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Abstract

Background: Gene ontology (GO) is a well-structured knowledge of biological terms that describes roles of genes and their prod-
ucts in a standardized and organized controlled vocabulary format. Over the last decade, many measures are developed to exploit
GO advantages to determine semantic similarities between biological entities. Using GO ontologies, there are some constraints that
existing GO-based semantic similarity measures try to address them. For instance, (1) edges in a GO graph, do not indicate uniform
distances and also have different densities, and (2) ignoring term levels in an ontology makes “shallow annotation” drawback, i.e.,
two terms with a certain distance near the root of GO graph have equal semantic similarity with two terms with the same distance
but far from the root.
Methods: Here, we present wAIC, a two-stage hybrid semantic similarity measure using weighted aggregation of information con-
tents. In wAIC, the impact of each common ancestor on semantic similarity value is determined according to the location of the
ancestor in the ontology graph. wAIC, also, filters (from annotating term set) terms that are in upper levels of the graph ontology
to reduce shallow annotation constraints.
Results: Experimental results confirm that the proposed measure is more consistent with major related constraints, such that,
wAIC semantic similarity values have more correlation with both sequence similarity values and gene expression based similarity
values than state-of-the-art semantic similarity measures.
Conclusions: WAIC show using a weighted aggregation of common ancestors is completely consistent with the human perception
and can improve accuracy of gene similarity measurement.
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1. Background

During the last decade, the rapid development of sci-
entific discovery tools made it possible to employ ontology
concept to standardize and organize our increasing knowl-
edge in sciences. We can model our knowledge about con-
cepts and their semantic relationships in ontologies. Such
facility led to the development of ontologies in biology do-
main. Two main ontologies in this domain are gene ontol-
ogy (GO), for annotating gene products and sequence on-
tology, for annotating sequences. GO is a structured and
controlled vocabulary of biological terms to describe roles
of genes and their products. GO, in turn, consists of three
orthogonal ontologies that capturing human knowledge
about cellular component (CC), biological process (BP) and
molecular function (MF). These ontologies are organized
in three directed acyclic graphs (DAGs) in which, the nodes
correspond to biological terms that describe gene prod-
ucts and edges that represent the relation between terms
[1]. Two main common relationships are ‘is-a’ and ‘part-of’.

Each term in GO ontology annotate several gene products.
These annotating relations can be direct or indirect, since
an annotation to a term also implies to all of its ancestors.
Figure 1 shows a partial view of GO graph.

To exploit GO ontology advantages, semantic similarity
measures compare biological terms with respect to their
annotations. A semantic similarity measure is defined as
a function that given two biological terms (or two sets
of terms) estimates their functional similarity according
to the taxonomical structure of concepts in the ontology
[2]. The state-of-the-art semantic measures of GO ontol-
ogy terms can be classified into three groups: node-based,
edge-based and a hybrid of edge- and node based [3, 4].

Edge-based measures determine similarity of two
terms according to properties of graph paths between two
terms. The most common property is distance. It selects ei-
ther the shortest path or the average of all paths. Another
common path property directly calculates the similarity
by the length of the shared path from the lowest common
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Figure 1. A Partial View of GO Graph

ancestor of two terms to the root [2, 3]. Edge-based mea-
sures have two main drawbacks [5]; they are based on the
assumption that all edges indicate uniform distances and
that all nodes in the GO DAG have similar densities with
an identical distribution. They ignore the levels of edges
in the ontology by considering all edges equal. These mea-
sures also have the “shallow annotation” drawback [6-8]:
two terms with a certain distance near the root have equal
semantic similarity with two terms with the same distance
but far from the root. Other edge-based measures [2, 9]
have attempted to overcome this limitation by assigning
different weights to the edges at different graph levels us-
ing network density, but they still ignored one fact: GO
terms at the same level do not always share same speci-
ficity because two terms in the same level can have differ-
ent gene properties.

Node-based measures use term properties to compare
two terms. The term properties can be related to the terms
themselves, their ancestors, or their descendants. The
most popular node-based measures are Resnik [10], Lin [11]

and Jiang and Conrath [12] measures. Originally, they were
developed for WordNet [13]. They use information content
(IC) concept to represent semantic values. IC is a measure
that denotes how specific and informative a term is. It is
computed for a term by Equation 1.

(1)IC (t) = − logp (t)

Where p (t) is the probability of occurrence of term t
in a specific corpus (such as the UniProt Knowledgebase),
that is usually estimated by its annotation frequency. IC is
a function of children of a term in the GO graph. IC concept
can be applied to the common ancestors of two terms to
evaluate their shared information. Two main approaches
are: the most informative common ancestor (MICA), and
the disjoint common ancestors (DCA). MICA is a common
ancestor with the highest IC, while, DCAs are common an-
cestors that do not include any other common ancestor
[14]. In comparison with edge-based measures, measures
based on IC are less sensitive to issues related to variable
semantic distance and variable node density [8], because,
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IC measures a term specificity independent of its depth in
the ontology (i.e., IC of a term is dependent on its children
instead of its parents). Also, IC- based measures are biased
by current research trends, interested terms are expected
to be more frequently annotated than other terms.

Resnik [10] uses the most informative common ances-
tor (MICA) of compared GO terms. It ignores positions of
these terms in the GO graph, e.g., since the distance of
each term from the root of the graph. Also, it ignores the
contribution of other ancestors. However, the specializa-
tion level of a term in human perception is shown by the
term’s distance to the ontology root, farther distance from
the root in the ontology graph, means more knowledge is
available about the term, which causes the term to be more
specific. On the other hand, shorter distance to the root
means the term is more general, so there are not that much
of details about it. Therefore, two terms with same GO-
based distance at a lower level (i.e., more specific terms) are
be semantically more similar than two terms at a higher
level (i.e., more general terms).

Node-based measures like Resnik suffer from “shallow
annotation” problem [6-8] if they ignore the term levels
in an ontology graph. With respect to IC definition, MICA
[10] is the least common ancestor (LCA) of two given terms.
Therefore, measures based on MICA, do not consider the
distances of two terms to their LCA and the semantic con-
tribution of other ancestor terms. For example, according
to the Figure 2, sim (c,d), the semantic similarity between
terms c and d equals to sim (a,b), the semantic similarity
between terms a and b, since these two pairs have a same
least common ancestor.

By considering the graph distance of two terms in
the ontology, Lin [11] and Jiang and Conrath [12] measures
overcome one limitation of Resnik’s. Consider the exam-
ple in Figure 2, we expect a higher value for sim (a,b)
than sim (c,d) because the graph distance between a and
b is less than the graph distance between c and d, How-
ever, these measures have two limitations; 1) incorporating
MICA alone does not consider any mechanism for terms
with multiple parents. 2) The specialization levels of LCA
for two terms are not used. Therefore, their semantic simi-
larity values may still be incompatible with human percep-
tion.

Hybrid measures employ the properties of both edges
and nodes. They are usually defined as weighted aggre-
gation of node and edge properties [8, 15-17]. For exam-
ple, Wang et al. [8] developed a hybrid measure in which
each edge is given a weight according to the type of rela-
tionship. However, there exists a problem: edge weights
are based on experimental study of gene classification of
particular species and change from a species to another
species.

Using term-term semantic similarity values, it is pos-
sible to compare gene products. Each gene product can
be annotated with several GO terms. Thus, to estimate
the functional similarity of two gene products, their cor-
responding annotated terms are compared. There are two
main approaches: pair-wise and group-wise [2, 5]. Pair-wise
measures compute gene product similarity in two steps. In
the first step, the semantic similarities between term pairs
are computed. In the second step, for two gene products,
their corresponding annotated term sets are obtained and
then a set-based semantic similarity rule is applied to the
annotated term sets. Three popular rules are 1) maximum
rule (MAX), 2) average rule (AVG), and 3) best match average
rule (BMA). The AVG and MAX rules consider the average
and the maximum of semantic similarity scores of all term
pairs (from two annotated term sets) respectively. The BMA
rules detect all best matches between the term pairs and re-
turn the average of semantic similarity values of these best
matches. Group-wise measures calculate the semantic sim-
ilarity between gene products directly by employing one
of the three structures: 1) set, 2) graph, or 3) vector on two
annotated term sets.

Recently, AIC [5], a node-based semantic similarity mea-
sure based on the aggregation of information contents has
been introduced. This measure is based on two main ob-
servations: (1) In general, the similarity of more specific GO
terms (terms at a lower level) of GO graph should be more
than the similarity of more general terms (terms near the
root); (2) the semantic meaning of one GO term should
be the aggregation of all semantic values of its ancestor
terms. The first observation is consistent with the human
perception of term semantic similarity at different levels
of graph ontology. The second observation is consistence
with how human beings use terms to annotate genes.

Here, we present wAIC, a two-stage hybrid semantic
similarity measure based on weighted aggregation of in-
formation contents. In the first stage, wAIC uses an in-
verted version of information content. The semantic value
of common ancestor of two terms is scaled by a weighted
coefficient according to the location of the ancestor on its
shortest path to a leaf in the graph ontology. This weighted
aggregation is used as first factor of the semantic similarity
that is obtained by a node- and edge-based approach. Sub-
sequently, the second factor is computed by a novel graph-
wise measure. The final term-wise semantic similarity is
the production of these two factors. Therefore, wAIC, is
a hybrid node, edge and graph-wise approach. Also, note
that within the second stage, wAIC uses a novel hybrid
of pair-wise and group-wise approaches (based on filter-
ing terms that are in high levels of the ontology graph) to
estimate semantic similarities for gene products. Experi-
mental results confirm that using weighted aggregation
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Figure 2. Longest Common Ancestor of Two Term-Pairs (a,b) and (c, d) Is Same

of common ancestors and filter-based approach in the first
and second stages of proposed measure are completely
consistent with the human perception (the similarity of
more specific GO terms should be more than of the more
general terms) such that it addresses the shallow annota-
tion problem in a better way. So it achieves significantly
better results than state-of-the-art measures. Source codes
for the proposed method are available in supplementary
file.

2. Methods

WAIC is a two-stage measure that employs a hybrid
model in each stage. After computing term-wise similari-
ties in the first stage of wAIC, it computes gene-wise simi-
larities using one of the three rules of MAX, AVG or BMA.

2.1. Term-Wise Semantic Similarity

Semantic similarity of two terms x and y in the graph
ontology is computed by Equation 2.

(2)SS (xy) = Ct (x, y)× Cg (x, y)

Where, Ct and Cg are two term-based semantic similar-
ity functions. Ct (x, y) is a function of common ancestor of
two terms x and y and is computed by Equation 3.

(3)Ct (x, y) =
2×

∑
a∈Ax∩Ay

IIC (a)

SV (x) + SV (y)

Where, Ax and Ay are the set of all ancestors of term x
and term y respectively, IIC(a) is an inverted version of in-
formation content that is shown by (Equation 4), SV (x) and
SV (y) are the semantic values of terms x, y respectively, and
are computed by Equation 5 that are weighted aggregation
of their ancestors. The coefficient Wt is computed by Equa-
tion 6.

(4)IIC (a) = 1− IC (a)

(5)SV (z) =
∑

t∈Az

Wt × IIC (t)

Recall that Equation 5 is a weighted aggregation of Wt

for IIC(t) where Wt is an edge-based and IIC (t) is a node-
based computation. Therefore, SV (z) and consequently
Ct (x, y) are computed on both edge and node measure-
ments.

Cg (x, y), the second term-based semantic similarity
function is a graph-based function that is computed by
Equation 7. Where, Dx and Dy are the set of all descendants
of terms x and y. Therefore, SS (x,y), is a hybrid node-, edge-
and graph-wise approach.

(7)Cg (x, y) =
|Dx ∩Dy|
|Dx ∪Dy|
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(6)Wt =
Min (distances of t to the root)

Min (length of paths from the root to a leaf cross t)

2.2. Gene-Wise Semantic Similarity

In the second stage, wAIC, employs a novel hybrid of
pair-wise and group-wise approaches to estimate the se-
mantic similarities. The semantic similarity of two gene
products a and b is computed by Equation 8.

(8)
wAICt (a, b) = Simt (Aa, Ab)× g (a, b) t

∈ {MAX,AV G,BMA}

Where, Aa and Ab are two sets of annotating terms for
gene products a and b. Simt, the semantic similarity be-
tween two input term sets with respect to t is computed
by Equation 9. g (a,b), on the other hand, is a group-wise
measure which is denoted in Equation 10.

(9)Simt

=


1

|Aa|×|Ab|
×

∑
t1∈Aa

∑
t2∈Ab

SS (t1, t2) t : AV G

SS (t1, t2) t : MAX

1
|Aa| ×

∑
t1∈Aa

SS (t1, t2) t : BMA

(10)g (a, b) =

∑
t∈f(Aa∩Ab)

IC (t)∑
t∈f(Aa∪Ab)

IC (t)

Where, given a threshold, f () filters the terms that are
in high levels of the ontology graph, in order to prevent
the effect of high semantic similarity of term pairs near the
root of ontology (shallow annotation).

3. Results

3.1. Datasets and Benchmarks

In order to compute semantic similarities, we need two
data sets: 1) GO ontology graph that consists of three indi-
vidual orthogonal ontologies of cellular component (CC),
biological process (BP) and molecular function (MF), and
2) GO annotation file that describes and annotates terms
from several resources (each resource is indicated by an ev-
idence code). We use both GO ontology (version; 2013-06-
25) and GO annotations (version; 01/30/2016) that are fil-
tered for the yeast slim from the GO website.

It is shown that raising value of the sequence similar-
ity of two gene entails rising values for their correspond-
ing GO semantic similarity [18]. Therefore, we evaluate GO
semantic similarity measures based on their correlation
with sequence similarity. We use a set of 20167 yeast gene

pairs that their corresponding sequence similarities are
computed by relative reciprocal BLAST score (RRBS) [19, 20].
For each gene pair, we compute the correlation between
their semantic similarity vector and their sequence simi-
larity vector.

3.2. Comparison Analysis Based on Correlation with Sequence
Similarity

We compared wAIC with some resent and most repre-
sentative measures Resnik [10], Lin [11], Jiang and Conrath’s
[12], AIC [5], simUI [21], simGIC [22] and GraSM [23]. Tables 1 -
3 show the best result of the correlation of these similarity
measures with RRBS scores in case of three rules MAX, BMA
and AVG respectively. Note that since simUI [21], simGIC
[22] and GraSM [23] are group-wise measures, their single
output values are considered for all three rules. We ob-
served, for all measures and all three rules, BP ontology has
the highest correlation value, and then followed by CC and
MF ontologies. Results have showed for all three ontologies
and in all three rules. The proposed wAIC measure outper-
forms other measures in terms of correlation with RRBS se-
quence similarity scores. Only, in the case of MF ontology,
with MAX rule in action, simGIC [22] scored the best corre-
lation value of 0.229, which is merely 1.3% higher than the
second best value of 0.226, achieved by wAIC. Figures 3 - 5
show these facts in the comparative diagrams.

Table 1. Values of Semantic Similarity Measures Based on Correlation with RRBS Se-
quence Similarity Scores in Case of Three Ontologies BP, CC and MF Using the Maxi-
mum (MAX) Rule

Variables BP CC MF

Resnik 0.221 0.012 -0.007

Jiang 0.3 0.15 -0.02

Lin 0.035 0.124 -0.019

AIC 0.31 0.18 -0.02

simUI 0.582 0.5 0.131

simGIC 0.634 0.569 0.229

GraSM 0.24 0.1 -0.1

wAIC 0.647 0.576 0.226

4. Discussion

Illustrated results indicate that weighted aggregation
of two term common ancestors with respect to the posi-
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Figure 3. The Comparison of Semantic Similarity Measures Based on Table 1

Table 2. Values of Semantic Similarity Measures Based on Correlation with RRBS Se-
quence Similarity Scores in Case of Three Ontologies BP, CC and MF Using the Best
Match Average (BMA) Rule

Variables BP CC MF

Resnik 0.385 0.056 -0.039

Jiang 0.481 0.429 0.178

Lin 0.383 0.294 -0.04

AIC 0.372 0.346 0.089

simUI 0.582 0.5 0.131

simGIC 0.634 0.569 0.229

GraSM 0.24 0.1 -0.1

wAIC 0.676 0.575 0.239

tion of the ancestor in the graph ontology and using a hy-
brid of node-, edge-, graph-based, pair-wise and group-wise
approaches can pay off in a more precise semantic similar-
ity measure. In this section, for a more thorough discus-
sion, we exploit gene expression data to assess wAIC capa-
bilities in comparison with other measures based on cor-
relations of semantic similarities.

Sequence similarity is already a good criterion for com-
paring semantic similarity measures but it is not enough.
It is always possible that two genes with high sequence
similarity have very distinct functions in a cell. Therefore,

Table 3. Values of Semantic Similarity Measures Based on Correlation with RRBS Se-
quence Similarity Scores in Case of Three Ontologies BP, CC and MF Using the Average
(AVG) Rule

Variables BP CC MF

Resnik 0.324 0.066 -0.056

Jiang 0.365 0.384 0.196

Lin 0.411 0.407 0.026

AIC 0.425 0.43 0.231

simUI 0.582 0.5 0.131

simGIC 0.634 0.569 0.229

GraSM 0.24 0.1 -0.1

wAIC 0.651 0.602 0.384

we need to compare measures based on functional aspects
in a cell. Gene expression data is one of such measures.
Also, it is known that the genes involved in the same bio-
logical category, show similar expression pattern [7, 24-26].
In our analysis, we use a benchmark including 4800 gene
pairs that are scored on the correlation of their gene ex-
pression profile according to a yeast gene expression data
[27, 28].

We compared semantic similary measures Resnik [10],
Lin [11], Jiang and Conrath [12], AIC [5], simUI [21], simGIC
[22] and GraSM [23] based on the their correlation with
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Figure 4. The Comparison of Semantic Similarity Measures Based on Table 2

gene expression patterns in casess of three rules “MAX, AVG
and BMA”. The Pearson’s correlation between gene expres-
sion and semantic measures for three CC, BP and MF on-
tologies are shown in Tables 4 - 6 in case of three rules MAX,
BMA and AVG respectively.

Table 4. Values of Semantic Similarity Measures Based on Correlation with Gene
Expression-Based Similarity Scores in Case of Three Ontologies BP, CC and MF Using
the Maximum (MAX) Rule

Variables BP CC MF

Resnik 0.276 0.459 0.286

Jiang 0.112 0.181 0.143

Lin 0.081 0.175 0.153

AIC 0.121 0.206 0.155

simUI 0.311 0.395 0.236

simGIC 0.309 0.42 0.248

GraSM 0.141 0.271 0.093

wAIC 0.323 0.463 0.269

Table 5. Values of Semantic Similarity Measures Based on Correlation with Gene
Expression-Based Similarity Scores in Case of Three Ontologies BP, CC and MF Using
the Best Match Average (BMA) Rule

Variables BP CC MF

Resnik 0.287 0.457 0.265

Jiang 0.179 0.321 0.173

Lin 0.199 0.379 0.169

AIC 0.161 0.336 0.168

simUI 0.311 0.395 0.236

simGIC 0.309 0.42 0.248

GraSM 0.141 0.271 0.093

wAIC 0.354 0.43 0.3

In case of MAX rule (Table 4), the proposed wAIC mea-
sure outperforms other measures in terms of correlation
with gene expressions similarity scores for both BP and CC
ontologies. For instance, wAIC hits the highest values of
0.323 and 0.463 for BP and CC ontologies which are 3.8%
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Figure 5. The Comparison of Semantic Similarity Measures Based on Table 3

Table 6. Values of Semantic Similarity Measures Based on Correlation with Gene
Expression-Based Similarity Scores in Case of Three Ontologies BP, CC and MF Using
the Average (AVG) Rule

Variables BP CC MF

Resnik 0.228 0.398 0.226

Jiang 0.056 -0.118 0.115

Lin 0.17 0.203 0.147

AIC 0.095 0.068 0.145

simUI 0.311 0.395 0.236

simGIC 0.309 0.42 0.248

GraSM 0.141 0.271 0.093

wAIC 0.325 0.404 0.25

and 0.87% higher than the second best values 0.311 and
0.459, achieved by simUI [21] and Resnik [10] respectively.
In case of MF ontology, Resnik [10] sets the best value of
0.286, which is 6.3% higher than the second best value,
0.269, achieved by wAIC.

In case of BMA rule (Table 5), wAIC measure outper-
forms other measures in terms of correlation with gene ex-
pressions similarity scores for both BP and MF ontologies.

For instance, wAIC scores the highest values, 0.354 and 0.3
for BP and MF ontologies which are 13.8% and 13.2% higher
than the second best values 0.311 and 0.265, achieved by
simUI [21] and Resnik [10] respectively. In case of CC ontol-
ogy, Resnik [10] records best value of 0.457, which is 6.2%
higher than the second best value, 0.43, settled by wAIC.

In case of AVG rule (Table 6), wAIC measure outper-
forms other measures in terms of correlation with gene
expressions similarity scores for both BP and MF ontolo-
gies. For instance, wAIC achieves the highest values 0.325
and 0.25 for BP and MF ontologies which are 3.8% and
0.8% higher than the second best values 0.311 and 0.248,
achieved by simUI [21] and simGIC respectively. In case
of CC ontology, simGIC was achieved the best value, 0.42,
which is 4.7% higher than the second best value of 0.401
achieved by wAIC. Figures 6 - 8 show these facts in the com-
parative diagrams.

4.1. Conclusions

Considering the role of ontology concept to standard-
ize and organize our scientific findings, it is possible to
model our biological knowledge through GO ontology.
During last decade, many measures have been proposed
to utilize GO ontology advantages to measure semantic

8 Zahedan J Res Med Sci. 2017; 19(8):e12041.
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Figure 6. The Comparison of Semantic Similarity Measures Based on Table 4
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Figure 7. The Comparison of Semantic Similarity Measures Based on Table 5

similarities between biological entities. The state-of-the-
art semantic similarity measures are classified into three
groups: node-based, edge-based and hybrids of edge- and

node based measures [3, 4].

We presented wAIC, a two-stage hybrid measure to es-
timate semantic similarity between gene products on a GO
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Figure 8. The Comparison of Semantic Similarity Measures Based on Table 6

ontology. In the first stage, in order to compute term-term
similarities, it exploits a weighted aggregation of informa-
tion contents of common ancestors of two terms. WAIC
computes the weighted coefficient of each common ances-
tor using an edge-based approach according to the ratio of
minimum distance of a term to the graph root over its min-
imum distance to a leaf. In other words, a common ances-
tor would have less impaction similarity whenever it is rel-
atively closer to the root. Then, this weighted sum is scaled
by a novel graph-wise factor. So, in the first stage, wAIC
uses a hybrid of node-, edge- and graph-wise approaches.
In the second stage, WAIC employs a hybrid of a pair-wise
and a filtered graph-wise approach to compute gene-gene
semantic similarity. The filter based graph-wise measure
removes terms that are at low levels in the ontology to pre-
vent from a high semantic similarity for each term pair
near the root.

As introduced above, wAIC measure has at least two
advantages over other measures: 1) it uses a hybrid node-
, edge-, graph-based, pair-wise and group-wise approaches
that incorporates advantages of them. 2) Using weighted
aggregation of common ancestors and the filter based ap-
proaches in the first and second stages are completely
consistent with the human perception (the similarity of
more specific GO terms -terms at a lower level- of GO graph
should be more in comparison to similarity of more gen-

eral terms). As a future work, we are going to improve
wAIC by using the concept of disjoint common ancestors
(DCT) or integrating GO ontology with other biological re-
sources.
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