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Abstract

Background: It has been well documented that exercise training (ET) induces beneficial effects on the central nervous system
(CNS); however, the underlying mechanisms are less known. We presumed that actin cytoskeleton regulatory proteins such as ADP-
ribosylation factors 6 (ARF6) and tropomodulin 2 (TMOD2) may be important elements of Exercise-Induced Neuroplasticity (EIN).
We evaluated this hypothesis in the present study.
Methods: We randomly divided 12 male Wistar rats into control (C) and training (T) groups. The T group was exposed to six weeks
of moderate-intensity treadmill running. The ARF6 and TMOD2 gene and protein expressions in the cerebellum of male Wistar rats
were assessed by the real-time PCR and western blot analysis.
Results: The results showed that TMOD2 and ARF6 gene and protein expressions were significantly higher in the T group than in
the C group.
Conclusions: It seems that chronic treadmill running increases TMOD2 and ARF6 gene and protein expressions in the cerebellum
and these changes probably lead to the improvement of brain function.
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1. Background

Actin filaments are major components of the neural
cytoskeleton and play a key role in synaptogenesis (1) and
neurotransmitter release (2), as well as the plasticity of the
central nervous system (CNS) (3). A remarkable variety of
proteins has been found to interact with actin cytoskele-
ton in the nervous system to work as actin polymerization-
depolymerization (4). One of these actin regulatory pro-
teins is ADP-ribosylation factor 6 (ARF6) (5) that is involved
in the regulation of dendritic spine formation (6), axonal
outgrowth, and dendritic arborization, probably through
actin dynamics (7). In a few attempts to explore the phys-
iological role of ARF6, it was demonstrated that the gene
deletion of ARF6 in neurons can lead to defective myelina-
tion (5). Moreover, the full loss of ARF6 by ARF6 knockout
(ARF6-KO) may cause embryonic lethality in mice (8). An-
other actin-regulatory protein is tropomodulin-2 (TMOD2)
that is especially expressed in neuronal structures (9). It
interacts with the pointed ends of actin filaments as a
capping protein and is capable to directly bind G-actin to
sequester or nucleate actin (10, 11). It is presumed that
through actin dynamic, TMOD2 is related to the formation

of new synaptic structures (12) and increased neurite ex-
tension (13). Also, the lack of TMOD2 expression might re-
duce sensorimotor gating and impair learning and mem-
ory (12)). On the other hand, the overexpression of TMOD2
may cause changes in both dendritic branching and spine
morphology (14). These findings demonstrate that ARF6
and TMOD2 are important actin-binding proteins (ABPs) in
the CNS and might be good candidates for neural plasticity.
Neural plasticity improves the various aspects of CNS func-
tion through synaptogenesis, neurogenesis, and neuronal
angiogenesis (15). However, the main underlying mecha-
nism of action of neural plasticity has largely remained un-
known.

Exercise training (ET) is an effective tool in neural plas-
ticity, which has widespread adaptations on the anatomi-
cal and functional aspects of the CNS (16). ET has promi-
nent effects on CNS function by increasing neurotrophic
factors production, reducing oxidative stress, and improv-
ing neuroinflammation (17). However, the effects of ET on
actin dynamics and its regulatory proteins such as ARF6
and TMOD2 are not clear. In our previous study, we demon-
strated that cerebellar ARF6 gene expression was increased
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in diabetic rats and ET as a non-pharmacologic therapeutic
intervention could damp this elevation (18). We concluded
that ARF6 is an important mediator of stress-induced plas-
ticity in the nervous system in response to ET and neurode-
generation disease. In another study, we observed that the
protein levels of ARF6 in visceral adipose tissue of male
Wistar rats were significantly higher in the group receiving
high-intensity interval training and this elevation could be
related to improved metabolism and glucose homeostasis
(19).

2. Objectives

We presumed that actin-binding proteins (ABPs) may
be important elements of neural plasticity; but based on
the authors’ knowledge, there was no research about the
effect of various exercise training models on actin dynam-
ics and its regulatory proteins. Therefore, the present
study was the first attempt to investigate the effect of six-
week submaximal ET on ARF6 and TMOD2 gene and protein
levels in the cerebellum of male Wistar rats.

3. Methods

3.1. Animals

Twelve adult male Wistar rats (Razi Institute, Karaj,
Iran), weighing 200 - 250 g, were housed three per cage and
maintained at the animal lab of Tarbiat Modares Univer-
sity. The animals were kept in a climate-controlled room
on a 12-hours light/dark cycle with food and water available
ad libitum. The study followed all institutional and ani-
mal research health guidelines (as registered under code
LUNS.REC.1395.170 at Lorestan University of Medical Sci-
ences). The rats were randomly divided into the control (C,
n = 6) and training (T, n = 6) groups.

3.2. Treadmill Training Protocol

The treadmill training protocol consisted of six weeks
of submaximal endurance aerobic training (50% - 55% of
maximal oxygen consumption) on a treadmill (Diagnos-
tic and Research Instruments Co., Taoyuan, Taiwan). The
treadmill training consisted of running at a speed of 10
m/min for 10 minutes in the first week. Then, the speed
and duration of treadmill running gradually increased un-
til the fifth week in which rats ran at a speed of 18 m/min for
the 30 minutes. The training intensity and duration were
kept constant in the sixth week for stabilizing the obtained
adaptations (20).

3.3. Tissue Extraction

Forty-eight hours after the last training session, ani-
mals (n = 3 in each group) were anesthetized through in-
haling 2% halothane in a mixture of 30% O2 and 70% N2O
(21) and cerebellar tissues were removed immediately and
stored at -80°C until analysis.

3.4. RNA Extraction and cDNA Synthesis

Total RNA was isolated from frozen tissue using RNeasy
Lipid Mini Kit including DNase digestion (Qiagen, German-
town, Maryland, USA). The RNA concentration was quan-
titated by spectrophotometry (Eppendorf, Germany) and
260/280 nm ratios were determined as the desired purifi-
cation. The cDNA synthesis was done using the Quanti Tect
Reverse Transcription Kit (Qiagen, Germany) in accordance
with the manufacturer’s manual.

3.5. Real-Time PCR

Experiments were performed in a real-time PCR (Cor-
bett, Germany) using TMOD2 gene-specific primers
(5-CCTGTCTCCTTCAACTCTCTTC-3 (forward) and 5-
CAAGATCCACAACCAGAGGC-3 (reverse)), ARF6 gene-specific
primers (5-AAAGGCATACATGGGGGGAGAT-3 (forward) and
5-GCGTTAGGATGCTCTGATGTGA-3 (reverse)), and GAPDH
gene-specific primers (5-AAGTTCAACGGCACAGTCAAGG-3
(forward) and 5-CATACTCAGCACCAGCATCACC-3 (reverse))
as the internal control. All primers were designed and
synthesized by Sangon Biotech (Shanghai, China).

Each reaction mixture of 20 µL contained 1 µL of to-
tal RNA-derived cDNAs, 1 µL of forward primer, 1 µL of re-
verse primer, 10 µL of SYBR Green PCR Mastermix (Applied
Biosystems), and 7 µL of DEPC water. The PCR conditions
were 50°C for 2 minutes, 95°C for 10 minutes, 40 cycles of
95°C for 15 seconds and 60°C for 1 minutes. The cDNA sam-
ples were run in triplicates and the cycle threshold (Ct) val-
ues were averaged for each sample. For each sample, the
reference gene (GAPDH) and the target gene were ampli-
fied in the same run. The fold change of genes was mea-
sured by the 2-∆∆CT formula (22).

3.6. Western Blotting

For western blotting analysis, 25-50 µg of cerebel-
lum lysate was prepared in lysis buffer (1% Triton X-100,
1% SDS, 50 mM Tris-Cl, pH 7.4, 500 mM NaCl, and 1 mM
EDTA) and electrophoresed by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis transferred to nitro-
cellulose membranes. Non-specific protein binding was
blocked with 5% nonfat milk for 30 min and then incu-
bated with a primary monoclonal antibody for 1 hours
at 24°C, followed by four 15-minutes PBS washing rounds.
The antibodies of TMOD2 (ab124833) and ARF6 (ab77581)
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were purchased from Abcam Biotechnology Company and
diluted to 1:500. All the samples were subsequently
probed with a dilution rate of 1:4000 of β-actin anti-
body (ab8229). After incubating with an anti-mouse horse-
radish peroxidase-conjugated secondary antibody, TMOD2
and ARF6 digital images were acquired and quantified us-
ing densitometric scanning. The intensities of the bands
were analyzed with ImageJ software. The band intensities
of the TMOD2 and ARF6 proteins were normalized to the
band intensity of β-actin (n= 3 for each group).

3.7. Statistical Analysis

SPSS software (version 19, SPSS Inc., Chicago, IL, USA)
was used for statistical analyses. Shapiro-Wilk and inde-
pendent samples t-tests were used to verify data normal-
ity and differences between groups, respectively. The sig-
nificance level was set at 5%, and the data were reported as
means ± SEM.

4. Results

4.1. The mRNA Levels of TMOD2 and ARF6 in the Cerebellum

The mRNA levels of TMOD2 and ARF6 were measured
in the cerebellum of the C and T groups and compared be-
tween groups using independent samples t test. The re-
sults showed a significant difference in TMOD2 and ARF6
mRNA levels between the C and T groups so that the mRNA
levels of TMOD2 in the cerebellum of T group was signifi-
cantly higher than that of the C group (P = 0.023). There-
fore, treadmill running could elevate the TMOD2 gene ex-
pression (1.4 folds). Moreover, the ARF6 mRNA levels were
significantly higher in the T group than in the C group (P =
0.025). These findings imply that ET was associated with el-
evated ARF6 gene expression (1.5 folds) in the rat’s cerebel-
lum. These results show that treadmill running can elevate
the TMOD2 and ARF6 gene expressions in the rat’s cerebel-
lum (Figure 1).

4.2. TMOD2 and ARF6 Protein Levels in the Cerebellum

In order to evaluate the protein levels of TMOD2 and
ARF6 in the rat’s cerebellum, the Western blotting analysis
was employed. The results of Western blot analysis showed
in response to ET, TMOD2 and ARF6 expressions were sig-
nificantly higher in T group rats than in their counterpart
controls (P = 0.018 and P = 0.010, respectively) (Figure 2).

5. Discussion

Evidence from human and animal studies demon-
strate that ET is associated with CNS improvement and it
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Figure 1. ARF6 and TMOD2 mRNA levels in C and T groups; ARF6 mRNA was signifi-
cantly higher in the T group than in the T group (P = 0.025) in response to ET in the
cerebellum of male Wistar rats. In addition, in response to ET, the gene expression
of TMOD2 was significantly higher in the T group than in the C group (P = 0.023).
*Significantly different at P ≤ 0.05.

has broad benefits for brain health (23). It is well docu-
mented that various types of ET have beneficial effects on
learning and memory (24), neural damage (25), and de-
pression (26). In the molecular aspect, ET increases neural
plasticity by directly affecting the neural structure and po-
tentiating synaptic strength (27), neurogenesis (28), vascu-
lar function, lipid metabolism, protein synthesis, molecu-
lar transport, and inflammatory/immune responses (29).
ET also initiates the expression of neurotrophin genes such
as brain-derived neurotrophic factor (BDNF) (30). In line
with these observations, in the present study, it was ob-
served that six-week submaximal ET increased TMOD2 and
ARF6 gene and protein expressions in the cerebellum of
male Wistar rats. This elevation probably was related to
the enhancement of actin cytoskeleton dynamics. Actin cy-
toskeleton dynamics is critical for neural plasticity and is
mediated by various ABPs such as TMOD2 and ARF6. TMOD2
is the neuronal isoform of tropomodulin that strongly
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Figure 2. Results of Western blotting analysis of ARF6 and TMOD2 protein levels in
C and T groups. It is observed that the protein expressions of ARF6 and TMOD2 were
significantly higher in the T group than in the C group in the cerebellum of male
Wistar rats. *Significantly different at P ≤ 0.05. **Significantly different at P ≤ 0.01.

regulates actin cytoskeleton (31). TMOD2 has dramatic ef-
fects on neuritogenesis, synaptic plasticity, neurite forma-
tion (32), and neuronal development (22). The lack of
TMOD2 has been associated with the impairment of actin
cytoskeleton dynamics and many cellular processes (12).
For example, Cox et al. reported that TMOD2 knock-out in
mice was related to severe impairment of the fear-based
learning task (12). Yang et al. investigated TMOD2 expres-
sion in the hippocampal tissue of patients with mesial tem-
poral lobe epilepsy and reported that the protein levels

of TMOD2 suffered a down-regulation compared to con-
trol tissue. Gray et al. explored the modulating effects
of TMOD2 on the morphology of nervous system by using
L29E/L134D mutations of TMOD2 overexpression (14). They
observed that TMOD2 overexpression was related to the in-
creased number of dendrites spines and length, without
changing the average length of dendritic branches. They
concluded that upregulation of TMOD2 may be a mecha-
nism by which the CNS increases its dendritic arborization
and TMOD2 might be a positive regulator of dendritic ar-
bor complexity.

ARF6 is a key intracellular trafficking regulator for en-
docytosis, exocytosis, endosomal recycling, and cytokine-
sis through the reorganization of the actin cytoskeleton
(33). ARF6 plays substantial roles in axonal outgrowth, den-
dritic branching, and spine formation (5) and may be re-
lated to disorders such as memory impairment and mental
disorder (34). However, these reports were attained from
in vitro surveys and there are a few in vivo examinations
about the physiological role of this protein in the CNS. It
has been reported that in Schwann cells, ARF6 knockdown
harnesses Schwan cells migration (35). Also, Akiyama et al.
examined the deletion of ARF6 gene from neurons and re-
ported that ARF6 is important in neuronal development of
myelination (5). These findings demonstrated that TMOD2
and ARF6 are key elements in CNS function and their ab-
normal expression can cause several disturbances in brain
health. Considering the importance of TMOD2 and ARF6 in
normal functioning of the CNS and the beneficial effect of
ET on brain health, it seems that the increased expression
of TMOD2 and ARF6 following ET is related to the enhance-
ment of cytoskeletal integrity, morphogenesis, synapto-
genesis, and synaptic plasticity (3). In line with these as-
sumptions, Chao et al. demonstrated that running exer-
cise could protect against myelin sheath degeneration in
mice with Alzheimer’s disease (AD) (36). In addition, Am-
brogini et al. showed that physical exercise-induced synap-
togenesis in adult-generated neurons in the rat dentate
gyrus (37). Also, Toy et al. reported that treadmill exer-
cise with high intensity increased dendritic spine density
in the striatum (38). Besides, although ET was able to in-
crease gene and protein expressions of ARF6 and TMOD2,
its underlying mechanism is still unclear. Therefore, the in-
vestigation of this effect is suggested in future studies.

5.1. Conclusions

In the present study, we observed that chronic ET in-
creased TMOD2 and ARF6 gene and protein expressions in
the cerebellum of male Wistar rats. This change is probably
attributed to the elevation of brain function, but its under-
lying mechanism is not understood yet.
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