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Abstract

Background: The clinical evidence supports the effective role of some transcription factors in insulin synthesis and secretion.
Objectives: The present study aimed to evaluate the effect of 10 weeks of aerobic and resistance exercise on the expression of glucose
transporter 2 (GLUT2) in pancreatic tissue, serum insulin, and glucose concentration in male rats with type II diabetes (T2D).
Methods: Type II diabetes was induced in 18 male Wistar rats (weight: 220 ± 10 g) by administering an intraperitoneal (IP) infusion
of nicotinamide (110 mg/kg) and streptozotocin (25 mg/kg). The diabetic rats were then randomly assigned into three groups: (1)
Control; (2) aerobic exercise; and (3) resistance exercise. The exercises lasted for 10 weeks, 5 times per week for exercise groups. The
expression of GLUT2 in pancreatic tissue, serum insulin, and glucose concentration were compared between the groups following
the intervention. The data between the groups were compared using the one-way analysis of variance (ANOVA).
Results: In comparison to the control group, the resistance and aerobic exercises caused a significant reduction in fasting blood
glucose level (P = 0.001 and P = 0.001, respectively) and a significant increase in serum insulin (P = 0.001 and P = 0.013, respectively)
and expression level of GLUT2 in the pancreas (P = 0.007 and P = 0.001, respectively). No significant difference was observed in the
expression of GLUT2 between aerobic and resistance groups (P = 0.485).
Conclusions: According to the findings of this study, apart from the effect of other hormonal and genetic components on insulin
synthesis, an increase in the serum insulin and a reduction in fasting blood glucose level following the aerobic and resistance
exercises can probably be attributed to the increased expression of GLUT2 in response to exercise methods.
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1. Background

Diabetes includes a group of metabolic diseases that
occur due to hyperglycemia caused by some hormonal
factors, such as defects in insulin secretion, function, or
both (1). On the one hand, the type II diabetes (T2D)
phenomenon occurs in response to insulin resistance in
some tissues, such as skeletal muscle, liver, and adipose
tissue. On the other hand, T2D occurs due to the inability
of pancreatic β-cells to compensate for insulin resistance
(2, 3). These defects occur as a result of both genetic
and environmental factors (4) such that some of the
recent studies have confirmed the direct effect of genetic
disorders on reducing the function of β-cells, decreasing
insulin secretion, and subsequently, the occurrence of T2D
or increasing the T2D severity (5).

Meanwhile, the effect of glucose transporter 2 (GLUT2)
in pancreatic cells is prominent on insulin secretion
such that insulin is primarily synthesized and secreted
in response to blood glucose or increasing the entry of
glucose into β-cells (which is facilitated by GLUT2) (6).
This is while other factors, such as free fatty acids and
amino acids, lead to the acceleration of glucose-dependent
insulin secretion (7). PDX1 has been found to inactivate
the insulin gene and other glucose-sensitive genes that
are effective in glucose metabolism, such as GLUT2 and
glucokinase (GCK), in an adult pancreas (8, 9). On the other
hand, in MafA-free mice, the expression of NeuroD, GLUT2,
PDX1, and insulin decreases, and the glucose-dependent
insulin secretion is severely damaged (10).

Glucose transporter 2, as the main transporter of
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glucose, is expressed in β-cells and makes possible the
two-way flow of glucose and other food sugars, such as
fructose and galactose, due to its high absorption capacity.
Glucose transfer is the first step in glucose-dependent
insulin secretion. A reduction in GLUT2 expression
in human β-cells is associated with hyperglycemia
and damage to glucose-dependent insulin secretion (11).
Moreover, a direct relationship has been observed between
the reduced glucose-dependent insulin secretion and the
reduced expression of GLUT2 in β-cells in some animal
species with T2D (11).

The available evidence shows that glucose and
other nutrients act as the stimulators of GLP-1 secretion
for insulin synthesis and release from the pancreas
(12). Meanwhile, the response of other genetic or
hormonal factors effective in insulin secretion to other
external simulators, such as performing sports exercises
with different methods, has been reported by some
researchers (13-17), although the findings are more or less
contradictory. For example, in a study by Lee et al., 12
weeks of low-intensity aerobic exercise led to a significant
reduction in serum glucose and serum leptin levels,
as well as a significant increase in GLP-1 in adolescent
males with T2D (18). On the other hand, Eizadi et al.
reported a decrease in transcription factor 7-like 2 (TCF7L2)
expression as one of the other genetic factors affecting the
insulin synthesis and secretion from pancreatic β-cells
in response to long-term resistance training exercise in
T2D rats (19), supporting the beneficial impact of sports
activity on genetic factors affecting insulin secretion.

In spite of the available research findings, there is
no study on the effect of sports exercise on the GLUT2
expression in pancreatic tissue of T2D rats. Therefore,
considering the potential role of GLUT2 expression in
insulin synthesis and secretion from pancreatic cells and
the lack of a study in the literature on sports intervention
in this regard, the present study was conducted with
the aim of evaluating the effect of 10 weeks of aerobic
and resistance exercise on GLUT2 expression in pancreatic
tissue and on the fasting glucose levels and serum insulin
in T2D male rats.

2. Objectives

The present study aimed to investigate the effect of
aerobic and resistance exercise on GLUT2 expression in the
pancreatic tissue and serum insulin of T2D male rats.

3. Methods

3.1. Ethical Considerations
The Ethics Committee of Islamic Azad University, Karaj

Branch, Iran, approved the implementation of this study

(code: IR.IAU.K.REC.1401.111).

3.2. Animals and Housing

The research population in this experimental basic
study consisted of all Wistar male rats from the animal
house of the Pasteur Institute in Iran. The research sample
included 18 rats (age: 10 weeks, weight: 220 ± 10 g) that
were selected randomly from the research population. The
studied rats were kept in the laboratory environment in
a 5 × 10 m2 room under controlled conditions of light
(12-hour light and 12-hour dark, lighting starting at 6:00
p.m. and darkness starting at 6:00 a.m.), temperature (23
± 3°C), and moisture (30 - 60%). Three rats were kept in
Plexiglas cages (dimension: 25 × 27 × 43 cm3) with mesh
doors such that they had ad libitum access to standard
food and water. Two weeks after the rats were familiarized
with the laboratory environment, T2D was induced by
intraperitoneal infusion of nicotinamide (110 mg/kg of
body weight) and freshly prepared streptozotocin (STZ) in
citrate buffer (pH = 4.5) (60 mg/kg body weight) followed
by a night fasting period of 12 hours (20). The healthy
control group only received a citrate buffer with the same
volume. To ensure diabetes induction in rats, the rats
with fasting blood sugar above 15 mg/dL were considered
diabetic one week later (21). The diabetes-induced rats were
then randomly assigned into control, aerobic exercise, and
resistance exercise groups.

3.3. Exercise Interventions

Aerobic exercises were performed based on Table 1 for
10 weeks, i.e., 5 sessions per week of treadmill running
(22). All rats were dissected 48 hours after the last training
session. The resistance exercises were also performed in
accordance with Table 2 for 10 weeks, i.e., 5 sessions per
week of stepladder climbing, 3 sets, 6 reps per set per
session. The rest time between sets is 3 minutes and is 45
seconds per period between reps, which is modified from
the Eizadi et al. protocol (19).

3.4. Blood Sampling and Tissue Extraction

Forty-eight hours after the last training session,
following an overnight fast for 12 hours, blood sampling
and tissue extraction were performed. The intraperitoneal
infusion of a dosage of 50 mg/kg ketamine 10% and 10
mg/kg xylazine 2% was used to anesthetize rats. The
animal’s chest was then split open, and the blood sample
was directly taken from the animal’s heart to ensure the
least harm to it. The samples were then taken from the
rats’ pancreas tissue and transferred to 1.8 microtubes
containing 20% RNAlater solution for genetic tests after
rinsing with physiological serum.
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Table 1. Exercise Protocol Based on Time and Speed in the Aerobic Group

Training Session (week) 1 2 3 - 4 5 - 6 7 - 8 9 - 10

Running time (min) 10 20 30 40 50 55

Running speed (m/min) 18 20 22 22 24 26

Table 2. Resistance Training Protocol Based on Body Weight Percentage

Training Session (week) 1 2 3 - 4 5 - 6 7 - 8 9 - 10

Resistance (body weight percentage) 10 20 40 60 80 100

Using the glucose oxidase enzyme method and glucose
kit (Pars Azmoun Company, Iran), the fasting glucose value
was measured. Serum insulin was measured through the
enzyme-linked immunosorbent assay (ELISA) method
and according to the standards of the commercial kit
(Demeditec Diagnostic insulin ELIZA) made in Germany.
The ribonucleic acid (RNA) was extracted using the
commercial RNeasy mini kit of QIAGEN Company (23).
GLP mRNA was determined by real time-polymerase chain
reaction (RT-PCR) using the Rotor-Gene 6000 system
and One-Step SYBR TAKARA kit based on the company’s
instruction. The RNA polymerase II was used as the control
gene to determine the expression of GLUT2. Table 3 shows
the pattern of primer sequences. The cycle of thresholds
(CTs) of the reactions were extracted by real-time-PCR
software and recorded.

3.5. Statistical Analysis

The obtained data were compared using one-way
analysis of variance (ANOVA) and post hoc Tukey test with
SPSS/Win software version 22.0. The Kolmogorov-Smirnov
test was used to ensure the normal distribution of the
data. A P-value of 5% was considered to be statistically
significant.

4. Results

The one-way ANOVA results showed a significant
difference in the expression of GLUT2 in pancreatic tissue
between different groups (P = 0.001) (Figure 1). On the
other hand, according to the findings of the post hoc
Tukey test, both aerobic (P = 0.001) and resistance (P =
0.007) exercises led to a significant increase in GLUT2
expression as compared to the control group. However,
no significant difference was observed in the expression
of GLUT2 between the aerobic and resistance groups (P =
0.485).

There was a significant difference in serum insulin and
fasting glucose levels between the study groups (P = 0.001)
(Figures 2 and 3). Both aerobic and resistance exercises
caused a significant increase in serum insulin (P = 0.013

and P = 0.001, respectively) and a significant reduction
in fasting blood glucose levels (P = 0.001 and P = 0.001,
respectively) as compared to the control group. However,
no significant difference was observed in serum insulin
(P = 0.480) and fasting blood glucose levels (P = 0.552)
between the aerobic and resistance groups.

5. Discussion

The main finding of the present study was the
increased gene expression level of GLUT2 in the pancreatic
tissue of T2D rats in response to training exercise
interventions. In other words, 10 weeks of aerobic
and resistance exercises led to a significant increase in the
gene expression level of GLUT2 in the pancreatic tissue of
T2D rats as compared to the control group that did not
receive training exercise interventions. On the other hand,
a significant reduction in the fasting blood glucose levels
and a significant increase in serum insulin levels in the
experimental groups, compared to the control group, in
response to training exercise interventions were among
the other findings of the present study.

Although the effect of sports exercise on the gene
expression level of GLUT2 in the pancreas of diabetic rats
has not been reported in many studies, Rashet and Abdi
observed a significant increase in the gene expression level
of GLUT2 in response to aerobic exercises in rats whose
pancreases had become inflamed and damaged by high-fat
diet (23). Sokhanvardastjerdi et al. reported a significant
increase in the GLUT2 expression level in obese diabetic
rats in response to aerobic exercises (24). Moreover, Simoes
et al. showed an improvement in the function of insulin
and insulin receptors and in the gene expression level
of GLUT2 in response to aerobic exercises (25). However,
to date, no study has reported the effect of resistance
exercises on the expression level of GLUT2 in the pancreatic
tissue of diabetic rats by comparing aerobic and resistance
exercises.

On the other hand, several studies have been
conducted with the aim of evaluating the effect of
exercise training interventions on blood glucose levels,
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Table 3. Pattern of GLP-1 Primers and Control Gene (Ribonucleic Acid PolymraseII) in Research

Genes Primer Sequence Product Size T m Gene Bank

GLUT2
For: GCATGTCTGTTACCCCAGGATAG

159 bp 60 NM 001191052.1
Rev: AGAGGAGTAACAAGCTCAAGGTG

RNA PolymraseII
For: ACTTTGATGACGTGGAGGAGGAC

164 bp 60 XM 008759265.1
Rev: GTTGGCCTGCGGTCGTTC

Abbreviation: RNA, ribonucleic acid.
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Figure 1. Relative gene expression level of glucose transporter 2 (GLUT2) in the studied groups. **: A significant difference with the control group at P ≤ 0.01; ***: A significant
difference with the control group at P ≤ 0.001.

serum insulin, insulin resistance, and hormonal or
genetic factors affecting these variables in T2D individuals
and other healthy or unhealthy populations. In this
regard, some studies have reported a reduction in insulin
secretion following sports exercises. For example, in a
study by Rawal et al., 12 weeks of aerobic exercise led to a
reduction in insulin levels in healthy males (26); however,
in another study on diabetic rats, long-term exercise
increased the plasma insulin levels by 57%, compared
to the control group (27). A significant elevation in the
plasma insulin levels was also observed in diabetic rats

following 5 weeks of sports exercise (28).

However, in line with the results of the present study,
all of the above-mentioned studies reported a significant
reduction in blood glucose levels. According to the
aforementioned evidence, the researchers concluded that
the response to glucose as insulin synthesis or secretion
and β-cells function in human or animal species are
different from each other depending on the presence or
absence of diabetes, diabetes severity, the age of diabetes
induction in the animal, and the age of entry to exercise,
which affect the findings to some extent (26, 29). The
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Figure 2. Serum insulin levels in the studied groups. *: A significant difference with the control group at P ≤ 0.05; ***: A significant difference with the control group at P ≤
0.001.

researchers believe that most of the beneficial effects of
sport and physical activity on blood glucose levels in
healthy non-diabetic patients, such as obese individuals,
become evident due to the reduction of the insulin
resistance of peripheral tissues, especially skeletal muscles
(30).

Plasma glucose levels are tightly regulated by
the simultaneous action of insulin and glucagon as
two hormones secreted by the pancreas, which have
conflicting effects on the glycemic profile (12). Patients
with T2D often experience a decline in β-cells function,
resulting in reduced insulin secretion from these cells.
On the other hand, scientific resources have shown that
T2D occurs in response to both a reduction in β-cells
function and an increase in insulin resistance (31),
although an increase in the glucagon-dependent glucose
release from the liver reservoirs and rapid increase in
glucose absorption from food are among other factors
that increase blood glucose levels in these patients (31).
Meanwhile, the impact of some genetic or hormonal

factors affecting insulin synthesis, secretion, and function
in target cells should not be overlooked.

Among important therapeutic factors in T2D, GLUT2
can be referred to (11). Although insulin is secreted due to
some stimulants, such as nutritional stimulants (amino
acids, e.g., leucine, unsaturated fatty acids, and glutamine
combined with leucine), hormones, neurotransmitters,
and drugs (e.g., sulphonylureas and glinides), glucose is
the main physiological stimulus of insulin secretion (32).
According to some of the accepted hypotheses, insulin
secretion is a multi-step process initiated by transferring
glucose into β-cells through particular transporters,
especially GLUT1 and GLUT2, and phosphorylation by
glucokinase that charges the flow of glycolysis, with
pyruvate as its final product (33). In this regard, a kind
of strong correlation has been reported between the
declined function of β-cells and the reduced expression
level of GLUT2 as a glucose transporter in β-cells (34, 35).

Clinical studies found GLUT2 essential for
glucose-dependent insulin secretion and stated that

Thrita J Neu. 2023; 12(2):e141725. 5
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Figure 3. Fasting glucose levels in the studied groups. ***: A significant difference with the control group at P ≤ 0.001.

the absence of GLUT2 is accompanied by hyperglycemia.
Transferring glucose into β-cells is the first step in the
relationship between glucose metabolism and insulin
secretion from β-cells. GLUT2 is considered the main
transporter of glucose in β-cells that allows the two-way
flow of glucose and other food sugars, such as fructose and
galactose, due to its high adsorption capacity. Transferring
glucose is the first step in the glucose-dependent insulin
secretion. A reduction in the gene expression level of
GLUT2 in human β-cells is associated with hyperglycemia
and damage to glucose-dependent insulin secretion (11).

Additionally, a direct relationship has been observed
between the reduced glucose-dependent insulin secretion
and the reduced expression of GLUT2 in β-cells in some
animal species with T2D (11). Hou et al. (36) reported that
the high extracellular glucose concentrations increase the
endocytosis GLUT2, leading to insulin secretion in parallel
to an increase in the gene expression level of GLUT2
(36, 37) such that the initial phase of glucose-dependent
insulin secretion cannot be observed in β-cells in the
GLUT2-deficient mice (11). A cellular-molecular study by

Koranyi et al. showed that 3 weeks of aerobic exercise
led to a reduction in the mRNA pro-insulin and mRNA
glucokinase content but caused no change in the content
of mRNA GLUt2 as the main transporter of glucose. On the
other hand, a direct relationship was observed between a
reduction in the mRNA pro-insulin content and a decline
in mRNA glucokinase (38).

In summary, the genetic studies strongly support
the influential effect of GLUT2 on the pathways leading
to insulin synthesis and secretion in β-cells. Although
aerobic and resistance exercises were not exactly the same
in this study, the findings of the present study showed
an increase in the GLUT2 expression level in response to
both resistance and aerobic exercises in T2D rats. As no
significant difference was observed between the effects of
these two exercise methods, sports exercises seem to affect
the expression of GLUT2 in the pancreas of diabetic rats
independent of the exercise type.

6 Thrita J Neu. 2023; 12(2):e141725.
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5.1. Conclusions

Performing aerobic and resistance exercises is
accompanied by an increase in serum insulin levels
and a decrease in blood fasting glucose levels in T2D
rats. Considering the effective role of GLUT2 in the
process of insulin synthesis and secretion, the increased
insulin levels can probably be attributed to the elevated
expression levels of GLUT2 in pancreatic tissue in response
to resistance and aerobic exercises. Sports exercises
seem to affect the expression of GLUT2 in the pancreas of
diabetic rats independent of the exercise type.
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