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Abstract

Targeted cancer therapy is developing rapidly according to the fact that it has been demonstrated that this type of therapy can re-
duce various side effects and adverse events of the commonly available cancer treatment approaches such as chemotherapy and
radiotherapy. This selective type of cancer therapy can mediate encouraging outcomes where the frontline cancer treatment meth-
ods have failed to do so. Aptamer-assisted delivery of various types of cargoes or the utilization of aptamer for the redirection of
delivery vehicles is among various fields of targeted cancer therapy that have gained significant attention lately. Aptamers are
single-stranded oligonucleotides or peptide molecules that harbor significant levels of specificity and affinity toward various types
of targets such as cell surface antigens, ions, toxins, chemicals, etc. They have shown encouraging results in several types of targeted
cancer therapy for the redirection of a variety of cargoes. In this review, we shed the light on the application of aptamers for the de-
livery of nucleotides such as MicroRNAs (miRNAs), short or small interfering RNAs (siRNAs), and short hairpin RNA or small hairpin
RNAs (shRNAs) that harbor tumor suppression properties in various kinds of malignancies.
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1. Context

Novel approaches in the field of cancer treatment have
revolutionized the way cancer patients are treated nowa-
days (1-3). The advent of targeted cancer treatment modal-
ities, such as monoclonal antibodies or chimeric antigen
receptor (CAR) T cells, has prompted the idea that targeted
cancer therapies can ameliorate the side effects or enhance
the therapeutic benefit of conventional cancer treatments.
One of such targeted cancer therapies can be based on ap-
tamer (1-3). Aptamers are short single-stranded oligonu-
cleotides (either DNA- or RNA-based) or peptide molecules
that have the ability to bind to a specific target molecule
(4, 5). These oligonucleotides harbor significant binding
affinity toward various targets, which can be of a wide
range from cell surface antigens to soluble ligands (4, 5).
Aptamers exhibit high affinity and specificity, similar to
those of antibodies, because of their unique folding prop-
erties, which enable them to fold into tertiary structures
(4, 5). However, aptamers suffer from several limitations,
including their susceptibility to degradation in biologi-
cal media or the high rate of renal clearance of naked ap-

tamers, which is due to their small size.

The utilization of aptamers in various fields of research
is mainly due to their multiple favorable properties that
can be efficiently exploited for the redirection of various
delivery platforms towards the tumor cells of interest with
a great level of specificity (4, 5). Aptamers came to the spot-
light of attention when in 2004, Macugen® (also known
as Pegaptanib) became first aptamer approved by the US
Food and Drug Administration (FDA) as an anti-angiogenic
agent for the treatment of age-related macular degenera-
tion (AMD) (6, 7). In comparison with antibodies, aptamers
have a shorter generation time, exhibit more capability
for modifications, harbor significant thermal stability, and
their production is more cost-effective (4, 5).

To this date, aptamers have been utilized in many fields
of investigation. The high affinity and specificity of ap-
tamers allow for their application for clinical diagnostic
purposes. They are also used in environmental protection
and food safety fields. Aptamers are also used in the de-
tection of pathogen microorganisms such as various types
of viruses, bacteria, and parasites (8-23). Cancer recogni-
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tion is another field in which aptamers are utilized for the
detection of cancer-associated biomarkers such as mucin
1 (MUC1) and human epidermal growth factor receptor 2
(HER2) (24). For recognition purposes, aptamers are also
used for the detection of the surface biomarkers of stem
cells such as EpCAM, CD133, CD117, and CD44 (25). In addi-
tion to the abovementioned applications of aptamers, they
are also used for monitoring environmental contamina-
tions, including chemicals and toxins, for the production
of biosensors capable of detecting various types of disease-
related biomarkers, and they are also used as therapeutic
agents (26, 27). Aptamers can also be conjugated to dif-
ferent types of molecules, such as cytotoxic drugs or nu-
cleotides with tumor-suppressing properties (28). More-
over, they can be exploited for the redirection of cargo-
loaded delivery vehicles such as liposomes, nanoparticles,
and micelles (28). In this review, we discuss examples of
aptamers used for the delivery of nucleotides that exhibit
tumor-suppressing properties. We also discuss how these
delivery platforms can be uniquely beneficial in the field of
targeted cancer therapy.

2. Selective Delivery of Oligonucleotides Using
Aptamer-Armed Platforms

2.1. Delivery of miRNAs

MicroRNAs, also known as miRNAs or miRs, are a class
of 20 - 22 nucleotide-long non-coding small RNAs consid-
ered important regulators of various vital cellular func-
tions such as proliferation, differentiation, and apoptosis
(29-35). In addition, miRNAs exert such effects through
the mechanism of complementary base-paring with their
target mRNAs in a perfect or imperfect matching pat-
tern leading to the subsequent degradation of the target;
thus directly causing a transcriptional down-regulation
or translational repression of the relative genes, which
could include various tumor suppressor genes (29-35).
Cancer therapeutic strategies leading to the loss of func-
tion of various cancer-specific miRNAs through their bind-
ing to miRNA-associated gene silencing complexes via
fully-complementary base-pairing with synthetic oligonu-
cleotides called “antagomir” or “antimiR” can lead to sig-
nificantly reduced gene expression profiles of oncogenes
as well as a considerably diminished cell viability of tumor
cells (36-38).

Specific delivery of particular antimiR oligonu-
cleotides to cancer cells through the targeting of nucleolin
(the foremost nucleolar protein in growing eukaryotic
cells, which is overexpressed in various types of malig-
nancies) in cells that overexpress this cell surface protein
can be utilized as a potent strategy to disrupt the miRNA-
mediated oncogenic circuits in these cells (39, 40). Zhang

and colleagues have reported the fabrication of a trace-
able and dual-targeted drug delivery system based on
DNA-hybrid-capped mesoporous silica-coated quantum
dots (MSQDs) in which the release of the loaded drug
(doxorubicin) is controlled by miRNA (miR-21) (41). MiR-21
is one of the oncogenic miRNAs, which is overexpressed in
various human cancers. Therefore, the suppression of its
expression through delivering antisense oligonucleotides
such as antimiR-21 can lead to the activation of caspase-
dependent apoptosis and subsequent eradication of the
tumor cells in a specific way. Moreover, the antimiR-21
strand can be coupled with a DNA aptamer, which leads
to the formation of a DNA hybrid that can specifically
recognize antigens overexpressed on the surfaces of the
target tumor cells alongside having an exclusive response
to miR-21 (which is proceeded through a complementary
base-pairing mechanism) (41). In the study by Zhang and
colleagues, the mentioned multifunctional MSQDs were
loaded with doxorubicin, and they were capped with the
DNA hybrid (synthesized by coupling antimiR-21 at the 3’
end of the AS1411 aptamer, a nucleolin-targeting aptamer)
by forming 12 base pairs between parts of anti-miR-21 and
the anchor-DNA on the nanoparticles resulting in the
formation of a DNA gate for the prevention of doxorubicin
leakage. These nanocarriers enter the tumor cells upon
the recognition of nucleolin by AS1411. Since miR-21 is over-
expressed in the cytoplasm of the tumor cells, they play
the role of an exclusive key to unlock the doxorubicin gate
and meditate its release from the delivery vehicle complex
by competing with anchor-DNA for full hybridization
with anti-miR-21. Additionally, further enhanced efficacy
of the chemotherapy is achieved by the complementary
base pairing of anti-miR-21 with miR-21 resulting in the
suppression of miR-21 expression (41). In a nutshell, this
platform might elevate the therapeutic efficacy while
diminishing unwanted adverse effects (41).

Aptamer-redirection of miRNAs has been investigated
in various types of cancers, including non-small cell lung
cancer (NSCLC), glioblastoma, prostate cancer, breast can-
cer, and gastric cancer (42-44). Esposito et al. have in-
vestigated specific aptamers for the receptor tyrosine ki-
nase Axl conjugated to the let-7g miRNA (42). They have
demonstrated that these constructs selectively target Axl-
expressing tumor cells and effectively suppress tumor
growth in xenograft models of lung adenocarcinoma (42).
Moreover, Russo et al. have investigated the Axl-specific
aptamer-redirected reintroduction of miR-34c-3p to NSCLC
cells (44). NSCLC cells exhibit a decreased level of miR-34c-
3p as compared with normal lung cells (44). Therefore,
the authors of this study hypothesized that this reintro-
duction might decrease the proliferation of NSCLC tumor
cells in vitro (44). They demonstrated that this method can
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suppress tumor cell growth in an efficient manner (44).
Additionally, researchers have also investigated the Axl-
aptamer-assisted delivery of miR-212 to NSCLC cells (43).
TNF-related apoptosis-inducing ligand (TRAIL) is a well-
recognized tumor suppressor pathway downregulated in
many types of malignancies such as NSCLC (43). Recover-
ing the activity of TRAIL can be achieved through reintro-
duction or overexpression of miR-212, which can lead to a
targeted tumor cell apoptosis-mediated elimination (43).
Iaboni et al. demonstrated that Axl-aptamer-assisted deliv-
ery of miR-212 to NSCLC cells could lead to selective tumor
cell elimination (43).

2.2. Delivery of siRNAs

Short or small interfering RNAs (siRNAs) are a class
of 20 - 25 base pair long synthetic double-stranded non-
coding RNA molecules, which similar to endogenous mi-
croRNA, can operate within the RNA interference (RNAi)
pathway to mediate highly efficient and specific post-
transcriptional expression silencing of genes that are tra-
ditionally considered undruggable (45). Owing to their
high therapeutic potential, siRNA-based approaches are
being considered for various types of disease treatments,
including several cancer types and viral infections (46-49).
The application of siRNA-based therapeutics is still hin-
dered by several drawbacks such as the instability of un-
modified siRNAs in the bloodstream, their immunogenic-
ity, and their weak cell-membrane crossing capabilities
(45, 50). These limitations have encouraged researchers to
develop safe siRNA delivery methods for redirecting them
to their specific action sites without off-target toxicities or
adverse effects (45, 50).

Targeted therapeutic agents consisting of aptamer-
siRNA chimeras are currently being appraised for the
treatment of several cancer types such as prostate cancer
[by targeting prostate-specific membrane antigen (PSMA)
and integrin alpha-V beta-3 (αVβ3)], B cell non-Hodgkin
lymphoma [by targeting B-cell-activating factor-receptor
(BAFF-R)], and breast cancer (by targeting HER2) (51-56).
Aptamer-siRNA chimeras have also been investigated in
other fields such as drug hypersensitivity (57) and HIV-1
treatment (58-60).

In one study, an AS1411 aptamer-redirected
nanoliposome-based delivery system has been utilized for
the co-delivery of the chemotherapeutic drug paclitaxel
(PTX) and Polo-like kinase 1-targeted siRNA (PLK1-targeted
siRNA) to breast cancer cells (61). PLK1 is a highly conserved
serine/threonine protein kinase with important regula-
tory mitotic effects whose high expression levels have
been significantly associated with abnormal tumor cell
proliferation, metastasis, angiogenesis, and tumor prog-
nosis in various types of cancers, including breast cancer

(62, 63). Therefore, PLK1 can be considered a promising
primary target candidate for cancer treatment, including
PLK1-targeting RNAi-based gene therapy (61, 64-66). The
simultaneous co-delivery of PTX and siRNA proposed by
the mentioned study could result in a synergistic incre-
mental pattern of apoptotic cancer cells and diminished
angiogenesis (61). Therefore, this method may exhibit
various advantages over methods separately delivering
PTX and siRNA (61). It could also demonstrate a valuable
potential for suppressing the growth of breast cancer in
preclinical models (61).

In another example, Zhou et al. have utilized anti-BAFF-
R aptamers for the redirection and delivery of nanoparti-
cles loaded with the STAT3 siRNAs (67). They have demon-
strated that the BAFF-R aptamers can specifically redirect
the nanoparticles toward various B cell lines (67). This ac-
tion is followed by the internalization of the nanoparticles,
which eventually leads to the disruption of STAT3 mRNAs
(67).

Moreover, PSMA is a very popular target antigen tar-
geted in investigations studying aptamer-assisted redirec-
tion platforms. In this regard, Wullner et al. conju-
gated siRNAs specific for eukaryotic elongation factor 2
mRNA (eEF2K) to PSMA-targeting aptamers (68). Inhibit-
ing EEF2 can mediate protein synthesis blockade leading
to apoptosis in the PMSA-expressing prostate cancer cells
(68). Moreover, other researchers have generated aptamer-
siRNA chimeras made of two anti-PSMA aptamers in be-
tween which two siRNAs, one specific for EGFR and the
other one specific for survivin, are located (69). The au-
thors have reported that these chimeras can suppress EGFR
and survivin expression at the same time and mediate
apoptosis both in vitro and in vivo in an efficient manner
(69).

2.3. Delivery of DNAzymes

Deoxyribozyme (also known as DNA enzyme,
DNAzyme, Dz, or catalytic DNA), is another example
of nucleotides with therapeutic properties. They are
synthetic single-stranded DNA molecules capable of
mediating chemical or catalytic reactions on particular
nucleic acid targets similar to those of other biological
protein-based enzymes or ribozymes (70-72). DNAzymes
have been at the center of attention mainly due to their
outstanding advantages, including their affordability,
stability properties, and easy biosynthesis process (70-72).

DNAzymes has been proven to be capable of cleav-
ingβ-catenin and survivin mRNA and BCR-ABL transcripts,
which further proves their potent role in growth inhibi-
tion of tumor cells alongside justifying the numerous at-
tempts made for the development of efficient DNAzyme
delivery platforms such as Poly(lactic-co-glycolic acid)
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(PLGA) microspheres, transferrin modified PEGylated poly-
plexes, poly-L-Lysine (PLL) microspheres, nanoparticulate
systems, and dendrimers (73-77). These delivery platforms
can be redirected towards tumor cells of interest using ap-
tamers targeting tumor cell surface antigens. Such plat-
forms can selectively deliver these delivery vehicles with-
out targeting normal cells.

2.4. Delivery of shRNAs

Short hairpin RNAs or small hairpin RNAs (shRNAs),
also known as hairpin vectors, are artificial RNA molecules
biosynthesized exogenously or transcribed from RNA poly-
merase III promoters in vivo (78). These molecules are ca-
pable of inducing stable and heritable gene silencing ef-
fects with high specificity via RNAi pathway, thus allow-
ing for the generation of continuous gene-modified cell
lines or transgenic animals (78). After the generation of
the shRNA transcripts, they are processed and loaded into
RNA-induced silencing complex (RISC) in the cytoplasm
undergoing further cytoplasmic RNAi processing (79). As
the story is with plasmids, shRNAs encounter difficulties
passing cellular membranes and migrating to the nucleus;
therefore, their efficient delivery into target cells requires
specific carriers such as nanocarriers or dendrimers capa-
ble of overcoming such obstacles (80-82).

One study has developed a novel targeted delivery plat-
form for specific delivery of shRNA plasmids through the
targeting of nucleolin ligand on target cancer cells (83).
This targeted shRNA delivery system is composed of alkyl-
modified polyamidoamine (PAMAM) dendrimers with 10-
bromodecanoic acid (10C) and 10C-PEG to improve the ef-
ficiency of transfection, shRNA plasmid for specific knock-
down of Bcl-xL protein, and the AS1411 aptamer for targeted
delivery towards nucleolin over-expressing cancer cells
(83). Dendrimers are star-shaped structures with numer-
ous branches whose dimensions do not exceed nanome-
ter scales. The fate of living cells is determined by the bal-
ance between the pro-apoptotic members of the Bcl-2 fam-
ily, such as BAX, BAK, and BOK, which act by protecting the
outer mitochondrial membrane and inhibiting the release
of cytochrome c and the anti-apoptotic members, includ-
ing Bcl-2, Bcl-xL, and MCL1. Selective silencing of Bcl-xL can
be exploited as a strategy for apoptosis induction in can-
cer cells since the high level of Bcl-xL expression has been
reported in numerous solid tumors such as bladder and
gastric cancer (83-86). Without causing considerable cyto-
toxicity, the abovementioned targeted shRNA delivery sys-
tem could efficiently downregulate the expression of Bcl-
xL up to 25% and induce strongly selective late apoptosis in
14% of target cancer cells while exhibiting improved trans-
fection efficiency in comparison to non-targeted vectors

(83). In a nutshell, this strategic delivery system demon-
strates that efficient and targeted apoptosis induction in
various cancer cells through the knockdown of Bcl-xL ex-
pression using shRNAs can be achieved through aptamer-
assisted redirection of delivery vehicles such as PAMAM
dendrimers (83).

Moreover, Kim et al. have investigated the co-delivery
of shRNAs specific for Bcl-xL and the chemotherapeutic
agent doxorubicin using polyplexes redirected toward
prostate cancer cells using anti-PSMA aptamers (87). They
have reported that this construct effectively targets PSMA-
expressing prostate cancer cells in a very selective manner
(87). These results indicate that co-delivery of chemother-
apeutic agents and shRNAs (such as the anti-Bcl-xL shRNA)
can selectively target cancer cells and eliminate them with
a significant level of specificity (87).

Furthermore, other researchers have generated ap-
tamers harboring affinity and specificity for the HIV inte-
grase (88). They have developed shRNA-aptamer fusions by
joining the aptamers as the terminal loop of shRNAs tar-
geting HIV Tat-Rev (88). These researchers have reported
that the shRNA-aptamer fusions (using an aptamer named
S3R3) can efficiently block HIV replication even in a long-
term manner (88). They have also indicated that these
shRNA-aptamer fusions exhibit similar suppression prop-
erties as those of the integrase inhibitor raltegravir (88).
Such data can suggest that aptamer-shRNA fusions may
have a bright future ahead of them and may be used for
fighting against viral infections that can mediate malig-
nancies such as the human papillomavirus (HPV).

3. Summary and Perspectives

Herein, we discussed the potential and application of
aptamers specific for different targets utilized for the tar-
geted delivery of various types of nucleotides with tumor
growth suppression characteristics. Broadening the va-
lidity of the herein discussed platforms can be achieved
through in-depth assessments and preclinical models of
malignancies, especially where only in vitro assessments
have been reported. Moreover, as we discussed through-
out the article, the selective delivery capability of aptamers
could be exploited for the treatment of viral infections and
many other conditions as well. Special efforts should be
made to be able to use innovative platforms for achieving
such aims. Furthermore, alongside the types of malignan-
cies popular in the field of aptamer-assisted cargo delivery
investigations, other types of less investigated malignan-
cies should also be considered since it is speculated that
such outcomes can be achieved for their treatment as well.
It is worth mentioning that there are still limitations sur-
rounding this type of therapy. These limitations may in-
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clude the off-tumor targeting toxicity of these platforms
that can overshadow the potential of this type of cancer
therapy. Therefore, discovering new strategies for tacking
this hurdle is a factor of paramount importance.
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