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Abstract

Chimeric antigen receptor (CAR) T cell therapy is rapidly being established as a new cancer treatment modality especially for the
treatment of hematologic malignancies. Alongside being capable of inducing durable responses in such malignancies, CAR T cell
therapy has always been accompanied by exclusive toxicities such as cytokine release syndrome (CRS), that can range from mild to
life-threatening. These toxicities require intensive monitoring and fast and executive management procedures to reduce the level
of damages or the rate of mortality in CAR T cell therapy recipients. In this review, we tend to introduced some of the most common
CAR T cell therapy-related toxicities and their clinical demonstrations. Furthermore, we also introduce some of the management
procedures commonly considered in this regard.
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1. Context

Cellular immunotherapy using T cells genetically mod-
ified to express chimeric antigen receptors (CAR T cells)
has been efficacious in selectively redirecting the cytotox-
icity of T lymphocytes towards tumor cells of interest (1).
To this date, this type of therapy has been investigated in
a wide spectrum of malignancies from hematologic ma-
lignancies to solid tumors (1-6). CAR molecules are the re-
sult of combining synthetic biology with basic immunol-
ogy and cancer science (7, 8). They are made of an extracel-
lular domain (responsible for the redirection and binding
of CAR T cells to the target antigen expressed on the sur-
face of cancer cells), a hinge, a transmembrane domain,
and an intracellular domain (consisted of one or two co-
stimulatory domains and an activation domain) (7, 9-11).
The extracellular domain is the antigen-recognizing tar-
geting domain of CARs which are usually based on the
single-chain variable fragment (scFv) of a monoclonal an-
tibody (7, 11-13). Variable single domains of camelid heavy-
chain-only antibodies (known as VHH or nanobodies®)
have also been known as potent targeting domains for the
construction of CAR molecules (1, 14-20). Moreover, to-
gether, the costimulatory domain (s) (such as CD28, OX40,
and 4–1BB) and the activation domain (derived from the
CD3ζ of T cell receptor) of CARs are responsible for the ac-

tivation of the engineered T cell upon target antigen en-
gagement (7, 21). The co-stimulatory domain of CARs severs
as a helping hand to the activation domain in the process
of CAR T cell activation upon target antigen engagement
(21). CAR T cells harboring co-stimulatory domains (such
as the second-generation and the third-generation CAR T
cells, which have one and two costimulatory domains, re-
spectively) have exhibited superior tumoricidal activity in
the clinics, as compare with CAR T cells having only an acti-
vation domain (known as the first-generation CAR T cells)
(8, 22, 23).

CAR T cell therapy has demonstrated its ability in
mediating promising results in various hematologic ma-
lignancies (1, 11, 24-26). The clinical approval of CAR T
cells by the US Food and Drug Administration (FDA) be-
gan with Tisagenlecleucel for the treatment of patients
with relapsed and/or refractory (R/R) B-cell acute lym-
phoblastic leukemia (B-ALL) (4, 27, 28). Later, the sequen-
tial FDA approvals of CAR T cell products continued with
axicabtagene ciloleucel for diffuse large B-cell lymphoma
(DLBCL), brexucabtagene autoleucel for mantle cell lym-
phoma (MCL), and lisocabtagene maraleucel for DLBCL (1,
29-32).

With becoming more popular and as investigated
more in clinics, CAR T cell therapy-related toxicities
were identified with more detail (1, 10, 13). CAR T cell-
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related toxicities such as cytokine release syndrome (CRS),
macrophage activation syndrome (MAS), neurological tox-
icities, tumor lysis syndrome (TLS), etc. are different from
the toxicities of the traditional cancer treatment methods
(33-36). In some cases, patients suffering from these toxic-
ities require meticulous clinical attention (33, 34). There-
fore, to get to know such toxicities and how they mani-
fest themselves in detail can give us a better overview of
how we can find efficient strategies to prevent, mitigate,
or manage them (37-39). In this review, we try to introduce
some of the most common CAR T cell therapy-related toxi-
cities. Furthermore, we briefly discuss how these toxicities
manifest themselves.

2. Examples of Favorable Clinical Outcomes

CAR T cells targeting CD19 have shown promising
and encouraging results in the treatment of certain lym-
phomas and leukemia and have proven themselves as
trustable novel anti-cancer therapeutics throughout dif-
ferent courses of clinical investigations (1, 40-42). Com-
pleted clinical trials which have released their results
regarding the utilization of genetically modified T cells
equipped with a chimeric receptor for the treatment of
ALL have shown encouraging clinical outcomes. Such out-
comes include leukemia-free states as declared by high-
resolution flow cytometry in 27 out of 29 patients (93%) (43)
and complete remission (CR) sustained for up to 2 years
in 27 out of 30 patients (90%), 15 of whom had already un-
dergone stem-cell transplantation and 2 others with the
blinatumomab-refractory disease (44).

In 2016, Brudno et al. reported minimal residual dis-
ease (MRD)-negative CR in 4 out of 5 patients (80%) (45)
while Lee and colleagues reported CR in 14 out of 20 pa-
tients (70%) and MRD-negative CR in 12 of these patients
(60%) with an estimated leukemia-free survival rate of
78.8% and 51.6% at a median follow-up of 4.8 and 10 months,
respectively (46). In 2013, Grupp et al. reported morpho-
logic remission with an MRD of < 0.01%, approximately 1
month after the therapy in two children which was only re-
fractory in one due to the presence of CD19-negative blasts
(47). The abovementioned clinical results can be viewed
as a clinical victory and lead us to the conclusion that ge-
netically modified T-cells, equipped with a chimeric recep-
tor for anti-cancer therapy, are close to being recognized as
a universal platform for the treatment of various types of
hematologic malignancies.

Since two patients, who were central nervous sys-
tem (CNS) leukemia-positive at the time of enrollment,
achieved remission as the level of CAR T cells elevated in
their cerebrospinal fluid (CSF) (46), it is safe to hypoth-
esize that the migration of CAR T cells into the CFS can

be viewed as a highly efficient mechanism for the preven-
tion of possible relapse in the CNS (48). Furthermore, this
phenomenon might also suggest that CAR T cell therapy
might be an ideal future choice for the treatment of pri-
mary CNS cancers and CNS lymphomas (47). CAR T cell ther-
apies, despite their favorable clinical outcomes, are also in-
tertwined with various unwanted side effects which might
limit success rate or their broader application. In the next
section, we will briefly discuss those adverse events and
highlight the clinical interventions used for their manage-
ment and resolution, so far.

3. Toxicities and Management

3.1. CRS

CRS as the name implies is characterized by pro-
nounced multi-cytokine over-flood resulting from an im-
mune system hyperactivation caused by rapid T-cell stim-
ulation and proliferation (1). CRS has been a common
toxicity engaged in almost every clinical trial investigat-
ing anti-CD19 CAR T cells as a suitable therapy for hema-
tologic malignancies. Fever (44-47, 49-51), tachycardia (45,
50, 51), hypotension (44-47, 50, 51), acute respiratory dis-
tress syndrome (47, 51), and multiorgan failures are exam-
ples of which CRS manifests itself as and they can range
from mild to a series of life-threatening complications (44-
47, 49-51). It is important to keep in mind that patients with
CRS-related life-threatening toxicities might require metic-
ulous intensive medical care based on the severity level of
this adverse event.

Clinical investigators have reported many CRS-related
profiles of cytokine levels such as elevated levels of soluble
interleukin (IL)-1 receptor α, IL-2, IL-2 receptor (47) soluble
IL-2 receptor (44), IL-6 (43, 45-47), IL-10 (43, 46, 47), inter-
feron γ (43, 44, 46, 47), GM-CSF (43, 46), TNF-α (47), and lac-
tate dehydrogenase (LDH) (45, 47, 51). The multi-cytokine
profile patterns of CRS mirror those of the MAS and they
have similarities in terms of laboratory findings and clin-
ical manifestations (47, 49, 51-55). Anti-cytokine therapy,
consisting of tocilizumab, a humanized monoclonal an-
tibody against the IL-6 receptor, has been suggested and
clinically applied as the first-line agent for the resolution
of CRS (44, 46, 47, 51, 56, 57), due to its rapid response
and effectiveness in the reversal of the syndrome without
any further negative impact on the antileukemic activity
or expansion of CAR T cells (47). Moreover, it has been re-
ported that corticosteroids, occasionally used for CRS and
CRS-related toxicity resolution alongside tocilizumab, de-
spite their slight positive effects, have profound negative
effects on CAR T cell persistence and proliferation while ad-
ministered in high doses for the management of CRS (47,
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50, 56-58). There also lies a strong correlation between CRS
severity and the patient’s disease burden, with higher dis-
ease burden resulting in more severe CRS clinical and lab-
oratory manifestations (46).

3.2. Severe CRS

Laboratory features attributed to severe CRS (sCRS), not
an uncommon toxicity caused by CAR T cell therapy of can-
cers (43, 44, 46, 47), includes higher peak levels of IL-6,
interferon γ (44, 46), ferritin, soluble IL-2 receptor (44),
which were higher than those in patients with CRS, as well
as elevated prothrombin and coagulopathy (44). Bleeding,
vasopressor-requiring hypotension, and ICU-requiring res-
piratory failure are also among other clinical manifesta-
tions caused by sCRS (44).

A pronounced correlation exists between the probabil-
ity of sCRS development and the degree of disease burden,
in a way that higher disease burden increases the risk of
sCRS development (43, 44). Besides the fact that the com-
mercially approved monoclonal antibody tocilizumab is
considered for the treatment of sCRS (44), collectively,
two sCRS- and multiorgan failure-induced mortalities have
been documented (with one of them being uncreative to
tocilizumab, etanercept, and corticosteroids) (43).

3.3. MAS

MAS is a serious life-threatening complication result-
ing from the hyper-activation and excessive proliferation
of macrophages and T lymphocytes (59). MAS-related clini-
cal manifestations following the administration of CAR T
cells include hyperinflammation (49), fever (49, 51), and
hepatosplenomegaly (47, 49, 51), alongside laboratory fea-
tures such as cytopenia, elevated soluble IL-2 receptor
α levels, hyperbilirubinemia (49, 51), elevated levels of
aminotransferases (47, 49), LDH (47, 51), and coagulopathy
(47, 51), as well as abnormally elevated cytokine profiles
(47).

3.4. Tumor Lysis Syndrome (TLS)

Tumor lysis syndrome (TLS) refers to the constellation
of metabolic contents released into the bloodstream as a
result of tumor cell lysis caused by anti-cancer therapies.
Such metabolic contents can eventually cause medical con-
ditions such as hyperphosphatemia, hyperuricemia, and
hyperkalemia (60). Since TLS is a result of cellular death
byproducts, the larger the tumor burden or the faster the
tumor cell proliferation speed is, the more likely and fre-
quent it is for TLS to occur (61). Moreover, TLS has also been
frequently associated with elevated levels of LDH occasion-
ally accompanied by fever (47).

3.5. Graft-Versus-Host Disease

Graft-versus-host-disease (GVHD) is an immune re-
sponse that can have adverse effects on the CAR T cell
recipient’s vital organs and it may require the admin-
istration of immunosuppressive drugs (which in their
way increase the risks of infectious diseases and other
immunosuppression-related complications) (62). Since
the early days of considering this therapy for the treat-
ment of ALL, GVHD has not been a famous complication
in post-transplant patients (43-47, 63). However, only one
case of chronic GVHD development in a patient with pre-
vious acute skin GVHD has been reported which had hap-
pened 3 months after the beginning of the therapy (43).
Subsequently, treatment with corticosteroid was consid-
ered suitable for the management of the incidence in this
case (43).

3.6. Constitutional CRS

Constitutional CRS-related occurrences, which are
more general and cannot be meticulously categorized, also
manifest during the onset of the cytokine syndrome. The
first and most common of these occurrences is fever (44-47,
49-51), which surfaces earlier than any other general clini-
cal manifestations of CRS as well as multiple subsets of fa-
tigue (50).

3.7. Hepatic Complications

Liver-related laboratory findings such as hyperbiliru-
binemia (45, 49, 51), elevated levels of aspartate amino-
transferase (AST) (45, 47), alanine aminotransferase (ALT)
(45, 47, 51), and alkaline phosphatase (ALP) (45) have all
been reported in numerous CAR T cell clinical trials. Col-
lectively, these complications led to the conclusion of nam-
ing hepatic dysfunction as the most common type of organ
dysfunction following the administration of CAR T cells
(51).

3.8. Pancreatic Complications

Toxicities that affect the pancreas are not deemed pop-
ular and are much less reported with pancreatitis develop-
ment only being reported in 5 patients (approximately 13%)
following the commencement of CAR T cell therapy (51).

3.9. Renal Complications

Acute kidney injury (AKI) refers to a clinical syn-
drome characterized by the accumulation of nitrogen
metabolism products, such as urea, and a subsequent de-
cline in renal excretory rate alongside a decrease in urine
output commonly caused by sepsis (64). This complication
has rarely been engaged in the adverse events caused by ge-
netically manipulated T cells and has been known to range
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from mild to stage 2 or 3 of the syndrome (51) alongside
other kidney-related toxicities categorized as renal elec-
trolyte imbalances (45, 46).

3.10. Pulmonary Complications

The respiratory system can also be affected by the toxi-
cities caused by this treatment modality. Pulmonary com-
plications include hypoxia (45, 46, 50), dyspnea (45), in-
tensive care unit requiring CRS-related respiratory insuffi-
ciencies (44), acute respiratory failure (which could be re-
solved with the help of invasive mechanical ventilation),
and acute respiratory distress syndrome (ARDS) (51). Of
note, it has been reported that grade 4 ARDS can be treated
with a single course of etanercept and tocilizumab without
the need for further vasoactive medications or ventilator
support (47).

3.11. Cardiovascular Complications

Adverse events having substantial impacts on the
cardiovascular system have appeared commonly and in-
cluded tachycardia (45, 50, 51), hypotension (44-47, 50, 51),
hypertension, cardiac arrest (46), vasoplegic shock (51),
and systolic dysfunction (45, 46, 51).

3.12. Musculoskeletal Complications

Myositis characterized by muscle inflammation (45),
along with elevated levels of creatine phosphokinase (CPK)
(occasionally associated with both muscle pain and weak-
ness) (45, 46), and CRS-related myalgias (51) are collectively
among the most common clinically unfavorable adverse
events influencing the muscular system following CAR T
cell therapy.

3.13. Gastrointestinal Complications

Gastrointestinal complications were also experienced
by the respective patients which included diarrhea (45,
50), nausea (45), mild mucositis (43) (which refers to the
inflammation of the digestive tract lining mucous mem-
branes), as well as colitis possibly originated from an infec-
tious cause (45).

3.14. Hematologic Complications

Various hematologic complications have been re-
ported in clinical trials of CAR T cell which include throm-
bocytopenia (45, 46, 51), anemia, (45, 46), neutropenia
(45, 46, 50), febrile neutropenia (43, 45-47, 50), lympho-
cytopenia, and leukopenia caused by lympho-depleting
chemotherapy (46). Furthermore, hypofibrinogenemia
(47, 49, 51), intravascular coagulation (43), and B-cell
aplasia (occasionally in a prolonged fashion) (44, 47) have
all been found to be some other hematological adverse
events documented by the relative clinical investigations.

3.15. Neurologic Toxicities

Toxicities impacting the nervous system have played a
lead part from the conception of this type of cell therapy.
In detail, higher levels of IL-6, IFN-γ, and TNF-α, at the be-
ginning of the therapy could subsequently act to increase
the likelihood of grade 3 or higher severe neurotoxicity de-
velopment (43, 44). Moreover, IL-6 concentration itself is
a factor of paramount importance for the development of
grade 3 or higher neurotoxicity according to univariate lo-
gistic analysis (43). However, since there have been cases in
which the neurologic toxic effects were unpreventable by
anti-cytokine therapy consisting of tocilizumab, it might
be considerate to conclude that there is no correlation be-
tween the severity of CRS and the occurrence of neurotoxi-
city (44). The correlation between the development of neu-
rotoxicity and the administration of genetically manipu-
lated T-cells is due to their migration into the CSF of the re-
spective patients which, with a look on the bright side, can
also play a powerful role in the elimination of CSF leukemia
(46, 47).

Other common neurologic side effects of CAR T cell
therapy may include headaches (45, 46), confusion (44, 51),
tremor (46), hallucinations (44, 46, 51), encephalopathy,
(43, 44, 47, 51), and seizures (43, 44, 46, 50, 51). Except for
one reported fatality due to severe irreversible neurologic
deficits (122 days after the beginning of the therapy), the
complete disappearance of the neurologic toxicity mani-
festations over days to weeks is noteworthy (43).

3.16. Infectious Diseases

Patients with leukemia who are enrolled in CAR T cell
therapy clinical investigations usually undergo lympho-
depleting chemotherapy prior to the administration of the
CAR T cells (1). This procedure leads to the debilitation of
the recipients’ immune system which makes them invit-
ing and welcoming hosts for adverse effects caused by op-
portunistic infections (1). In detail, colitis development
(possibly caused by a previous infection which had eluded
the weakened immune system) (45), urinary tract infec-
tion (50), and other likely opportunistic infections can be
mentioned as examples in this regard (51).

4. Conclusions

The undisputable benefit of CAR T cell therapy has been
demonstrated in various hematologic malignancies unre-
sponsive to the commonly available treatment methods.
However, comprehensive knowledge for the management
and prevention of the early and late adverse events of this
type of therapy is an extremely crucial factor for creating
successful clinical outcomes. So far, many strategies have
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been proposed for the prevention and mitigation of some
of the herein discussed toxicities (which are comprehen-
sively discussed elsewhere) (10, 13, 65-67). However, there
are remaining ambiguities regarding the prevention or
management of several of these adverse events. As our
knowledge of the detailed mechanism of action and the
clinical demonstration of these toxicities evolves, it will
be much easier to predict their onset once the early signs
emerge. Therefore, it will also be easier to manage the un-
wanted damages and to unleash the tumoricidal power of
this type of anticancer therapy.
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