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Abstract

Background: Poor nutrition and chronic inactivity are the primary causes of metabolic syndrome (MetS) and its

complications. Alterations in the expression of cluster of differentiation 36 (CD36) and hormone-sensitive lipase (HSL) genes are

also implicated in these complications.

Objectives: The present study aimed to investigate the effect of 8 weeks of interval and continuous aerobic training on hepatic

expression of CD36 and HSL genes in fructose-fed male rats.

Methods: Thirty-two adult male Wistar rats (6 - 8 weeks, 220 ± 20 g) were divided into four groups: Normal control (NC),

fructose control (FC), fructose continuous training (FCT), and fructose interval training (FIT). Hepatic expression of HSL and

CD36 genes, fasting blood glucose, and insulin resistance (IR) were measured. Liver histology was also performed.

Results: The results indicated that fructose non-significantly reduced the hepatic expression of CD36 and HSL genes and

significantly increased fasting blood glucose in the FC group. In contrast, continuous and interval training reduced fasting

blood glucose, insulin, HOMA-IR, and hepatic HSL levels. Histological analysis showed improved liver cell status in the fructose-

trained groups compared to the fructose group.

Conclusions: This study demonstrated that long-term fructose consumption leads to decreased expression of HSL and CD36

genes, increased fasting blood glucose levels, and the development of IR. However, continuous and interval training improved

these effects in the fructose-receiving groups. Continuous and interval training may be effective strategies for preventing and

reducing symptoms associated with MetS.
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1. Background

Weight gain resulting from a sedentary lifestyle and

high-calorie diets can increase the risk of common

metabolic disorders, such as fatty liver disease (hepatic

steatosis), type 2 diabetes (T2D), and cardiovascular

diseases (1). Fructose, a naturally occurring fruit sugar, is

extensively used as an industrial sweetener in typical

diets across both developed and developing nations.

High fructose consumption is increasingly recognized

as a leading cause of prediabetes and metabolic

syndrome (MetS) (2). The mechanisms underlying

fructose-induced metabolic disorders are not fully

understood but are under investigation. High fructose

intake stimulates lipogenesis, leading to hepatic fat

accumulation, insulin resistance (IR), and increased

secretion of hepatic very-low-density lipoprotein

cholesterol (vLDL-c) (3).

Despite the abundance of findings in nutritional

epidemiology, which often require fundamental

revision (4), it is evident that high-calorie diets are

prevalent worldwide, particularly among younger

populations. Consequently, nearly a quarter of the

global population is anticipated to face liver diseases or
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MetS and their complications in the future (5). This

growing challenge imposes significant financial

burdens on patients, healthcare systems, and

governments, underscoring the importance of

diagnosing, controlling, and treating early-stage MetS

(6).

Currently, lifestyle modifications, including

controlled physical activity and dietary improvements,

are widely recommended by healthcare professionals to

mitigate the risks associated with high-calorie and

fructose intake and to enhance quality of life (7).

Existing therapeutic strategies emphasize lifestyle

changes, such as physical activity and diet. Some studies

have highlighted the role of physical inactivity and

dysregulation of genes involved in lipid metabolism in

the development of diet-induced metabolic disorders (8,

9).

Cluster of differentiation 36 (CD36), a long-chain free

fatty acid transporter, plays a significant role in fatty

acid storage and metabolism (10). Under physiological

conditions, CD36 gene expression in liver cells is

typically low. Overexpression and activation of CD36 can

lead to hepatic steatosis, while its deletion can prevent

fat accumulation in the liver (11). Consequently, CD36 is

considered a biomarker for diagnosing and classifying

various liver diseases, with changes in its expression

directly influencing their progression or improvement,

such as in nonalcoholic fatty liver disease (NAFLD) (12).

Hormone-sensitive lipase (HSL), an enzyme active in

triglyceride (TG) lipolysis, is another factor contributing

to liver metabolic disorders (13). The HSL activity is

regulated by phosphorylases in response to adrenergic

agents. The intensity and duration of physical activities

can alter HSL activation in cells and organs. For instance,

HSL activity increases several-fold in skeletal muscles

during physical activity and returns to basal levels

afterward, while its activation remains maximal in

adipose tissue, indicating specific regulation (14, 15).

Training can influence lipolysis or lipogenesis,

potentially mediated by changes in CD36 and HSL gene

expression (16). Previous studies have shown that a 16-

week training program can moderate CD36 gene

expression in rats fed a high-fructose and high-fat diet

(HFD) (17). Additionally, low-intensity training has been

found to increase HSL activity and β-oxidation in

fructose-fed rats (18).

Despite extensive research on MetS and its associated

disorders, the changes in CD36 and HSL gene expression

in liver tissue, hepatic artery aneurysm (HAA), body

weight, and the effects of aerobic training on these

factors, as well as the role of fructose consumption and

inactivity in MetS development, remain incompletely

understood. Therefore, this study aimed to investigate

the effect of an 8-week interval and continuous training

program on CD36 and HSL gene expression and to

elucidate changes in liver function and structure in

fructose-fed rats.

2. Objectives

The present study aimed to investigate the effect of 8

weeks of interval and continuous aerobic training on

hepatic expression of CD36 and HSL genes in fructose-

fed male rats.

3. Methods

3.1. Animals and Study Design

All study procedures were conducted in accordance

with the EU/2010/63 Directive, which is the European

Union (EU) legislation governing the use of animals in

experimental research for scientific purposes. The study

also received approval from the Research Ethics

Committee of Mazandaran University, Iran, with the

reference code IR.UMZ.REC.1400.044. Thirty-two male

Wistar rats (aged 6 - 8 weeks, 220 ± 20 g) were obtained

from the Pasteur Institute, Tehran, Iran. The animals

were housed in polycarbonate cages under controlled

conditions (temperature: 22 ± 2°C, humidity: 55%, and a

12:12 h light-dark cycle). They were acclimatized to the

laboratory setting for one week before being divided

into four groups: Normal control (NC), fructose-fed

control (FC), fructose-fed continuous training (FCT), and

fructose-fed interval training (FIT). The rats were

provided with high-fructose corn syrup-55 (HFCS-55)

constituting up to 20% of their average total daily

energy intake, along with drinking water, for 16 weeks

(19).

3.2. Exercise Protocols

All training groups (FCT and FIT) performed a 5-

minute warm-up at a speed of 9 m/min on a 0° slope

before each training session. After each session, a cool-

down was conducted. The interval and continuous

training protocols are detailed below (20).

3.3. Interval Training Protocol
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After treadmill adaptation, the FIT group performed

training routines six times a week, consisting of 3-

minute periods at a maximum speed of 40 m/min,

followed by 3-minute active recovery periods at a

maximum speed of 20 m/min on a 15° slope. Over 8

weeks, the duration, speed, and slope were gradually

increased to 36 minutes, 40 m/min, and 15°, respectively

(Table 1).

Table 1. High-Intensity Interval Training Program

Week and Practice Running Velocity (m/min) Total Time Incline (%)

1 12

5

Speed 15 - 20

Active recovery 12 - 14

2 18

Speed 20 - 25

Active recovery 14 - 16

3 24

10

Speed 25 - 30

Active recovery 16 - 18

4 30

Speed 30 - 35

Active recovery 18 - 20

5 36

15

Speed 35 - 40

Active recovery 20

6 - 8

Speed 40

Active recovery 20

3.4. Continuous Training Protocol

The rats in the FCT group participated in six training

sessions per week for 8 weeks. The training duration,

speed, and slope were progressively increased from 12

minutes, 12 m/min, and 5° to 54 minutes, 20 m/min, and

15°, respectively (Table 2) (20).

Table 2. Moderate-Intensity Continuous Training Program

Week and Practice Running Velocity (m/min) Total Time Incline (%)

MICT

1 12 - 14 12 - 15 5

2 14 - 16 15 - 20 10

3 16 - 18 20 - 28

15
4 18 - 20 28 - 39

5 20 40 - 54

6 - 8 20 54

3.5. Sampling and Sample Preparation

Seventy-two hours after the final training session, all

study groups were fasted overnight. On the day of

sampling, the rats were weighed and anesthetized using

a ketamine-xylazine combination. Once deep anesthesia

was confirmed, a blood sample was collected from the

hepatic vein and centrifuged at 3000 rpm for 10

minutes to prepare the serum (21). Following blood

collection, the liver tissue was immediately excised and

weighed. It was then washed with normal saline, frozen

in liquid nitrogen, and stored at -80°C. The Fatty Liver

Index (FLI) was calculated using the formula (22):

Additionally, the median lobe of the liver tissue was

placed in a container with 10% formalin solution for

histological evaluation.

3.6. Liver Histological Assessment

To prepare tissue sections, the formalin-fixed tissues

were embedded in paraffin, and 5-µm thick sections

were prepared and stained with hematoxylin and eosin

(H&E). Using an optical microscope at 40X

magnification (Basler, Germany), changes in liver tissue

were examined. Histological evaluation criteria

included the presence of inflammatory cells,

intercellular space (hepatic sinusoids), cytoplasmic

degeneration, and irregularity in hepatocyte structure.

3.7. Real-time Polymerase Chain Reaction

To assess liver damage due to fructose consumption

and the positive effects of interval and continuous

training, changes in CD36 and HSL gene expression were

measured in liver tissue. Total RNA was extracted from

liver tissue samples using an RNA extraction kit

(DENAzist Co., Mashhad, Iran). The quality and quantity

of the extracted RNA were assessed via agarose gel

electrophoresis and UV spectrophotometry (NanoDrop

Co., Iran). cDNA synthesis was performed using a cDNA

synthesis kit (Yekta Tajhiz Azma Co., Tehran, Iran).

Specific primers for the target genes (CD36 and HSL) and

the internal control (β-actin) were designed, and the

primer sequences were synthesized (Bioneer Corp.,

South Korea) (Table 3). The relative expression of the

target genes was determined using the Corbett Rotor-

Gene 6000 and the Amplicon SYBR Green kit (Denmark).

The expression of the target genes, compared to β-actin

Liver Index(%) = ( ) × 100
Weight of liver

Weight of body
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as the reference, was quantified using the 2-∆∆Ct method

developed by Livak (23).

Table 3. The Primer Sequences Used in This Study

Genes Sequences Gene Bank Codes

HSL NM_012859.1

Forward 5'-TGAGGGCGATGAGGGACT-3'

Reverse 5'-TCTCGTTGCGTTTGTAGTGTTC-3'

CD36 NM_001109218.1

Forward 5'-AGTGGCAAAGAATAGCAGCAAGA-3'

Reverse 5'-AGACAGTGAAGGCTCAAAGATGG-3'

β-Actin NM_031144.3

Forward 5'-GTGTGACGTTGACATCCGTAAAGAC-3'

Reverse 5'-TGCTAGGAGCCAGGGCAGTAAT-3'

Abbreviations: HSL, hormone-sensitive lipase; CD36, cluster of differentiation 36.

3.8. Statistical Analysis

Statistical outcomes were presented as mean ±

standard deviation (SD). Data analysis was performed

using SPSS Statistics software version 16.0. The normal

distribution of the data was assessed using the

Kolmogorov-Smirnov (K-S) test. Inter-group

comparisons were conducted using one-way analysis of

variance (ANOVA), followed by Tukey’s test and Duncan’s

multiple range test (DMRT) as post hoc tests, with a

significance level set at 0.05.

3.9. Insulin, Fasting Blood Glucose, and HOMA-IR

Serum insulin concentration was measured using

the ELISA method with a specific kit for rats (Mercodia

Co., Sweden), following the manufacturer’s instructions.

Fasting blood glucose was collected weekly from the

subjects’ tails using a standard glucometer (On Call Plus,

Acon Co., USA). Insulin resistance was assessed using the

HOMA-IR Index, calculated with the following formula

(24): HOMA-IR = (Fasting blood glucose (mg/dL) × Insulin

(μU/L))/22.5

4. Results

4.1. Body Weight Change in Study Groups

Figure 1 illustrates the intra- and inter-group

comparisons of changes in the rats’ body weight across

different groups during the study. Body weight

exhibited an increasing trend in all groups from the 1st

to the 16th week. However, changes in the first 8 weeks

were not statistically significant among the study

groups. The results indicated that body weight changes

exhibited a slower growth trend with the initiation of

exercise interventions from the 8th week onward in

both the FCT and FIT groups, compared to the first 8

weeks in the FC group. Intragroup comparisons

demonstrated a significant increase in body weight

from the 4th week onward in the NC, FC, and FCT

groups. Significant changes were observed during the

8th and 16th weeks compared to the 1st week. In

contrast, the FIT group did not show significant changes

in body weight from the 8th week onward, from the

onset of exercise interventions to the 16th week.

4.2. Changes in Liver Weight and Histological Index

The study results showed no significant changes

between the groups in terms of liver weight and the FLI.

Despite this, the average liver weight and FLI in the FC

group were elevated compared with those in the NC

group (P ≤ 0.05) (Table 4). The results also indicated that

interval and continuous training in the study groups

receiving fructose did not cause significant changes in

these variables compared with the FC group (P ≤ 0.05)

(Table 4).

Table 4. Mean ± Standard Deviation (gr) for Body Weight, Liver Weight and Liver
Index in the Studied Groups

Groups
Primary Weight

(gr)
Final Weight

(gr)
Liver Weight

(gr)
Liver Index

(%)

NC 169.13 ± 18.8 412.25 ± 58.4 11.47 ± 2.08 2.77 ± 0.12

FC 168.75 ± 18.3 397.88 ± 69.7 12.02 ± 1.48 3.08 ± 0.46

FCT 162.00 ± 15.7 388.50 ± 38.3 11.28 ± 1.89 2.89 ± 0.29

FIT 157.57 ± 18.3 340.71 ± 59.2 10.28 ± 1.29 3.07 ± 0.49

Abbreviations: NC, normal control; FC, fructose control, FCT, fructose

continuous training; FIT, fructose interval training.

4.3. Glucose and Insulin Levels

The results of this study (Table 5) showed that fasting

blood glucose in the FC group, similar to the

homeostatic model assessment of insulin resistance

(HOMA-IR), increased significantly compared to the NC

group. In the FCT and FIT groups, insulin, fasting blood

sugar, and HOMA-IR levels also increased compared to

the NC group. However, the increase in these values was

less in the FCT and FIT groups than in the FC group (P ≤

0.05) (Table 4).
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Figure 1. Body weight changes in the studied groups in the first, eighth and sixteenth week. Changes in body weight within the group showed significant differences from the
fourth week onwards. However, no significant difference was observed between the groups during the study. * Significant difference with the first week and the sixteenth week.
# Significant difference with the first week and the eighth week (P ≤ 0.05).

Table 5. The Mean ± Standard Error of the Mean of Fasting Blood Glucose (mg/dL)

and Insulin (μU/L) Level in Different Groups at the End of the Treatment Period a

Groups Fasting Blood Glucose (mg/dL) Insulin (μU/L) HOMA-IR

NC 95.62 ± 9.05 A 3.71 ± 2.98 0.87 ± 0.01 A

FC 435.55 ± 136.56 B 4.45 ± 2.7 4.78 ± 0.3 AB

FCT 265.10 ± 30.5 C 5.02 ± 3.11 3.28 ± 0.22 AB

FIT 240.00 ± 104.22 D 4.07 ± 2.55 2.17 ± 0.23 A

Abbreviations: μU/L, micro units per liter; NC, normal control; FC, fructose

control, FCT, fructose continuous training; FIT, fructose interval training; HOMA-IR,

homeostatic model assessment of insulin resistance.

a Different uppercase shows significant difference among groups (P < 0.05).

Different uppercase represents significant difference during study (P < 0.05).

4.4. Cluster of Differentiation 36 and Hormone-Sensitive
Lipase Gene Expression

Figures 2A and B show the changes in CD36 and HSL

gene expression in the study groups. The hepatic

expression of both CD36 and HSL was significantly

decreased in HFD rats compared with control mice

(Figure 2A and B). However, interval and continuous

training interventions for 8 weeks, along with fructose

consumption, amplified the expression of these genes,

bringing the value in the FCT group close to that in the

control group. Figure 2B also illustrates that HSL gene

expression, despite its reduction in the FC group

compared with the NC group, showed no significant

difference. Additionally, interval and continuous

training, due to the increased cellular need for energy,

did not result in a significant increase in the expression

of this gene compared to the FC group.

4.5. Histological Findings

To evaluate the effects of fructose consumption along

with interval and continuous training in the study

groups, the presence of inflammatory cells, intercellular

space (namely, the hepatic sinusoids), cytoplasmic

degeneration, and irregularity in hepatocyte structure

were examined as histological evaluation criteria.

Compared with the NC group, the cytoplasm and

nucleus of the hepatocytes were widely observed in the

FC group (Figure 3A and B). Irregularity in the hepatic

plates was not openly observed, and no apoptosis

occurred in the liver cells. In this study, no accumulation

of inclusions in the nucleus of the liver cells and no

steatosis or cytoplasmic lipid droplets were detected in

any rats. In the FIT and FCT groups, compared with the

FC group, improvement was found in the cell cytoplasm

and nucleus, and there was no irregularity in the liver

plates (Figure 3C and D). Lymphocytic inflammation in

the FIT and FCT groups also improved compared with

that in the FC group, approaching the normal level

observed in the NC group in terms of histology.

5. Discussion

The results of the study showed that the

consumption of a 20% fructose solution for 16 weeks did

not lead to significant changes in body weight. However,

fructose consumption significantly reduced the
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Figure 2. A, Changes in the expression of the cluster of differentiation 36 (CD36) gene in different groups; B, changes in hormone-sensitive lipase (HSL) gene expression in
different groups. * Indicates significant changes at the 5% level, with the control group; and # indicates significant changes at the 0.05 level, with the FC group.

Figure 3. The histological funding of the rat liver sections in the studied groups are presented. A, Histology of normal control (NC) group liver tissue; B, FC group liver tissue
histology, black arrows point to irregularity of hepatocytes (IH) hepatic sinusoids (HS), Inflammatory cells (IC), swollen nucleus (SN) and cytoplasmic degeneration (CD); C, FCT
group liver histology; D, liver histology of FIT group. Magnification of all images is the same (40X)

expression of CD36 and HSL genes in liver tissue.

Previous studies have indicated that fructose

consumption at different concentrations and durations

can lead to an increase in body weight (21). It is evident

that high fructose intake can lead to metabolic

disorders, and a long-term fructose-rich diet can induce

MetS, which is usually associated with elevated glucose

levels and IR (23).

The increase in liver index in the fructose-receiving

groups, although not significant compared to the

control group, could be due to TG accumulation in this

tissue. Additionally, the weight difference between the

NC and FC groups could be explained by mechanisms of

appetite suppression and energy homeostasis. It was

observed that food intake was significantly reduced

during the study period in the FC group, indicating that

appetite control mechanisms were activated, balancing

body weight. Consistent with this study, fructose-rich

diets combined with inactivity did not lead to hepatic

steatosis (25), and body weight was controlled by energy

balance in most studies using 124 to 201 g of fructose

concurrently with a normal diet (20).

Although HSL is a critical enzyme for lipolysis in

target tissues of insulin and hormones involved in

metabolism (26), HSL gene expression in the FC group

was decreased compared to the NC group, but not
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significantly. This could be justified by the fact that

when blood sugar increases, there is no need to increase

HSL gene expression to compensate and supply cellular

energy. In this respect, interval and continuous training

could not cause a significant increase in the expression

of this gene compared with the FC group due to the

increased cellular requirement for energy. Furthermore,

this decrease could be attributed to the high levels of

insulin in this group. Long-term fructose consumption

was the leading cause of IR in the target tissues of this

hormone, and insulin could thus prevent lipolysis in

liver tissue by reducing the expression of its target

genes, including this enzyme.

Accordingly, results showed that interval and

continuous training in the groups receiving fructose

could not bring significant changes to the hepatic

expression of HSL compared with the FC group. Long-

term fructose consumption along with interval and

continuous training could moderate the serum levels of

liver enzymes, glucose, and TGs, thereby preventing the

development of metabolic disorders in these nutrients

(25, 27-29). These results could be attributed to the

improvement in the metabolic pathways of each

nutrient (5).

Fructose-rich diets accompanied by inactivity can

stimulate hepatic lipogenesis, subsequently increasing

intrahepatic triglyceride (IHTG) concentration and

glucose levels (6, 30). The molecular results in this study

further established that, unlike HSL, CD36 gene

expression significantly decreased in the liver tissue of

rats with fructose consumption for 16 weeks. Receiving

different concentrations of fructose over various

periods leads to fat accumulation in the liver,

manifesting as hepatic steatosis (31), a condition that

can progress to steatohepatitis following prolonged

fructose intake. Despite this, some studies have found

no significant changes in the expression of this gene

after 60% fructose consumption for 28 days (32).

Considering the transport of long-chain free fatty

acids into liver cells and their subsequent storage or

conversion to acetyl-CoA as one of the main functions of

CD36 in the liver (33, 34), the expression of this gene was

reduced in the FC group compared to the NC group in

this study. Indeed, this reduction could be validated as a

protective response in liver cells with intrinsic

mechanisms due to environmental factors during long-

term fructose consumption (35, 36). Additionally, CD36

gene expression was elevated in the exercise groups

receiving the fructose solution compared with the FC

and NC groups. Nevertheless, this rising trend was not

significant in the FIT group. The discrepancy in results

among the exercise groups in the present study

suggests that metabolic pathways might be involved in

the training protocols (10, 37). Continuous training was

effective in modulating CD36 gene expression in the

liver (38, 39).

The results showed that CD36 gene expression was

incoherent with fasting blood glucose levels in the FC

group, confirming the regulatory role of the liver in

storing and utilizing different forms of lipids, compared

with muscle tissue. The decrease in the expression of

this gene in the present study could further provide a

defense mechanism against the increasing free fatty

acid load, due to the combined function of synthesis

and reduction in fatty acid. However, the build-up of TGs

in the liver is the initial stage of damage caused by

hepatic steatosis, followed by inflammation, which

could intensify with continued exposure. This could also

be consistent with the development of steatohepatitis

after high fructose consumption in this model

(regardless of its dose), aligning with previous results

(25, 40).

Although continuous training significantly

modulated the effect of long-term fructose intake, it

could not bring the level of HSL gene expression closer

to its expression level in the NC group. This observation

also emphasizes the regulatory role of the liver, which

does not rapidly alter its factors in a short period of

exposure to damage, nor does it recover immediately

after returning to normal conditions.

Interval and continuous training could moderate

HSL gene expression, bringing it closer to normal levels.

Additionally, exercise could reduce the size of fat

droplets and normalize protein markers involved in

lipogenesis and lipolysis (41-43), as observed in the FCT

and FIT groups in terms of hepatic TG levels. In

accordance with biochemical and molecular results, it is

well established in this study and previous studies that

fructose consumption does not cause obvious

morphological changes in liver cells and fibrosis.

Therefore, the presence of free fatty acids in the short

term induces autophagic responses and impairs

programmed cell death. The histological results of this

study, similar to some previous findings, showed

abnormal nuclear shapes and cellular disorganization

in liver tissue in the FC group. However, in previous

studies, no fructose-receiving animal model reports all

the liver histological features of MetS in one study. These
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disorganizations approach the level of the NC group

when combined with periodic and continuous exercise.

Accordingly, it seems that the greater utilization of

cellular reserves during exercise improves physiological

function and liver tissue, preventing the progression of

further metabolic disorders (44-49).

5.1. Conclusions

This study demonstrates that although prolonged

high fructose intake can disrupt lipid metabolism,

leading to elevated fasting blood glucose and IR, it may

not significantly impact body weight or liver index.

Moreover, both interval and continuous aerobic

exercises were effective in mitigating the negative

effects of fructose on metabolic parameters, improving

insulin sensitivity and glucose regulation. Aerobic

exercise also showed potential hepatoprotective effects

by reducing inflammatory cells and enhancing

hepatocyte structure. The findings suggest that aerobic

exercise can serve as a viable non-pharmacological

strategy to prevent and ameliorate early symptoms of

metabolic disorders induced by fructose consumption.

Further research is needed to uncover the precise

molecular mechanisms involved and the impact of

exercise on liver metabolism.
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