corn oil at the same time and duration of eugenol sup-

plementation.

3.5. Exercise Protocol

The rats in the exercise groups were orientated with

motorized rodent treadmill for two weeks (nine m/min,

and 10 min/day). After a 2-week of familiarity period, the

rats performed four-week running on a treadmill by ob-

serving the overload principle (20 m/min, 26 min/day, five

days/week). They also had 5-min warming-up and 5-min

cooling-down before and after each session, respectively.

3.6. Statistical Analysis

The results of the Shapiro-Wilk test showed that the

data had a normal distribution. The Levene’s test con-

firmed the equality of variances. All results were expressed

as means ± standard deviations (SD). One-way analysis of

variance (ANOVA) was used to assess between-group dif-

ferences. Two-way ANOVA was used to determine the ef-

fects of training, eugenol supplementation, and training

+ eugenol supplementation. Between-group effects were
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determined by a suitable post-hoc test. In addition, the ef-

fect size (partial η2) was reported to emphasize the size of

the difference rather than the confounding impact of the

sample size. All statistical analyses were performed in SPSS

software (version 22), considering a significance level of P

> 0.05.

4. Results

The results of one-way ANOVA showed that there were

significant differences between healthy-control, healthy-

sham, and toxic–control groups comparing cardiac AChE

levels (F = 15.04, P = 0.001; partial η2 = 0.84) (Figure 1).

The rats treated with chlorpyrifos showed significant re-

duction in the cardiac AChE level compared to the an-

imals in the saline-healthy-control (P = 0.001), corn oil-

healthy-sham (P = 0.002), and DMSO-healthy-sham (P =

0.001) groups. Differences between other groups were not

statistically significant (Figure 1).

The results of two-way ANOVA showed that the exer-

cise program independently increased cardiac AChE in

chlorpyrifos-poisoned rats compared to non-trained ani-

mals (F = 14.01, P = 0.006; partial η2 = 0.63) (Figure 2). Ad-

ditionally, eugenol consumption independently increased

cardiac AChE in chlorpyrifos-poisoned rats compared to

the groups that received saline (F = 11.88, P = 0.009; partial

η2 = 0.59) (Figure 2). However, the combination of exercise

and eugenol consumption showed no synergic effects on

the cardiac AChE level in chlorpyrifos-poisoned rats when

compared to each intervention alone (F = 3.60, P = 0.09;

partial η2 = 0.31) (Figure 2).

5. Discussion

The results of the present study showed that

chlorpyrifos-induced toxicity significantly decreased

cardiac AChE. In addition, six weeks of either aerobic

exercise or eugenol supplementation alone improved the

cardiac AChE level in the rats treated with chlorpyrifos.

In normal conditions, exercise and eugenol consump-

tion could decrease AChE and consequently increase ACh,

improving neuromuscular function and other related fac-

tors (10-12). Experimental/clinical studies suggested that

AChE inhibitors improved autonomic and cardiac func-

tion. These cardioprotective effects are mediated via sev-

eral mechanisms such as augmenting the beneficial ef-

fects of ACh on arrhythmia and modulating apoptosis, ox-

idative stress, inflammatory factors, etc. (16), protecting

against heart failure. On the other hand, several stud-

ies showed that dramatic falls in AChE levels could lead

to detrimental effects (17). Acetylcholine molecules that

do not immediately bind to a receptor or those released

via receptor-mediated reactions are rapidly hydrolyzed (in

less than one msec) by AChE. Almost fifty percent of re-

leased ACh is hydrolyzed into choline and acetate before

binding to the receptor (18-24). Choline is taken up by

nerves’ terminals and reused for ACh synthesis. Thus, large

decreases in AChE activity could be detrimental. Partic-

ularly, ACh accumulation in the synaptic cleft during in-

tense synaptic activity suppresses the generating of mus-

cles’ action potentials (17). It has been shown that the lack

of AChE results in mild phenotypic abnormalities and low

muscle weight and reduces the cross-sectional area of my-

ofibers and the absolute maximal isometric force (19-22). In

addition, AChE deficiency has been associated with mus-

cle weakness (23) and neuromuscular junction dysfunc-

tion (24) in humans.

Another study indicated that AChE deficiency could

lead to muscle dysfunction (25). In the present research,

exposition to chlorpyrifos remarkably decreased cardiac

AChE in rats, which was reversed by exercise and eugenol

consumption, showing the protective effects of these inter-

ventions against chlorpyrifos-induced cardiac toxicity. To

the best of our knowledge, no study has yet investigated

the effects of exercise and eugenol supplementation on

the chlorpyrifos-induced reduction of cardiac AChE. How-

ever, some studies have examined the effects of high inten-

sity/fatigue exercises on this enzyme (26, 27). For example,

Wen et al. (26) evaluated the effects of exercise-induced

fatigue on the expression and activity of AChE. Their re-

sults showed that the expression of gastrocnemius neuro-

muscular junctions and AChE activity were temporarily re-

duced by exercise-induced fatigue and then increased over

24 hours (21). In another report, eugenol was shown to be a

beneficial agent against As2O3-induced cardiotoxicity (13).

The results of the present study showed that aerobic

exercise and eugenol supplementation, either alone or in

combination with each other, mitigated the adverse ef-

fects of chlorpyrifos on cardiac AChE activity, but not to

normal levels. It is obvious that these interventions were

not sufficient to fully reverse the high-dose toxic effects of

chlorpyrifos, which indicates the need for complementary

medications. This study demonstrated that exercise and

eugenol consumption had positive effects on cardiac AChE

in a toxic environment. So, these interventions may be con-

sidered for reversing the chronic effects of chlorpyrifos on
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Figure 1. Cardiac acetylcholinesterase (AChE) (ng/mL) in saline-healthy-control, corn oil-healthy-sham, DMSO-healthy-sham, and saline-chlorpyrifos-control groups. There
were eight rats in each group. The data were expressed as means ± standard deviation (SD) and analyzed using one-way ANOVA. *, A significant decrease vs. the saline-
chlorpyrifos-control group.

the heart. As a limitation of this study, we evaluated only a

few factors associated with cardiac function. Future stud-

ies should take into account several other factors related to

the heart’s health, such as apoptosis, oxidative stress, and

inflammatory mediators.

5.1. Conclusions

The present study suggests aerobic training and

eugenol supplementation as strategies to protect cardiac

AChE against toxic agents such as chlorpyrifos. The combi-

nation of aerobic training and eugenol consumption had

no extra effects on cardiac AChE in chlorpyrifos-treated

rats compared with each intervention alone. These inter-

ventions could be considered as therapeutic modalities to

protect the heart against the chronic effects of chlorpyri-

fos. Future studies should focus on several other factors

related to cardiac health.

Acknowledgments

The authors would like to express their heartiest

thanks to MAA PhD for helpful comments.

Footnotes

Authors’ Contribution: The present study was the re-

sult of a MSc thesis. SRA (supervisor) designed the study.

FSM (MSc. student) collected the materials, performed the

4 Thrita. 2020; 9(2):e112271.



Soltani-Moez F and Rahmati-Ahmadabad S

Salin
e - T

oxic
 - C

ontr
ol

Salin
e - T

oxic
 - T

rain
in

g

Eugenol - 
Toxic

 - C
ontr

ol

Eugenol - 
Toxic

 - T
rain

in
g

0

20

40

60

80

100

120
Eugenol Groups vs Saline Groups, P = 0.009

 

Training Groups vs Control Groups, P = 0.006  

* P = 0.001

* P = 0.005
* P = 0.004

H
ea

rt
 A

C
h

E 
C

o
n

ce
n

tr
at

io
n

 

Figure 2. Cardiac acetylcholinesterase (AChE) (ng/mL) in saline-chlorpyrifos-control, saline-chlorpyrifos-training, eugenol-chlorpyrifos-control, and eugenol-chlorpyrifos-
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