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ACE2 in SARS-CoV-2-Mediated COVID-19: A Brief Review
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Abstract

Angiotensin-converting enzyme 2 (ACE2) is widely known as the essential receptor for severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2). SARS-CoV-2 is the cause of the globally known coronavirus disease 2019 (COVID-19) pandemic, which has been
the leading cause of virus-related mortality since early 2020. A wide range of human cells in different human organs express ACE2.
The importance of ACE2 in the involvement of human organs during COVID-19 and its critical role in the process of target cell infec-
tion have rendered it an interesting therapeutic target. In this review, we briefly focus on ACE2 and its general roles in the human
body and highlight the roles of ACE2 in the emergence of COVID19. Ultimately, we discuss the strategies for preventing virus entry
using ACE2 blocking.
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1. Context

Coronavirus disease 2019 (COVID-19) is an infectious
disease initiated when an individual is infected by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), a recently emerged coronavirus. This infectious disease
was documented in late 2019 in Wuhan, China (1). Alike pre-
vious coronaviruses such as SARS-CoV-1 and Middle East res-
piratory syndrome-related coronavirus (MERS-CoV), SARS-
CoV-2 is simply transferred through human-to-human con-
tact (1). Risk factors for a poor prognosis in COVID-19 pa-
tients include older age, high body mass index (BMI), and
numerous clinical conditions such as overweight, heart-
related conditions, diabetes, or respiratory system disor-
ders (1).

Angiotensin-converting enzyme 2 (ACE2) acts as an es-
sential enzyme in the renin-angiotensin system (RAS) (2,
3). ACE2 is also engaged in systemic vascular resistance
(2, 3). Additionally, ACE2 also acts as the entry mediator
for SARS-CoV-2, with important roles in the emergence and
progression of COVID-19 (2). In detail, ACE2 provides viral
entry into human cells via binding of the viral spike (S) pro-

tein of SARS-CoV-2 (2). This mechanism leads to virus inter-
nalization and cell infection by SARS-CoV-2 (2). It is worth
mentioning that SARS-CoV-1 also uses this action mecha-
nism for target cell entry and infection (2, 3). However, var-
ious studies have demonstrated that SARS-CoV-2 is more
pathogenic than its predecessor due to its 10- to 20-fold in-
creased binding affinity (2). According to recent studies,
SARS-CoV-2 cell entry and its pathologic activity and reac-
tions majorly take place in cells of the (upper) respiratory
tract (2). In addition, local expression of ACE2 by other or-
gans in the body (e.g., the kidneys or the gastrointestinal
tract) renders these parts of the body also susceptible to
virus infection (2).

Identifying the precise function of ACE2 in the success-
ful entry of SARS-CoV-2 and the emergence of COVID-19 is
important. Hence, to better understand the action mech-
anisms of the disease, in this review, we focus on the crit-
ical role of ACE2 in SARS-CoV-2 successful internalization,
replication, and the onset of the COVID-19 disease. We also
briefly review strategies using ACE2 as a therapeutic target
for targeting SARS-CoV-2 entry, infection, and replication.
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2. Structure of ACE2, Location in the Body, and Its Func-
tion as the Coronavirus Entry Point

ACE2 is a homologue of ACE. This enzyme can be found
in two forms: Integrated in the cell membrane (namely
mACE2) or in a soluble condition (sACE2) (3, 4).

Lung alveolar epithelial cells as well as small intesti-
nal epithelial cells exhibit high-level expression of ACE2 on
their surface. This finding justifies why both respiratory
and gastrointestinal systems are highly affected by SARS-
CoV-2 (2, 3). ACE2 is also expressed by particular cells, skin,
and the nasal epithelia (2-4). Some coronaviruses, includ-
ing SARS-CoV-2, use mACE2 as an entry point for entering
human cells (1-4). In fact, mACE2 serves as the principal
entry point into human cells for SARS-CoV-2. In detail, the
spike protein of SARS-CoV-2 binds mACE2 (at the enzymatic
domain site) on the surface of human cells. This reaction
leads to endocytosis of the enzyme-virus complex followed
by their translocation into intracellular endosomes (4).
The host serine protease TMPRSS2 is responsible for prim-
ing of the S protein required for the entry process of the
virus (5, 6). In this regard, researchers are currently inves-
tigating the inhibition of TMPRSS2 as a therapeutic strat-
egy for blocking virus entry into human cells (5-7). Addi-
tionally, other researchers demonstrated that disruption
of S-protein glycosylation remarkably interferes with the
proper virus entry (8, 9).

3. ACE2 in SARS-CoV-2-Mediated COVID-19 and Using It
as a Therapeutic Target

Ever since the precise action mechanisms of SARS-CoV-
2 entry and the receptors involved in this process were dis-
covered, researchers have assessed various strategies for
blocking the virus from infecting human cells. Majorly,
there are two key strategies for blocking the capability of
the virus for cell infection. One strategy entails the direct
targeting of the viral glycoproteins, while the other one in-
cludes targeting the receptors of the virus of the surface of
target cells.

The first strategy is believed to be more efficient be-
cause genome sequence of SARS-CoV-2 is publicly acces-
sible in genome databases making it easy to use various
virus glycoproteins, including the S protein, for immuniz-
ing mice or rabbits for the generation of neutralizing anti-
bodies (10, 11). The screened neutralizing antibodies are re-
quired to be tested in vitro and in preclinical assessments
using animal models to be able to conclude that they are
capable of SARS-CoV-2 neutralization and prevent infection
(10, 11). In this case, a set of different antibodies might be
required to fully neutralize SARS-CoV-2 and prevent it from
infecting body cells.

The second strategy is believed to be superior to the
first one in terms of effectiveness since, unlike the gly-
coproteins on the surface of viruses, the receptors of the
virus of the surface of human target cells do not change.
This mechanism prevents the occurrence of virus escape
from binding to therapeutic agents. Both SARS-CoV and
SARSCoV-2 use ACE2 as the receptor. In this case, strate-
gies using targeting agents to block ACE2 can be used both
for the prevention of SARS-CoV and SARSCoV-2 infection.
In this strategy, soluble small or large inhibitor molecules
are used that prevent the binding of virus to human ACE2
(12). Such molecules also can be monoclonal antibodies
that bind to ACE2.

There are also more novel approaches that benefit
from both the mentioned strategies. For instance, some
researchers used sACE2, that binds to the SARS-CoV-2 S pro-
tein, nullifies infecting capability of the virus, and prevents
its entry and target cell infection. One study demonstrated
that recombinant human sACE2 suppresses the entry ca-
pability of SARS-CoV-2 to target cells in vitro (12). The affin-
ity of sACE2 for the SARS-CoV-2 S protein is around 1.70 nM,
which is very similar to the affinity of monoclonal antibod-
ies. Therefore, this strategy can be considered a suitable
and effective approach for the prevention of SARS-CoV-2 in-
fection (13, 14).

Sheikhi and Hojjat-Farsangi proposed the generation
of a chimeric sACE2 protein made of sACE2 fused to anti-
CD16 VHH (15). In detail, there are three classes for human
receptors for IgG (FcγR): CD64 (FcγRI), CD32 (FcγRII), and
CD16 (FcγRIII). CD16 is a membrane-spanning activating re-
ceptor expressed on natural killer (NK) cells, a fraction of T
cells, monocytes, and macrophages. This molecule is en-
gaged in immune system-related cellular pathways, such
as antibody-dependent cell-mediated cytotoxicity (ADCC)
and phagocytosis. The Fc portion of antibodies is capa-
ble of binding to both activating and inhibitory Fc recep-
tors (16, 17). However, these researchers proposed that
chimeric ACE2-Fc molecule might not be effective thera-
peutics against SARS-CoV-2 based on the size of the Fc do-
main, as well as its low affinity for CD16 (15). Therefore, the
researchers proposed using nanobodies based on their var-
ious advantages over conventional antibodies, including
similar affinities with smaller size (15). Moreover, scFvs do
not have an artificial linker peptide, which can lead to in
vivo immunogenicity (15). In general, Sheikhi and Hojjat-
Farsangi focused on various advantages of the sACE2-anti-
CD16 VHH bi-specific molecule in comparison with ACE2-
Fc, which included binding to CD16 and activating recep-
tors, rapid permeation into different tissues due to the
small size of the molecule, and the ability for the produc-
tion of the molecule in large quantities in both prokary-
otic and eukaryotic cell lines (18-20). The sACE2-anti-CD16
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VHH bi-specific molecule has the capability to be applied
for blocking the S protein (15). Moreover, the high affinity
of this molecule for FcγRIII (CD16) can result in initiation
of ADCC, leading to the elimination of cells infected by the
virus (15).

4. Conclusions

It has been more than two years since the first cases
of COVID-19 were identified. Today, vaccines are known as
the most effective, efficient, and affordable approach for
the prevention of the disease. However, treatment strate-
gies should be applied before irreversible organ damages
take place in patients. As briefly discussed in this article,
targeting viral surface glycoproteins or their receptors on
the surface of target cells can prevent virus-target cell bind-
ing and target cell infection. There are numerous strate-
gies for this aim, which are different in terms of action
mechanism and effectiveness. Overall, ACE2-based target-
ing strategies are believed to be more reliable and effective
for the prevention of viral entry since viral glycoproteins
are subjected to structural changes following which new
variant of viruses emerge.
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