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Abstract

Background: Testosterone enhances athletic performance in men and women, but its consumption has several side effects
and is banned from most competitive sports. This study aimed to examine the effect of date palm pollen extracts (DPPE or
Phoenix dactylifera L.), testosterone enanthate (T), and resistance training (RT) alone and in combination on hepatic damage and
mitochondrial function of adult male rats.
Methods: Thirty male Sprague–Dawley rats were randomly divided into six groups: Control (C), RT-treated, DPPE-treated, T-treated,
DPPE+RT-treated, and T+RT-treated. The DPPE-treated animals received 100 mg/kg DPPE by gavage (five days/week for four weeks).
T was injected subcutaneously into the target groups at a dose of 2 mg/kg daily (five days/week for four weeks). Moreover, the RT
program was performed using a vertical ladder with weights (five days/week for four weeks).
Results: RT, T, and DPPE significantly reduced collagen degradation, apoptotic cells, dynamin-related protein 1 (DRP1) protein
expression, and increased mitofusin-1 (Mfn-1) gene and protein expression in liver tissue. RT with T/DPPE showed a synergic effect
regarding present study variables.
Conclusions: It seems that DPP, which is a natural compound, has less damaging effects than T on liver tissue. It can be used as a
safe alternative to T injection for the enhancement of athletic performance and T deficiency.

Keywords: Apoptotic Cells, Collagen Degradation, Date Palm Pollen Extracts (DPPE), Dynamin-Related Protein 1 (DRP1), Mitofusin-1
(Mfn-1), Resistance Training (RT)

1. Background

Most athletes use exercise supplements comprising
anabolic-androgenic steroids (AAS), such as testosterone,
to improve performance (1). Testosterone was first isolated
in 1935, and then its synthesis methods were founded
by Butenandt and Ruzicka (2). In the early 1950s, AASs
were initially introduced to muscle building, and their use
gradually moved on to other sports to increase muscle
strength. Ultimately, the Olympic games and other
athletic associations banned the use of these supplements
in 1967 (3). Testosterone and its derivatives increase
fat-free mass, lean muscle mass, overall body weight,
skeletal muscle strength, and athletic performance (4-6).
There are several side effects associated with the use of

androgens, including testicular atrophy, gynecomastia,
dyslipidemia, infertility, and severe liver damage (4, 7).
There are three distinct patterns of liver injury due to AAS,
including peliosis hepatis, liver tumors, and rarely nodular
regenerative hyperplasia (NRH), which can occur with any
route of administration. The use of steroid supplements is
becoming a primary public health concern, with evidence
of increased use among men over 40 and young gym
attendees (8).

Liver failure is closely related to the incidence
of mitochondria dysfunction. Mitochondria are the
most critical organelles for energy metabolism (9, 10).
Mitochondria perform their biological function through
fusion and continuous divisions (11) using many proteins,
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including dynamin-related protein (DRP1), mitofusin 1
(Mfn1), mitofusin 2 (Mfn2), and mitochondrial fission one
protein (Fis1) (12-14). Mitochondrial shape maintenance
is dependent on the balance between fission and fusion
events. Mitofusins (Mfn2 and Mfn1) were revealed to
promote endomembrane docking and outer membrane
fusion (15). DRP1 and Fis1 were displayed to induce
mitochondrial fission and self-assemble into spiral- and
ring-like structures that could fit the size of mitochondrial
constriction sites (16, 17). Based on studies, Mfn2 has an
essential effect on cell apoptosis and autophagy and plays
distinct roles among different tissues (11, 18).

Date palm pollen (DPP or Phoenix dactylifera L., from
the Palmae family) is the male reproductive cells of
palm flowers, which was used by the early Chinese and
Egyptian people as a rejuvenating therapeutic agent
(19). DPP extracts were shown to possess a myriad of
pharmacological properties, like antioxidants (20).
Furthermore, it has been used in traditional medicine
to treat various disorders, including liver and kidney
diseases, memory impairment, complete paralysis,
inflammation, fever, consciousness loss, and many
neurological diseases (21, 22).

It has been shown that strength and hypertrophy
are developed by resistance training (RT) for people with
wasting diseases and elite athletes seeking to maximize
their performance (23). Testosterone can also increase
strength and hypertrophy, even without resistance
training in both young (24) and older men (25). Many
studies have demonstrated the role of RT in increasing
blood serum testosterone (26, 27).

2. Objectives

In the present study, we tested the effect of DPP Extract
(DPPE) and testosterone alone (T) and in combination with
resistance exercise on liver tissue in adult male rats. To this
end, the gene expression of MFN1 and protein expression of
DRP1 and MFN1 were evaluated. Also, cell apoptotic status
in the liver was assessed using tunnel assay. Moreover,
collagen deposition in the liver was detected by Masson’s
trichrome staining.

3. Methods

3.1. Animal and Ethic

Thirty 8-week Sprague–Dawley male rats were
purchased from the Tehran Pasteur Institute. All animals
were housed in standard cages with standard laboratory
conditions (temperature was 22°C, the humidity was
about 45%, and light-dark cycles were 12/12 hours) and

free access to food and water. To perform the project, the
animals were randomly divided into six groups (n = 5 in
each group), including (1) Control (C) group, (2) RT-treated
group, (3) DPPE-treated group, (4) Testosterone (T)-treated
group, (5) DPPE+RT- treated group, and (6) T+RT-treated
group.

3.2. Animal Treatments

We gave 100 mg/kg DPPE to animals of groups 3 and
5 (five days/week for four weeks) (28). Then, 100 mg
testosterone enanthate was purchased from the pharmacy
and subcutaneously injected into animal groups 4 and 6 at
a dose of 2 mg/kg daily (five days/week for four weeks) (29).

3.3. RT Program

Climbing from the vertical ladder (110 cm height,
80-degree incline, and 2 cm separation between steps)
were used for the exercise of animal groups 2, 5, and 6.
After being familiarized with the ladder without load, the
first load was 75% of each rat’s body weight, and the load
was increased by 30 g for each following set until the
rats were no longer able to travel the entire ladder. The
second phase of progressive training was begun after 48
hours, consisting of four to seven ladder climbs a day for
four weeks. Each of the first four sets of climbing was
performed using loads that were 50, 75, 90, and 100% of
the rat’s body weight. After that, the weight became heavy
until the rats could no longer climb the ladder (30).

3.4. DPPE Preparation and Biochemical Methods

Phoenix dactylifera were collected from palm groves
(Shahdad, Kerman, Iran). Extracted, and the efficiency
of extraction was 87.17%. The extraction process,
tissue histological assay, Masson’s trichrome staining,
immunohistochemistry, and real-time PCR were carried
out exactly according to the article by Nazarian et al. (31).
Table 1 summarizes primers used for the real-time PCR.

Table 1. Primers Used for the Real-time PCR

Gene Name Forward Primer Reverse Primer

MFN1 CTCCTG TAATCTTGCCTG ATCGGATCTTTTTTGTTTCAGC

GAPDH AAGTTCAACGGCACAGTCAAGG CATACTCAGCACCAGCATCACC

3.5. Statistical Method

Data were reported based on the mean ± standard
deviation (SD). A two-way analysis of variance (ANOVA)
was used to determine the effect of RT, DDPE, and T
and their interaction with the present study’s variables.
The Bonferroni post hoc test was used to determine the
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Figure 1. Percentage of collagen degradation in the studied groups (A and B). RT-PD, resistance training-Phoenix dactylifera; RT-T, resistance training-testosterone enanthate;
Rt, resistance training; PD, Phoenix dactylifera; T, testosterone enanthate; C, control. * Denotes significant differences from the C group. † Denotes significant interaction. Data
are expressed as mean and standard deviation.

location of the difference. The significance level was also
considered for all calculations (P < 0.05). All statistical
analyses were done using SPSS software version 24.

4. Results

In this study, RT significantly reduced the percentage
of collagen degradation (F = 499.56, P = 0.001, η =
0.943). Receiving drugs also had a significant effect on the
percentage of collagen degradation (F = 61.27, P = 0.001,
η = 0.803). Moreover, DPPE (P = 0.001 and synthetic T (P
= 0.001) significantly reduced collagen degradation. The
interaction of RT and DPPE also significantly reduced the
percentage of collagen degradation (F = 8.46, P = 0.001, η =
0.361). Simultaneous RT and DPPE or synthetic T enhanced
the effect of each other on reducing collagen degradation.
However, when synthetic T was accompanied by exercise,

the percentage of reduction in collagen degradation was
higher than when exercise was with DPPE (Figure 1).

The RT significantly increased MFN-1 gene expression.
(F = 37.56, P = 0.001, η = 0.556). Receiving the drug
(synthetic T and DPPE) also significantly affected the MFN-1
gene expression (F = 14.53, P = 0.001, η = 0.492). So, DPPE
(P = 0.001) and synthetic T (P = 0.001) might increase the
expression of this gene. Also, RT and DPPE interaction
caused a significant increase in MFN-1 gene expression (F
= 6.04, P = 0.006, η = 0.287). In other words, RT, DPPE, and
synthetic T might enhance the effect of each other on the
expression of this gene. However, the effect of synthetic T
was greater than that of DPPE (Figure 2).

The RT significantly reduced DRP-1 protein expression
(F = 270.77, P = 0.001, η = 0.900). Receiving drugs also
had a significant effect on DRP-1 protein expression (F =
351.29, P = 0.001, η = 0.959). DRP-1 protein expression was
significantly reduced by receiving DPPE supplements (P =
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Figure 2. MFN-1 gene expression in the studied groups. RT-PD, resistance training-Phoenix dactylifera; RT-T, resistance training-testosterone enanthate; Rt, resistance training;
PD, Phoenix dactylifera; T, testosterone enanthate; C, control. * Denotes significant differences from the C group. † Denotes significant interaction. Data are expressed as mean
and standard deviation.

0.001 and synthetic T (P = 0.001). The interaction of RT
and drug significantly reduced DRP-1 protein expression
(F = 15.65, P = 0.001, η = 0.511). Simultaneous RT and
DPPE or synthetic T enhanced the effect of each other
on reducing DRP-1 protein expression. However, when
synthetic testosterone was accompanied by training, the
percentage of decreased DRP-1 protein expression was
higher than the time when training was done with DPPE
(Figure 3).

Moreover, RT significantly increased MFN-1 protein
expression (F = 916.99, P = 0.001,η = 0.968). Receiving drugs
also had a significant effect on MFN-1 protein expression
(F = 372.42, P = 0.001, η = 0.961). In a way that both
DPPE (P = 0.001) and synthetic T (P = 0.001) significantly
increased the expression of this protein. The interaction
of training and DPPE also significantly increased MFN-1
protein expression (F = 133.15, P = 0.001, η = 0.899).
In other words, these two interventions were able to
enhance the effect of each other on the expression of
this protein. However, when synthetic testosterone was
accompanied by training, the enhancement rate of this
protein expression was higher than when training was
done with DPPE (Figure 4).

Training significantly reduced the percentage of
apoptotic cells (F = 545.32, P = 0.001, η = 0.948). Receiving
drugs also had a significant effect on the percentage of
apoptotic cells (F = 160.37, P = 0.001, η = 0.914). Both
DPPE (P = 0.001) and synthetic T (P = 0.001) significantly
reduced the percentage of apoptotic cells. Also, the
interaction of training and DPPE significantly reduced
the percentage of apoptotic cells (F = 47.61, P = 0.001,
η = 0.760). Simultaneous RT and DPPE or synthetic
testosterone enhanced the effect of each other on the
percentage of apoptotic cells. However, when synthetic
testosterone was accompanied by exercise, the percentage
of apoptotic cells was higher than when exercise was done
with DPPE (Figure 5).

5. Discussion

Exogenous T increases athletic performance, but it
is prohibited from most female and male competitions.
Health risks can be produced by the long-term use of AAS
and can result in several adverse events in different tissues
and the incidence of drug-induced liver injury (DILI) (1, 6,
32). Consequently, finding herbs as natural supplements
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Figure 3. DRP-1 protein expression in the studied groups. RT-PD, resistance training-Phoenix dactylifera; RT-T, resistance training-testosterone enanthate; Rt, resistance training;
PD, Phoenix dactylifera; T, testosterone enanthate; C, control. * Denotes significant differences from the C group. † Denotes significant interaction. Data are expressed as mean
and standard deviation.

that can help the body make T, on the other hand, reduce
the adverse health effects of T therapy in an athletic and
older man, is of particular importance.

In the present study, we conducted a comparative
evaluation between DPPE with T treatment alone and in
combination with RT. Based on the results, combination
therapy reduced the fission gene and protein expression
levels in the liver compared to testosterone alone and DPPE
alone treated groups. Furthermore, a combination of RT
with T or DPPE reduced apoptosis and collagen deposition
in the liver tissue.

Our results revealed that RT results in mitochondrial
damage, apoptosis, and fibrosis in the liver. Indeed,
RT includes performing low to moderate-intensity
workouts for a long time. It has been shown to heighten
muscle oxidation capacity and enhance mitochondrial
biogenesis in skeletal muscle. In addition, RT activates
mitochondrial stress by activating complexes I, IV, and V.
Exercise has different effects on liver function. Sun and
colleagues reported that exercise could cause oxidative
and mitochondrial stress in the liver. They explained
that exercise-induced oxidative and mitochondrial stress
might be either damaging by causing injury or beneficial
by activating defense systems (33). Mikami et al. showed
that exercise increased the resting level of HSP70 in
the liver and that HSP70 accumulation helps protect
stress-loaded cells from damage caused by increased

chaperone activity and suppression of apoptosis (34).
Oxidative stress results in macromolecular damage to
cellular DNA, proteins, and lipids. Reactive oxygen species
(ROS) is one of the mitochondrial DNA-damaging agents
and is known to be apoptosis-inducing.

Mitochondria are one of the essential ROS production
sites. For example, eliminating fusion proteins, OPA1
or Mfns, causes mitochondrial fragmentation with
increasing ROS levels. Fission protein knockdown (such
as Fis1 and dynamin one protein (Drp1) does not affect
ROS production in human bronchial epithelial cells while
indicating mitochondrial fusion (35). Mitochondrial
membrane potential reduction, defective ATP synthesis,
and the overproduction of ROS are interrelated and lead to
mitochondrial dysfunction (36). These factors are related
to mitochondrial morphology changes. Li et al. reported
that activation and overexpression of Drp1 exacerbated
hepatic apoptosis (37). However, Zhang et al. revealed that
activation of Drp1 remarkably diminished the apoptosis
of hepatocytes (38). In contrast, in another research, it
was shown that inhibition of Drp1 by small interfering
RNAs could significantly improve the lost potential of
the mitochondrial membrane in HT-22 cells (39). DRP1
activation and intracellular ROS increase are directly
related to each other (40). Based on the cell’s metabolic
needs, mitochondrial morphology is varied by regulated
cycles of fusion (increases metabolic efficiency) and fission

Thrita. 2023; 12(1):e139245. 5
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Figure 4. MFN-1 protein expression in the studied groups. RT-PD, resistance training-Phoenix dactylifera; RT-T, resistance training-testosterone enanthate; Rt, resistance
training; PD, Phoenix dactylifera; T, testosterone enanthate; C, control. * Denotes significant differences from the C group. † Denotes significant interaction. Data are expressed
as mean and standard deviation.

(favors uncoupled respiration to reduce oxidative stress)
(41). Energy demand and stress induce the fusion of
mitochondria. Studies have shown that Mfn2 preserves
normal hepatic metabolism, and its erosion reduces
mitochondrial respiration, decreases glucose tolerance,
and increases hepatic glucose production (42). Therefore,
our results were in line with previous studies that show a
decrease in the expression of Mfn1 and Mfn2 genes and an
increase in the Drp1 and Fis1 genes in RT.

Mitochondrial fission usually occurs under calm
conditions, but it can also happen during high cellular
stress levels when it activates apoptosis. Mitochondrial
dynamics may play a significant role in liver fibrosis

pathophysiology. It is demonstrated that hepatocyte
epithelial-mesenchymal transition (EMT) is related to the
mitochondrial dynamic imbalance induced by oxidative
stress so that mitochondrial dynamics modulation can
reverse liver fibrosis. Hepatic fibrosis occurs in many liver
disorders and leads to scarring and liver damage (43-45).
Liver fibrosis is a wound-healing response characterized
by excessive deposition of extracellular matrix (ECM)
proteins, hepatocyte damage, distortion of the hepatic
lobules, and changes in vascular architecture. If left
untreated, it can proceed to cirrhosis or liver carcinoma
(46). It is supposed that exercises, probably via activating
defense systems and a significant increase in enzyme
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Figure 5. Percentage of apoptotic cells in the studied groups (A and B). RT-PD, resistance training-Phoenix dactylifera; RT-T, resistance training-testosterone enanthate; Rt,
resistance training; PD, Phoenix dactylifera; T, testosterone enanthate; C, control. *Denotes significant differences from the C group. †Denotes significant interaction. Data are
expressed as mean and standard deviation.

activities, cope with the excess of free radicals produced
by oxidative stress (33, 47).

Our results revealed that DPPE could reduce oxidative
stress induced by RT, thus diminishing mitochondrial
damage, apoptosis, and fibrosis in the liver. In line
with our results, Saafi et al. showed the protective
effect of date palm fruit extract (Phoenix dactylifera L.)
on oxidative stress induced by dimethoate in rats’ livers
(48). We supposed that the DPPE is likely to exert its
beneficial effects by strengthening the immune system
against exercise-induced oxidative stress.

5.1. Conclusions

The effects of a six-week RT program on mitochondrial
mitofusin and mito-fission gene and protein expression
and tissue damage in rats’ livers and the consequences of
a combination of T and DPPE were investigated. The results
showed that RT increased mitochondrial fragmentation
in the liver. Treatment with the combination of DPPE
and T caused expression elevation of the mitofusin gene
and proteins. Also, apoptosis and collagen deposition
in the liver were significantly reduced in combination
therapy. These results suggest that DPPE is a natural
compound that has characteristics like testosterone. With
the ability to reduce the side effects of oxidative stress
created during exercise in the liver and the positive impact

in treating many diseases, it can be an excellent alternative
to testosterone.
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