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Abstract

Background: Alzheimer’s disease (AD) is a progressive neuropsychiatric disorder that gradually impairs memory and behavioral
functions. Amyloid beta (Aβ) is considered as the most toxic substance in the brain of AD patients.
Objectives: The present study was designed to evaluate Aβ deposits by Immuno- and Thioflavin S-costaining in the hippocampus
of a rat model of AD after intravenous injection of human adipose-derived stem cells (hADSCs).
Methods: Thirty-two male rats were included in the four groups of control, sham, AD and hADSCs. The hADSCs characterization
was confirmed by the flow cytometry technique. Immuno- and Thioflavin S-costaining was utilized for detecting Aβ plaques in the
hippocampus of a rat model of AD following injection of hADSCs.
Results: Statistical analysis revealed that Aβ plaques increased significantly in the AD group compared to the control and sham
groups. The administration of hADSCs significantly decreased immunoreactivity and Thio-S-positive plaques in the AD group. We
also found that the plaques detected by anti-Aβ antibody (immunohistochemical staining) were significantly more than those dis-
tinguished by Thioflavin-S in all the groups.
Conclusions: Results showed that hADSCs played an effective role in decreasing amyloids aggregation following migration to the
hippocampus of the rat model of AD.
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1. Background

Alzheimer’s disease (AD) is a progressive neuropsychi-
atric disorder that gradually impairs memory and behav-
ioral functions (1). The global prevalence of AD was esti-
mated at 47 million people in 2015 and this rate is expected
to approximately triple by 2050 (2, 3). AD features include
amyloid plaques and neurofibrillary tangles (NFTs). Amy-
loid plaques (deposits) are produced by the accumulation
of Aβ proteins and neurofibrillary tangles created by the
aggregation of hyper-phosphorylated Tao proteins (4, 5).
Aβ is considered as the most toxic substance in the brain
of AD patients (6). Thioflavin staining is the most suitable
and standardized method for screening Aβ (7). Thioflavin-S
is used for detecting Aβ plaques that can bind to distinctive
β-pleated sheet of amyloid fibrils (8-11). Thioflavin-S results
from methylation of dehydrothiotoluidine with sulfonic

acid (12). In addition, monoclonal mouse antibodies are
increasingly employed to detect amyloid deposits. Differ-
ent mechanisms are presented for Aβ accumulation such
as elevated synthesis and high propensity for aggregation
(13). Thus, approaches to prevent and reduce Aβ deposition
are mainly examined as therapeutic strategies for AD treat-
ment (14, 15).

Adipose-derived stem cells (ADSCs) are an appropriate
source of stem cells in clinical studies as these cells can be
achieved via liposuction or from subcutaneous adipose tis-
sues (16-18). hADSCs are the most suitable stem cells due
to their ability to cross the blood-brain barrier, migrating
to the damaged sites of the brain without any ethical con-
cerns, immune rejection or tumorigenesis (19). This is the
first attempt to use Immuno- and Thioflavin S-costaining
to evaluate Aβ plaques in a rat model of AD following intra-

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited.

http://thritajournal.com
http://dx.doi.org/10.5812/thrita.88367
https://crossmark.crossref.org/dialog/?doi=10.5812/thrita.88367&domain=pdf


Doshmanziari M et al.

venous injection of hADSCs. Regarding the previous inves-
tigations, there is a scarcity of reports on using this tech-
nique for evaluating Aβ plaques after stem cell injection.

2. Methods

2.1. Chemicals

Aβ (1-42), DMEM, DiI, Thioflavin-S and DAPI stains were
supplied from Sigma (St. Louis, MO, USA). Ketamine (Al-
fasan, Holland) and Xylazine (Pantex Holland B.V.) were
utilized for anesthesia before surgery. Anti-Aβ antibody
was purchased from Abcam (Cambridge, MA, USA). Other
chemicals in this research were supplied from commercial
sources.

2.2. Animals

In this study, we used 32 male Wistar rats weighing 250
- 320 gr. The rats were purchased from the animal house
of Iran University of Medical Sciences. The animals were
kept under standard conditions with a 12-hour light/dark
cycle at 25°C. Normal rat chow and water were provided
ad libitum. All the experiments were performed under the
standard guidelines for the use and care of laboratory ani-
mals approved by the Ethics Committee of Iran University
of Medical Sciences (90/11/5931).

2.3. Experimental Design

Animals were randomly divided into four groups of
eight as follows: control group: The rats did not undergo
any surgery or injection; sham group: The Hamilton sy-
ringe (without any medication) was entered to the hip-
pocampus of the rats by stereotaxic surgery; Alzheimer’s
model (AD) group: The rats received Aβ injection in their
hippocampus through stereotaxic surgery; and stem cell
treatment group (AD + Sc): The rats received 3 × 106 hAD-
SCs by intravenous administration three weeks after intra-
hippocampal Aβ injection.

2.4. Aβ Preparation and Surgery

Lyophilized peptide powder of Aβ1-42 was dissolved in
sterile water to reach the final concentration of 2 mmol/L.
The final solution was incubated for 48 hours at 37°C. Anes-
thesia was induced by intraperitoneal (IP) injection of ke-
tamine hydrochloride (80 mg/kg) and xylazine (8 mg/kg).
Afterwards, the rats were located in the stereotaxic frame
(Stoelting Co, USA). Each animal received 5 µL of Aβ injec-
tion in the right and left CA1 hippocampus (each side 5µL)
(AP: 3.8, ML: 2.4, DV: 2.9) according to the Paxinos and Wat-
son Atlas (20).

2.5. Isolation and Culture of hADSCs

hADSCs were separated from adipose tissues obtained
from the abdominal superficial layers of 25 to 45-year-
old patients during liposuction in the operation room of
Rasoul-e-Akram General Hospital, Tehran, Iran. hADSCs
were isolated according to the protocol of Dubois et al. (21).
For removing blood vessels, adipose tissue was washed
in 1% P/S solution, and 0.1% collagenase and 1.0% bovine
serum albumin (BSA) were added. The cell pellets were
washed with PBS, centrifuged, suspended in DMEM /F12 cul-
ture medium (10% fetal bovine serum [FBS] and 1% P/S) and
incubated (37°C, 5% CO2, 98% moisture) until the fifth pas-
sage.

2.6. hADSCs Characterization

For characterization of hADSCs, flow cytometry was
used according to a previous study (22). Cells were incu-
bated with anti-CD44, anti-CD90, anti-CD73 (conjugated to
FITC), anti-CD34 and anti-CD45 (conjugated to PE) for 30
minutes. The cells in the 5th passage were labeled with
DiI. 106 cells were suspended in 1 ml of phosphate buffered
saline (PBS), and then 5µL of DiI solution (50µg DiI powder
solved in 50 µL DMSO) was added.

2.7. Immuno- and Thioflavin S-costaining

Three months after hADSCs injection, the rats were
anesthetized with ketamine and xylazine, perfused by 4%
paraformaldehyde in 0.1 mol/L PBS (pH = 7.4). The brains
were taken out and fixed for 24 hours in 10% formalin solu-
tion. Coronal sections were prepared at 5 µm thickness by
microtome after routine paraffin processing.

For immunofluorescent staining, brain sections were
processed according to the regular protocols (23). Briefly,
the sections were fixed in 4% formaldehyde for 20 min-
utes and immunostained with the application of 1:100 di-
lution of primary anti-Aβ rabbit polyclonal antibody fol-
lowed by goat anti-rabbit FITC-conjugated secondary an-
tibody at 1:200 dilution. Thereafter, the sections were
put in 10% formalin for 10 minutes and rinsed in PBS.
The sections were incubated in 0.25% potassium perman-
ganate (10 minutes), and then washed in PBS, incubated
in 2% potassium metabisulfite and 1% oxalic acid until
they seemed white. Then, the sections were washed in wa-
ter and stained for 10 minutes with a solution of 0.015%
Thioflavin-S in 50% ethanol and water. After drying the
sections, they were immersed into Histo-Clear (24). DAPI
was used for counterstaining the nuclei. The sections were
mounted on slides and evaluated under fluorescence mi-
croscope (Labomed microscope equipped with an Invenio
6EIII camera).
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2.8. Statistical Analysis

The data were analyzed by using the Graph pad Prism
program (GraphPad software, Inc. USA). We used One-way
analysis of variance (ANOVA) followed by Tukey’s multiple
comparison post hoc test and two-way ANOVA with Bonfer-
roni post hoc test. Data are presented as Mean± SEM (stan-
dard error of mean). P-value less than 0.05 is considered
statistically significant.

3. Results

3.1. hADSCs Characterization

hADSCs showed positive staining for the specific
mesenchymal surface markers CD73, CD44 (Figure 1A)
and CD90 (Figure 1B). hADSCs indicated high levels of
CD73, CD44 and CD90, which were expressed in 92.28%,
93.65% and 83.5% of the total cell population, respec-
tively. However, a small proportion of hADSCs represented
hematopoietic stem cell surface markers, as well as CD34
and CD45, which were expressed in 18.67% and 16.45% of
cells, respectively (Figure 1C).

3.2. Homing of hADSCs

As shown in Figure 2, hADSCs that were labeled DiI mi-
grated from the site of delivery to the CA1 region of the hip-
pocampus (DiI-labeled hADSCs = red and DAPI-stained nu-
clei = blue).

3.3. Immuno- and Thioflavin S-Costaining

Figure 3 shows immunofluorescent double staining of
primary anti-Aβ rabbit polyclonal antibody followed by
goat anti-rabbit FITC-conjugated secondary antibody (red),
Thioflavin-S staining (green) and merge picture (yellow)
in the CA1 region of the hippocampus in the AD and AD +
Sc groups. Data showed more distinct Aβ immunoreactiv-
ity and Thioflavin-S stain in the AD group compared to the
treatment group. Statistical analysis revealed that there
was no significant difference in immunoreactive positive
plaques between the control and sham groups, but these
plaques increased significantly in the AD group relative to
the control and sham groups (***P-value < 0.001). Nonethe-
less, the administration of hADSCs significantly decreased
immunoreactivity positive plaques in the AD group (###P-
value < 0.001; Figure 4A).

The number of Thio-S-positive plaques was not signif-
icantly different between the control and sham groups;
however, the number of Thio-S-positive plaques increased
significantly in the AD group compared to the control and
sham groups (***P-value < 0.001). Intravenous injection
of hADSCs significantly decreased the number of Thio-S-
positive plaques in the AD group (###P-value < 0.001; Fig-
ure 4B).

In this research, we also investigated Aβ plaques in the
CA1 region of the hippocampus in different groups using
Aβ immunostaining compared to Thioflavin-S staining.

As shown in Figure 4C, we found that the plaques de-
tected by anti-Aβ antibody were significantly more than
those distinguished by Thioflavin-S in all the groups. The
results showed the significant effect of staining method (F
(1, 40) = 42.48, P < 0.0001) and groups (F (3, 40) = 144.58, P
< 0.0001) on the positive Aβ plaques in the CA1 region of
the hippocampus. However, the interaction of these two
factors was non-significant (F (3, 40) = 0.15, P = 0.928).

4. Discussion

The first neuropathological criterion for the diagno-
sis of AD is the aggregation of Aβ peptides that can form
plaques. These plaques are toxic to neurons and lead to
apoptosis and synaptic loss. Upregulated neuroinflam-
matory factors and loss of synaptic markers can lead to
AD progression by causing cognitive disturbances (25-
29). Immunofluorescent staining using anti- Aβ antibody
can detect Aβ plaques in a rat model of AD. Additionally,
Thioflavin-S staining technique is utilized for the detec-
tion of plaques (9). In our study, AD model was confirmed
by histological analysis, while Thioflavin-S and immunore-
active positive plaques increased significantly in the AD
group compared to the control group.

Our study showed that Aβ plaques as toxic elements in-
creased in the AD group. These results are consistent with
a previous report about staining of Aβ in AD. That report
showed that Aβ immunohistochemical staining could de-
tect both fibrillar and non-fibrillar Aβ, whereas Thioflavin-
S identified β-pleated fibrillar amyloids (30). We also ob-
served that the plaques detected by anti-Aβ antibody were
significantly more than those distinguished by Thioflavin-
S in all the groups (comparison of staining methods).
It may be related to the detection of both fibrillar and
non-fibrillar Aβ by immunohistochemical staining (anti-
Aβ antibody) compared to the detection of fibrillar Aβ
by Thioflavin-S staining. There are achievable therapeutic
strategies for AD aiming to prevent and reduce Aβ deposits
(14). Stem cell transplantation has been reported to pre-
vent cell death by reducing Aβ deposits in neurodegenera-
tive disorders.

Studies have shown that stem cells could increase
synaptic density mainly through elevated secretion of neu-
rotrophic and growth factors, which play an important
role in the treatment of neurodegenerative diseases (16, 31,
32). This was the first attempt to measure the amount of
Aβ deposits by Immuno- and Thioflavin S-costaining in a
rat model of AD following hADSCs intravenous administra-
tion.

We found that after the migration of stem cells to the
hippocampus of AD rats, a significant decrease in fluores-
cence intensity of Thioflavin-S and Aβ expression level was
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Figure 1. Flow cytometry analysis of surface markers showed that hADSCs express high level of CD73 (92.28%), CD44 (93.65%) (A) and CD90 (83.5%) (B) express low level of CD34
(18.67%) and CD45 (16.45%) (C).

observed in the hADSCs treatment group, showing the ef-
fective role of hADSCs in decreasing amyloids aggregation.
It seems that hADSCs as therapeutic targets apply neuro-
protective effects related to Aβ clearance. A previous re-
search showed that Aβ synthesis blockade is not effective
in decreasing Aβ levels compared to Aβ clearance (33). In-
vestigations showed that mesenchymal stem cells signifi-
cantly enhanced neuronal survival against Aβ toxicity in
AD models (34). hADSCs could induce endogenous mi-
croglial activation, which led to removing Aβ aggregates

in AD animal models (35). Furthermore, bone marrow-
derived cells could differentiate into functional microglia
and cause Aβ clearance as a therapeutic effect (36). Further
in-depth studies are still necessary to clarify the detailed
mechanisms.

4.1. Conclusions

Our results indicated that hADSCs served an effective
role in decreasing amyloid aggregation by using Immuno-

4 Thrita. 2018; 7(2):e88367.

http://thritajournal.com


Doshmanziari M et al.

Figure 2. Homing of hADSCs in CA1 region of the hippocampus. Nuclei (DAPI - Blue) (A), hADSCs labeled with DiI (Red) (B).

Figure 3. Immunofluorescent staining. Primary anti-amyloid beta rabbit polyclonal antibody followed by goat anti-rabbit FITC-conjugated secondary antibody (red),
Thioflavin-S staining (green) and merge picture (yellow) in CA1 region of hippocampus in AD and AD + Sc groups (scale bar 20 µm).

and Thioflavin-S-costaining. As Aβ toxicity is the major rea- son for neuronal death in AD, hADSCs may be a promising
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Figure 4. Immunoreactive positive plaques in different groups (values are expressed as mean± SEM). N = 6, ***P < 0.001 different from control group, ###P < 0.001 different
from Aβ group (A), N = 6, ***P < 0.001 different from control group, ###P < 0.001 different from Aβ group (B), *P < 0.05; **P < 0.01 show significant difference between Aβ
immunostaining compared to Thioflavine-S staining (C).

candidate for AD therapy due to their high potential for
clearance of Aβ deposits.
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