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Abstract

Context: Pesticides are widely used in agriculture and household settings and have been associated with various adverse

health effects, including a potential link to neurodegenerative diseases (NDs). Alzheimer's disease (AD) and Parkinson's disease

(PD) are the two most common disorders in this category, characterized by progressive neuronal cell loss and severe

impairments in human functioning. Epidemiological studies have shown significant associations between pesticide exposure—

specifically organochlorines, organophosphates (OP), carbamates, DDT, and paraquat—and AD and PD; however, little is known

about the underlying biological mechanisms.

Evidence Acquisition: A mini-review was conducted in the scientific literature on the biological mechanisms linking

pesticide exposure to NDs using scientific databases (PubMed, Scopus, Web of Science, and Google Scholar).

Results: In AD, the connection may involve several biological mechanisms, including hyperphosphorylation of tau protein,

which disrupts normal cellular function and contributes to neurofibrillary tangles. Genetic polymorphisms in microtubule-

associated protein tau (MAPT) can also influence an individual's susceptibility to AD by affecting tau protein interactions with

microtubules. Moreover, exposure to pesticides has been linked to elevated pro-inflammatory markers that exacerbate

neuroinflammation, further contributing to neuronal damage. In PD, oxidative stress plays a crucial role by generating reactive

oxygen species that damage cellular components. Mitochondrial dysfunction resulting from pesticide exposure impairs energy

production in neurons, leading to cell death. Additionally, exacerbation of α-synuclein aggregation is a critical factor in PD

pathology, as aggregated forms of this protein are toxic to neurons.

Conclusions: Given the rapid increase of pesticides in the air, water, and food, it is essential to clarify the biological

mechanisms linking pesticide exposure to NDs.
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1. Context

Pesticide is defined as any compound or mixture of

chemicals designed to prevent, eliminate, or control

pests, encompassing both chemical and biological

agents (1, 2). Pesticides are categorized into four primary

groups based on their chemical structure:

Organochlorines (e.g., DDT, methoxychlor, dieldrin,

chlordane), organophosphorus (e.g., parathion,

chlorpyrifos, diazinon), carbamates, and pyrethrin and

pyrethroids (3). Despite attempts to restrict their

application, pesticides are extensively utilized in the

developing world. Concerns have been expressed

regarding the safety of prolonged pesticide usage (4).

Pesticide exposure may occur directly through

occupational, agricultural, and domestic applications,

as well as indirectly via dietary consumption (4). The

primary pathways of human exposure to pesticides

include the food chain, air, water, soil, vegetation, and

animals (5).

Pesticides are typically disseminated within the

organism by associating with plasma proteins, blood

cells, and lipids in different body parts and peripheral

tissues (2). Pesticide exposure is associated with a range

of adverse health consequences, ranging from moderate

irritation of the eyes and skin to serious complications,
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including neurodegenerative diseases (NDs) (6).

Neurodegenerative illnesses are defined by disease-

selective features of adult-onset neuronal degeneration

within sections of the brain's cortex, basal ganglia,

cerebellum, brainstem, and neuromuscular systems (7).

Common examples of neurodegenerative disorders are

Alzheimer's disease (AD), Parkinson's disease (PD),

Huntington's disease, amyotrophic lateral sclerosis,

frontotemporal dementia, and spinocerebellar ataxias

(8). These disorders impair numerous aspects of human

functioning and impede the capacity to accomplish

both basic (e.g., speech, movement, stability, and

posture) and complex tasks (e.g., urinary and bowel

functions, and mental abilities) (9).

A study reported that the risk of AD is higher in areas

of high pesticide exposure (10). Furthermore, exposure

to pesticides was associated with faster PD symptom

progression (11). Most previous studies focused on the

adverse effects of pesticides and the incidence of NDs.

However, little is known about the mechanistic

association between pesticides and NDs. Considering

the importance of environmental factors in the etiology

of NDs and the increase in the incidence of NDs (AD and

PD) in recent years, we conducted a mini-review to fill

the identified research gap and understand the

biological mechanisms behind pesticide exposure and

NDs.

2. Evidence Acquisition

Scientific literature was searched for pesticide

exposure and NDs, focusing on biological mechanisms

between 2000 and 2024. Articles were retrieved from

PubMed, Scopus, Web of Science, and Google Scholar

databases using the following keywords: Pesticides,

pesticide exposure, organophosphates, in combination

with neurodegenerative, PD, and AD. Subsequently, two

independent researchers screened the retrieved articles.

3. Results

3.1. Alzheimer's Disease

3.1.1. Progression of Alzheimer's Disease on Exposure to
Pesticides

Pesticides, recognized as toxic agents, pose

significant risks to various bodily systems in humans,

particularly the central nervous system (CNS). Their

detrimental effects manifest through multiple

mechanisms, including the inhibition of

neurotransmitter receptors, disruption of transport

channels, and mitochondrial damage, all of which can

lead to heightened oxidative stress. These physiological

alterations may impair motor, sensory, autonomic, and

cognitive functions (12-14). In our research, we

investigated the effects of pesticides on the activation of

tau protein and beta-amyloid formation, both of which

are critical pathophysiological factors contributing to

synaptic and neuronal loss, ultimately leading to AD.

3.1.1.1. Pesticides and Tau Protein

Tau protein is a type of microtubule-associated

protein (MAP) predominantly located in the cytoplasm

and axonal structures of neurons (15). Exposure to

pesticides may induce morphological changes in the

CNS due to the phosphorylation of tau protein and the

formation of neurofibrils (16, 17). Different studies have

reported mechanisms underlying tau protein formation

caused by pesticides. For instance, one study reported

that pesticides could lead to the formation of tau

protein through polymorphisms in the microtubule-

associated protein tau (MAPT) and MAP 1B gene (18).

Another study demonstrated that organochlorines

could alter mitochondrial function and lead to tau

protein formation, exhibiting characteristics of AD, with

overexpression of specific proteins, including

cytochrome C, synaptosome-associated protein, and

enclose A (19, 20).

In addition to the overstimulation of glial cells,

elevated levels of tumor necrosis factor-alpha,

interleukin-6, and interleukin-1 beta have been

implicated in the increased presence of

hyperphosphorylated tau protein observed following

exposure to organophosphates (OP) (21, 22). Significant

epidemiological associations have been identified

between pesticide exposure and AD, particularly

concerning the effects of OP in males (23). Carbamates

represent another type of pesticide that can affect the

nervous system of laboratory animals by inhibiting

cholinesterase enzyme receptors (24). In another study,

mice exposed to carbamates exhibited decreased levels

of dopamine (25). As is well-known, a decline in

dopamine-firing cells can impair the brain's ability to

create new memories, particularly in regions like the

hippocampus, and could lead to AD (26).

3.1.1.2. Pesticides and amyloid-beta

Amyloid beta (Aβ) is a peptide that plays a central

role in the pathology of AD. Overexpression of this

peptide can lead to the accumulation of Aβ peptides,

specifically Aβ40 and Aβ42, resulting in neurotoxicity
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and ultimately causing neural cell death (27). Currently,

the hypothesis that the deposition of β-sheets

contributes to the development of AD is the most widely

accepted among researchers (28). Pesticides can

enhance the accumulation of Aβ through various

mechanisms (16). For instance, a study showed that

exposure to DDT significantly increases the amyloid

precursor protein (APP) and mRNA levels in 3xTG-AD

mice. Additionally, the study observed a loss of synaptic

markers (29).

Another study demonstrated that exposure to the

pesticide paraquat can lead to increased levels of Aβ
protein in mice through mechanisms involving

mitochondrial dysfunction (30). One mechanism

through which certain pesticides may contribute to an

increase in Aβ deposition, ultimately leading to AD,

involves alterations in sex hormone levels, including

estrogen and androgens (31, 32). Evidence from various

studies indicates that sex hormones function as

neuroprotective agents, and disruptions in their levels

may exacerbate Aβ deposition, potentially leading to

conditions such as AD in middle-aged individuals (33,

34). Pesticides and AD-related biological mechanisms

are summarized in Table 1.

3.2. Parkinson's Disease

Parkinson's disorder is the second most prevalent

neurological disease after AD and affects approximately

2% of people over the age of 65 in industrialized

countries (35). While the actual etiology of sporadic PD

remains largely uncertain, both environmental

variables and genetic susceptibility are believed to play

significant roles in its onset (36). Autosomal dominant

Parkinsonian syndromes have been linked to rare

missense mutations and more common duplications or

triplications of a large genomic region that includes the

α-synuclein (aSyn) gene (37). Clinically, PD is

characterized by progressive neurodegeneration,

manifesting in debilitating neurological symptoms

such as increasing muscle rigidity, tremors,

bradykinesia, and, in severe cases, near-total immobility

(38). The motor symptoms arise from the degeneration

of dopaminergic neurons in the substantia nigra,

leading to a reduction in dopamine levels and the

accumulation of intracytoplasmic Lewy bodies, which

contain aSyn and ubiquitin (39). Dopamine is degraded

by monoamine oxidase (MAO), a process that generates

substantial quantities of hydrogen peroxide, which

must be continuously neutralized by intracellular

antioxidants to prevent oxidative damage (40).

3.2.1. Possible Mechanism Between Pesticide Exposure and
Parkinson's Disease

3.2.2. Alpha-synuclein

Cymoxanil and metalaxyl, both pesticides, have been

shown to induce aSyn aggregation, which disrupts

normal cellular processes and ultimately leads to

protein misfolding and aggregation (41). Chronic

exposure to the pesticide dieldrin has been found to

exacerbate aSyn preformed fibril-induced toxicity,

particularly in male mice, thereby increasing their

susceptibility to synucleinopathies and motor deficits

(42). Additionally, certain pesticides, such as fluopyram,

a mitochondrial complex II inhibitor, have been

implicated in the pathogenesis of PD by inducing motor

deficits and aSyn accumulation in the brain. This

provides further evidence for the role of mitochondrial

dysfunction in pesticide-induced PD (43).

3.2.3. ROS

Paraquat, a widely used herbicide, is strongly

implicated in PD due to its ability to generate reactive

oxygen species, diminish antioxidant defenses, and

trigger apoptosis. It is recognized as a major

environmental risk factor contributing to PD pathology

(44).

3.2.4. Dysbiosis

Pesticides (organochlorines, glyphosate, pyrethroids,

paraquat, and rotenone) are known to impact the

microbiome-gut-brain axis, contributing to PD through

dysbiosis and altered pesticide metabolism (45).

3.2.5. MicroRNAs

Pesticides also induce oxidative stress in neurons,

and emerging research suggests that the deregulation

of microRNAs (miRNAs) may be a critical link between

pesticide exposure and PD. Specific miRNAs affected by

pesticides (paraquat, OP, triazines, pyrazoles,

organochlorines, conazoles, and rotenone) have been

associated with the neurodegenerative processes

characteristic of PD (46).

3.2.6. CTNNB1, NDUFS6, and CAV1

Key pesticides (benomyl, carbendazim, S-methyl-N-

butylthiocarbamate, dichlorodiphenyltrichloroethane,

dichlorodiphenyldichloroethylene, dieldrin,

heptachlor, heptachlor epoxide, lindane, maneb, and
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Table 1. Pesticide and Alzheimer's Disease -Related Biological Mechanisms

Pesticide Mechanisms

Organochlorines Phosphorylation of tau protein

OP Tumor necrosis factor-alpha, interleukin-6, and interleukin-1

Carbamates Inhibiting cholinesterase enzyme receptors decrease in levels of dopamine

DDT APP

Paraquat Increased levels of Aβ protein

Abbreviations: APP, amyloid precursor protein; OP, organophosphates.

Table 2. Pesticide and Parkinson's Disease Related Biological Mechanisms

Pesticide Mechanisms

Cymoxanil, metalaxyl, dieldrin and fluopyram Alpha-synuclein aggregation

Paraquat ROS

Organochlorines, glyphosate, pyrethroids, paraquat, and rotenone Dysbiosis

Paraquat, OP, triazines, pyrazoles, organochlorines, conazoles, and rotenone
Oxidative stress and
dysregulation of miRNAs

Benomyl, carbendazim, S-methyl-N-butylthiocarbamate, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene,
delidrin, heptachlor, heptachlor epoxide, lindane, maneb, and rotenone CTNNB1 and NDUFS6 gene

Abbreviations: miRNAs, microRNAs; OP, organophosphates.

rotenone) have been shown to bind with high affinity to

dopamine neuron receptors, initiating signaling

cascades that result in neurodegeneration. This study

underscores the important role of certain genes, such as

*CTNNB1* and *NDUFS6*, in pesticide-induced PD (47).

Some biological mechanisms related to pesticides and

PD are shown in Table 2.

4. Conclusions

With the increasing use of pesticides in various

societies, the risk of exposure and subsequent acute and

chronic effects has emerged. This mini-review

highlighted the biological mechanisms of different

pesticides on NDs. Pesticides are well-known

environmental risk factors for the onset and

progression of NDs (48, 49). Persistent or modest levels

of exposure to pesticides such as PQ , MB, dieldrin,

pyrethroids, and OP contribute to neurodegenerative

illnesses such as AD and PD (14). Exposure to these

pesticides increases tau phosphorylation through

different mechanisms involving GSK-3β overexpression,

increased Cdk5 activity, and decreased expression of

PP2A, among other factors (22). Six review studies

described in Table 2 reported increases in tau

phosphorylation related to greater Cdk5 activity,

changes in regulatory proteins MAPT and MAP-2, and

increased oxidative stress, among other changes (22).

Three studies (41-43) reported that pesticides

(cymoxanil, metalaxyl, dieldrin, and fluopyram) could

induce aSyn aggregation and accumulation, which

ultimately contributes to PD. Dieldrin inhibits the

ubiquitin-proteasome system (UPS), which clears

misfolded or damaged proteins. This inhibition leads to

the accumulation of aSyn aggregates in dopaminergic

neurons (50). Additionally, pesticides like dieldrin,

Paraquat, and others produce reactive oxygen species

that damage macro/micro molecules and promote

aggregation and misfolding of aSyn (44, 51). Another

mediating mechanism involves inflammatory cytokines

that activate microglial cells, which exacerbate aSyn in

neurons (52). Considering the increasing use of

pesticides in today’s societies, public health systems

should control and reduce exposure to pesticides to

prevent or address NDs. These disorders pose a

significant burden to farming communities and, due to

their complex pathology, their prevention presents a

challenge. Our findings present valuable information to

public health and medical experts on understanding

NDs in vulnerable groups. Understanding the biological

mechanisms behind pesticide exposure and NDs can
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improve the monitoring of the health status of farmers

and nearby residents.
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