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Abstract

Background: Curcumin, found in the rhizome of Curcuma longa, demonstrates anti-inflammatory and neuroprotective

properties.

Objectives: This study aims to assess its effects on the proliferation and differentiation of embryonic neural stem cells (NSCs).

Methods: Female rats (n = 36) became pregnant, resulting in the formation of embryos (n = 176). Neural stem cells from female

embryos (n = 50, embryonic day 15.5, E15.5) were cultured in a serum-free medium with growth factors (FGF-2 and EGF).

Curcumin was then added at doses of 0.1, 0.5, and 1 µM. The proliferation of NSCs was assessed using the MTT colorimetric assay,

nestin immunofluorescence labeling, and RT-PCR. NSC differentiation was compared using immunocytochemistry (ICC) and RT-

PCR for nestin, glial fibrillary acidic protein (GFAP), and class III β-tubulin (Tuj-1).

Results: Curcumin at concentrations of 0.1 and 0.5 µM increased the proliferation of NSCs, as indicated by an increase in

neurosphere diameter. Similarly, the MTT assay showed that curcumin at doses of 0.1 and 0.5 µM enhanced the viability of NSCs.

In the differentiation condition, no significant difference was observed. However, RT-PCR analysis showed that nestin and GFAP

expressions reached their highest levels in cells treated with curcumin at a dose of 0.5 µM, while Tuj-1 expression significantly

increased in cells treated with curcumin at a dose of 1 µM.

Conclusions: Curcumin at lower doses may regulate the proliferation and differentiation of NSCs. Treating NSCs with curcumin

could provide a promising option for pre-differentiation before cell therapy.
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1. Background

Neural stem cells (NSCs) can self-renew and

differentiate into a variety of cells, including neuronal

and glial cells, in both in vitro and in vivo conditions (1).

The ability of endogenous NSCs for neurogenesis and

gliogenesis in the embryonic and adult brain has been

demonstrated in response to inflammation, ischemic

conditions, and traumatic events (2, 3). The potential for

repair and replacement of cells in the adult brain

through endogenous neurogenesis and gliogenesis

supports the development of therapeutic approaches

involving NSC transplantation in brain disorders.

However, the necessity of expanding and pre-

differentiating NSCs before administration into the

injured site of the brain should be considered (2).

Neural stem cells from embryonic tissue of rodents can

be isolated and cultured in serum-free conditions (4).

Neurogenesis plays an essential role in the development

and plasticity of the central nervous system (CNS) (5, 6).

It involves two important stages: Proliferation and

differentiation (7), which are regulated by several

intrinsic and environmental factors. Stem cells are

multipotent, and the substitution of proliferative
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culture medium with differentiative conditions forces

NSCs to differentiate into neuronal and glial cells (8, 9).

Curcumin, a polyphenol component, was isolated

from the rhizomes of Curcuma longa L. (turmeric) two

centuries ago (10). This component has many

therapeutic effects (11), including anti-inflammatory,

anti-oxidative, and anti-cancer properties (12).

Experimental analyses in animal models have shown

that curcumin has beneficial effects on a wide variety of

neurodegenerative diseases (11, 13). Some interesting

studies have focused on evaluating curcumin's effects

on neurogenesis (8, 14). Neuronal stem/progenitor cells

of the hippocampus are regulated by intrinsic and

extrinsic factors in both positive and negative ways (15).

Unfortunately, these studies primarily concentrated on

the proliferative effects of curcumin and did not

consider its regulatory role in neurogenesis.

2. Objectives

In the current study, both the proliferation and

neurogenesis of embryonic rat NSCs were considered.

Therefore, the influence of curcumin on the

proliferation and differentiation of NSCs was examined.

Furthermore, the neurospheres were characterized by

the expression of nestin, class III β-tubulin (Tuj-1), and

glial fibrillary acidic protein (GFAP) markers.

3. Methods

3.1. Animals

Female Wistar rats, weighing 180 - 200 g, were housed

in normal room conditions at a constant temperature

(25ºC) with a 12-hour light/dark cycle and ample access

to food and water. The experiments were approved by

the ethics committee of animal research at Islamic Azad

University, Science and Research Branch, Tehran, Iran,

under ethical approval number IR.MUQ.REC.1397.119.

3.2. Experimental Design

At the beginning of the experiment, there were 50

female rats and 50 male rats. Male and female rats were

kept together in a cage overnight for mating. The next

day, vaginal plugs were regularly screened to determine

pregnancy. If a vaginal plug was observed, it was

considered the zero-day of pregnancy (E = 0). Pregnant

rats (n = 36) at gestational age 15.5 days (E15.5) were then

sacrificed by intraperitoneal injection (i.p.) of an

overdose of sodium pentobarbitone, and the fetuses (n

= 176) were extracted. The brains of female fetuses (n =

50) were then dissected and prepared for NSC

extraction.

3.3. Neurosphere Culture

Neurospheres were cultured using previously

described methods with minor modifications (16, 17).

After removing the overlying meninges and blood

vessels from the isolated fetuses’ brains, the sub-

ventricular zone (SVZ) of each head was isolated and

transferred to serum-free media. The cultures were

incubated at 37°C in a humidified atmosphere with 5%

CO2. The cultures were assigned into four experimental

groups as follows: (1) control: No treatment, (2)

(exposure to 0.1 µM curcumin), (3) (exposure to 0.5 µM

curcumin), and (4) (exposure to 1 µM curcumin). For

differentiation studies, after four days of in vitro

culture, the counted cells were seeded onto Poly-L-lysine

(Sigma-Aldrich)-coated surfaces and developed into a

monolayer in the same mitogen-free medium.

3.4. The MTT Assay: Cell Viability

The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, Sigma] method (18) was

employed to evaluate cell growth and viability based on

the reduction of MTT into formazan crystals by

mitochondrial dehydrogenase enzymes of viable cells.

The absorbance of the samples was read at 570 nm. All

experiments were replicated at least three times to

reduce probable errors.

3.5. Immunocytochemistry (ICC)

After four days in vitro (DIV), the cells were processed

by ICC to evaluate the expression of the antigen and for

morphology-related analysis. Subsequently, the nuclei

were counterstained with propidium iodide (1/15000,

Sigma-Aldrich).

3.6. Reverse Transcription Polymerase Chain Reaction (RT-
PCR) Analysis

The neurospheres were identified by the expression

of nestin, class III β-tubulin (Tuj-1), and GFAP. Total RNA

was extracted using TRIZOL reagent, and cDNA synthesis

and PCR were carried out using a one-step RT-PCR kit
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(Invitrogen). The samples were evaluated on a 1% agarose

gel containing ethidium bromide.

3.7. Morphometric Analysis

Four days after the proliferation condition, five non-

overlapping fields were randomly chosen from each

well. Digital images of the neurosphere cultures were

taken using an inverted microscope. Finally, ImageJ

software (version 1.53t 24) was used to analyze the size of

the neurospheres.

3.8. Statistical Analysis

Our findings are presented as the mean ± standard

error of the mean (SEM). Statistical analysis was carried

out using one-way ANOVA and Tukey’s post-hoc test. A P-

value of < 0.05 was considered statistically significant.

4. Results

4.1. Characterization of Neural Stem Cells

The formation of neurospheres is a marker of

stemness (Figure 1A). When these neurospheres were

dissociated into single cells, they were cultured into a

monolayer and subsequently immunostained with the

nestin marker, showing nestin positivity (Figure 2). The

substitution of the proliferative medium with the

differentiation medium was executed by withdrawing

growth factors and adding fetal bovine serum (FBS) to

the medium, resulting in the differentiation of the

cultured cells. Immunocytochemistry analysis for the

presence of Tuj-1 and GFAP proteins showed positive

results (Figures 3 and 4A). The cultured cells exhibited

characteristics of NSCs, demonstrating self-renewal and

multipotency. Tuj-1 immunoflurescent staining is given

in Figure 4. The control group shows apoptotic cells and

the lowest amount of NSCs (Figure 4A). On the other

hand, treatment with curcumin at doses 0.1 µM (Figure

4B) and 0.5 µM (Figure 4C) could successfully increase

the number of NSCs. It should be noted that curcumin

at high dose of 1µM was not that much effective (Figure

4D).

4.2. Effects of Curcumin on Diameter of Neural Stem Cells

Evaluating the diameter of cultured neurospheres is

a proper method for assessing the proliferation rate of

NSCs. The size of spheres from the primary culture was

measured after 8 days. Simultaneously, images were

taken from various fields, and the size of the

neurospheres in each field was evaluated. Curcumin at

doses of 0.1 µM and 0.5 µM increased the size of

neurospheres (P < 0.05) (Figures 1 and 2).

4.3. Effect of Curcumin on Viability of the Neural Stem Cells

The effects of curcumin on neurospher size are given

in Figure 5. The control group (Figure 5A) shows the

lowest expression of Nestin and GFAP. On the other

hand, treatment with curcumin at doses 0.1 µM (Figure

5B) and especially at dose 0.5 µM (Figure 5C) could

successfully increase the expression levels of the genes.

It should be noted that curcumin at high dose of 1µM

was not that much effective (Figure 5D). Cell viability

was determined using the MTT reduction assay. Figure

5B demonstrates the MTT results of the neurospheres.

The viability of cells exposed to curcumin at doses of 0.1

µM and 0.5 µM was markedly increased compared to the

control group (P < 0.05).

4.4. Effects of Curcumin on Expression of Neural and Glial
Markers in Neural Stem Cells

The NSCs could express markers of glial and neural

cell differentiation under specific differential

conditions. Notably, morphological studies revealed

that the GFAP-positive cells obtained from cultures

treated with different doses of curcumin exhibited

obvious morphological changes. The GFAP-positive cells

in the curcumin groups were long and thin, while the

GFAP-positive cells in the control groups appeared to be

polygonal and flat (Figure 3).

4.5. Effects of Curcumin on Nestin, Glial fibrillary acidic
protein and Tuj-1 m RNA Expressions

The expression levels of nestin, GFAP, and Tuj1 were

measured in the neurospheres treated with curcumin.

As shown in Figure 6, nestin expression levels were

increased by 0.1 and 0.5 µM of curcumin. In addition,

GFAP expression was similarly increased. However, Tuj1

expression levels increased in the group treated with 1

µM of curcumin (Figure 6).

5. Discussion

In this study, curcumin was found to stimulate the

proliferation of embryonic NSCs at low doses (0.1 and

0.5 µM) using the MTT assay, with the highest level of
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Figure 1. Photomicrographs of neurospheres. A, control; B, treated with 0.1 μM curcumin; C, treated with 0.5 μM curcumin; and D, treated with 1 μM curcumin. Photographes
were taken atmagnification 200X.

Figure 2. Nestin immunofluorescence staining. A, control; B, treated with 0.1 μM curcumin; C, treated with 0.5 μM curcumin; and D, treated with 1 μM curcumin.

proliferation observed at a dose of 0.5 µM. Conversely,

proliferation declined at a high dose of curcumin (1 µM).

Furthermore, NSCs exposed to different doses of

curcumin exhibited a biphasic pattern of proliferation.
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Figure 3. Glial fibrillary acidic protein (GFAP) immunofluorescence staining. A, Control; B, treated with 0.1 μM curcumin; C, treated with 0.5 μM curcumin; and D, treated with 1

μM curcumin. * P < 0.05 and ** P < 0.01 significantly different from the control group.

Reverse transcription polymerase chain PCR reaction

analysis showed that nestin and GFAP expressions

reached their highest levels in curcumin-treated cells at

a dose of 0.5 µM, while Tuj-1 expression levels increased

in curcumin-treated cells at 1 µM.

Mitogenic growth factors play an important role in

establishing neurosphere culture and are necessary for

the growth and viability of free-floating neurospheres

(8, 19). In this study, we verified that supplementing the

proliferation condition with curcumin can enhance the

size of neurospheres that were only supplemented with

mitogenic factors. The simultaneous addition of

curcumin and growth factors induced the growth of

neurospheres. Similar to the MTT assay, a higher

diameter of neurospheres was observed with 0.5 µM of

curcumin.

In addition, the differentiation of NSCs in this study

was assessed by detecting Tuj-1 and GFAP markers.

Immunocytochemistry results indicated that in the

presence of curcumin, the NSCs differentiated into

neurons and glia. Reverse transcription polymerase

chain reaction PCR analysis revealed that higher doses

of curcumin corresponded to higher expression levels

of Tuj-1. Under differentiation conditions, especially in

the presence of FBS, a greater proportion of cells

differentiated into astrocytes, and only a small portion

of stem cells followed a neuronal fate (< 5%) (20).

In line with our experiment, curcumin promoted the

differentiation of glioma-initiating cells (GICs).

Curcumin (2 μM) stimulated GIC differentiation and

inhibited glioma growth, which is related to the

induction of autophagy in vitro and in vivo (21).

Additionally, the effects of curcumin (1 or 5 μM) on

oligodendrocyte progenitors (OPs) were recently

assessed. Curcumin promoted the differentiation of OPs

and counteracted the maturation arrest of OPs induced

by TNF-α (22).

Consistent with our experiment, the impacts of

curcumin on mouse multipotent neural progenitor

cells (NPCs) and mature hippocampal neurogenesis
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Figure 4. Tuj-1 immunofluorescence staining. A, control; B, treated with 0.1 μM curcumin; C, treated with 0.5 μM curcumin; and D, treated with 1 μM curcumin

Figure 5. The effects of curcumin on neurospher size; A, the control group; B, curcumin treatments are at doses 0.1 μM; C, 0.5 μM; and D, 1 μM.

were shown. Curcumin exhibited a biphasic response on

cultured NPCs; low concentrations (0.1, 0.5 μM)

stimulated cell proliferation, whereas high

concentrations (≥ 10 μM) were cytotoxic. Moreover,

curcumin induced the proliferation and differentiation

of cultured NSCs and encouraged neurogenesis in the

healthy mature hippocampus (8). In another study,

NPCs and cultured neurons exposed to celecoxib were

examined. Curcumin attenuated celecoxib-induced

inhibition of neurogenesis in the fetal frontal cortex via
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Figure 6. Gene expression levels of nestin, glial fibrillary acidic protein (GFAP) and Tuj1 in neurosphers treated in different experimental groups as measured by RT-PCR.

the Wnt/β-catenin pathway (23). Similarly, following

cerebral ischemia in mice, curcumin stimulated

neurogenesis in the hippocampal dentate gyrus via the

Wnt/β-catenin signaling pathway (24). Recently,

neonatal curcumin treatment (20 mg/kg, i.p.) restored

hippocampal neurogenesis and improved autism-

related symptoms in an experimental mouse model of

autism (25).

Furthermore, in vitro treatment of cell cultures and

in vivo treatment of adult rodents with curcumin

protected neurons from damage related to Alzheimer's

disease (AD), Parkinson's disease (PD), and stroke models

(26-28). Curcumin improved cognitive functions in

different neuropathologic models such as diabetic

encephalopathy and ischemia (29). Animal model

studies have suggested that curcumin is

neuroprotective in neurodegenerative disorders such as

AD (30, 31) and focal cerebral ischemia (32). Additionally,

curcumin treatment protected hippocampal neurons

against excitotoxic and traumatic injury (26, 33).

Recently, in a rat model of AD, curcumin treatment

repaired cognitive impairments and enhanced

hippocampal neurogenesis. Curcumin dose-

dependently (50 and 100 mg/kg/d, i.p.) increased the

proliferation of NSCs, stimulated differentiation, and

maturation of newly generated neural cells, and

increased the expression of neurogenesis-involved

proteins (34).

Many studies have demonstrated the proliferative

role of curcumin on neuroprogenitor cells (8, 35, 36).

Previous studies have documented the antioxidant and

anti-inflammatory effects of micromolar concentrations

of curcumin in cultured tumor cell lines as well as

normal cells (37, 38).

5.1. Conclusions

Curcumin regulated both the proliferation and

differentiation steps of neurogenesis in embryonic

hippocampal NSCs. Treatment with curcumin could

provide an alternative method for the pre-

differentiation of NSCs before cell replacement therapy.

The regulatory role of curcumin on the fate of NSCs was

noted in the present study. It has been shown that

curcumin may alleviate cognitive deficits resulting from

various circumstances, such as aging and brain

ischemia, by promoting the proliferation and neuronal

differentiation of NSCs.
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