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Abstract

Background: One of the most common endocrine and metabolic disorders is Polycystic ovary syndrome (PCOS), which has been
reported in about 10% of women during the reproductive age.
Objectives: This study was designed to investigate the efficiency of α-Linolenic acid (ALA) on in vitro maturation (IVM) and the
quality of mouse oocytes with PCOS.
Methods: Female NMRI mice (30 - 35 day-old) were developed by the injection of 4 mg estradiol valerate dissolved in 0.2 mg sesame
oil for 60 consecutive days. In the following, the PCOS ovaries were dissected and oocytes were cultured in the maturation medium
supplemented with different dosages of α-linolenic acid (0, 50, 100 µM). The presence of the first polar body was considered the
sign of the nuclear maturation of the oocyte. The expression of mitochondrial transcription factor A (TFAM) gene in mature oocytes
was investigated by Quantitative Real-time PCR.
Results: The in vitro maturation and TFAM gene expression rates of PCOS oocytes in the medium treated with 50 µM of ALA (84 ±
7.9 and 0.46 ± 0.09, respectively) were significantly higher than the control group (P < 0.05).
Conclusions: The ALA could improve the IVM rate and quality of PCOS oocytes by higher expression of TFAM gene.
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1. Background

Polycystic ovary syndrome (PCOS) occurs in 5% - 10% of
all women during reproductive age and is distinguished
by different symptoms of oligo/amenorrhea, androgen ex-
cess, insulin resistance, and typical morphology of poly-
cystic ovarian (1). This syndrome is known as the most im-
portant reason for infertility via dysfunction of ovulatory.
The fundamental etiology is not well understood but is re-
ported to be multifactorial (1). The classical morphology
of PCOS was described as hyperplasia, multiple cysts of fol-
licular, thickening of ovarian cortical, and cessation of fol-
liculogenesis, which is seen as multiple immature follicles
(2).

The alteration of endocrine and local paracrine func-
tions, in addition, changes in gene expression of cumulus
and granulosa cells strongly impair the maturation com-
petence of oocytes in patients with PCOS (3). Therefore, in
vitro maturation (IVM) as an effective alternative method
is suggested to improve the developmental competence of
oocyte maturation (4, 5). The IVM of oocytes as a defined
culture condition was used to promote the maturation of

oocytes of women with PCOS, poor ovarian response to
hormonal stimulation, and oncological problems (6).

Unfortunately, the suitable conditions for IVM of
oocytes are still minimal due to the entire essential factors
affecting IVM efficacy (7, 8). In this regard, α-Linolenic acid
(ALA) belongs to the group of omega-3, which can affect
oocyte’s growth and quality, and play an important role in
the regulation of the meiotic stoppage at the stage of ger-
minal vesicle (GV) (7).

Several studies have reported the positive effects of ALA
on IVM media. For example, Marei et al. show cattle oocyte
maturation, the quality, and development of cattle em-
bryos were promoted in the IVM media treated with ALA
(9). Also, the improvement of sheep blastocyst production
and quality was observed in the presence of ALA (10).

A series of experiences must occur during folliculoge-
nesis, which supports the future developmental compe-
tence of embryos. One of the most important ones in the
mammalian oocytes is mitochondria. This organelle is am-
plified (~ 40 fold-increase) during the maturation phase
(11). Therefore, the quality of oocytes is associated with
mtDNA content (12). The study of Spikings et al. strongly
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confirmed that the developmental competence of oocytes,
successful fertilization, and developmental progression
are dependent on the correct expression of the mitochon-
drial transcription factor A (TFAM) gene (13). In another
study, the expression of TFAM mRNA was significantly in-
creased in mature oocytes compared to immature oocytes
(14). Therefore, the evaluation of this gene in the oocytes
matured in vitro in the presence of ALA antioxidant is nec-
essary.

2. Objectives

With regards to the beneficial effects of ALA supple-
mentation on developmental and maturation competence
of the oocyte, this study was designed to clarify two ques-
tions, including (i) Whether treatment of IVM media with
different dosages of ALA can promote oocyte IVM rate
of mice with PCOS, and (ii) Whether the quality of PCOS
oocytes matured in the presence of ALA improves?

3. Methods

3.1. Animals and Mouse Model with PCOS

Twenty NMRI female mice (30 - 35 g and 30 - 35 day-old)
were purchased from Razi Institute, Iran. The animals were
housed in a room with the controlled temperature at 22 ±
2ºC, relative humidity, and under a 12h light/12h dark cy-
cle. Every four mice were housed in a cage with free ac-
cess to food and water. The mice with PCOS injected with
4 mg/kg estradiol valerate (EV) dissolved in 0.2 mL sesame
oil (Aburaihan Co., Iran) as an intramuscular (IM) for 60
consecutive days (15). Vaginal smears were obtained daily,
and its epithelial changes were considered a sign of PCOS.
In this way, the smears stained with Harris’ hematoxylin
and eosin (H&E) were evaluated based on the vaginal cytol-
ogy, and estrous, proestrus, metestrus, and diestrus stages
studied. Regular cycles were defined as a duration of 4 - 5
days (16).

3.2. Examination of Ovarian Morphology

Sixty days after the EV injection, the mice were dislo-
cated, and their ovaries removed. Then, the ovaries were
fixed in 10% formalin, then embedded in paraffin, and cut
serially in 5 µm sections. The mounted sections were also
stained with H&E. The presence of the healthy (primary,
preantral, antral, and preovulatory) and atretic follicles
and corpus luteum (CL) were examined in the serial sec-
tions under a light microscope. Follicles are defined as pri-
mary (the presence of a single layer of cuboidal granulosa
cells), preantral (1 - 2 small spaces filled by follicular fluid),
antral (one large antral space), preovulatory (the presence

of a rim of cumulus cells), and atretic (the presence of de-
formed follicle or the lack of oocyte or granulosa cells with
pyknotic nuclei) (16).

3.3. Oocytes Collection and IVM

The ovaries were collected from mice with PCOS in
preincubated alpha-modification of minimum essential
medium (α-MEM). Then, the ovaries were dissected, and
the germinal vesicle (GV) oocytes were cultured in α-MEM
supplemented with 5% FCS and different concentrations of
ALA (0 [control], 50, 100 µM) dissolved in Dimethyl Sulfox-
ide (DMSO) (17). Then, the oocytes were incubated at 37ºC
in with 5% CO2. After 24 h of culture, the maturation of
oocytes was assessed by an inverted microscope and was
classified as GV, Metaphase I (MI), and metaphase II (MII).

3.4. Evaluation of Gene Expression

The MII oocytes were collected from the medium and
kept at -196ºC until RNA extraction. Total RNA was extracted
by RNX-plus solution, and then treatment was done with
DNase, according to the manufacturer’s instructions. Us-
ing a cDNA synthesis kit, reverse transcription of total RNA
of oocytes was done. Relative quantification was done in
triplicate using quantitative real-time PCR and reactions
using a mixture of SYBR1Green Supermix (Biofact) with
cDNA equivalent to 1.5 oocytes and gene-specific primer
(Table 1). The denaturation of template cDNA was per-
formed at 95ºC for 10 min, then 35 cycles followed at 95ºC
for 15 sec. The annealing temperature of gene-specific
primer was carried out for 30 sec, and elongation was per-
formed at 72ºC for 45 sec/60ºC for 30 min. Afterward, the
melting curve analysis of samples was done to confirm
the generation of a single specific product. Amplicon size
was confirmed by safe stained-2% agarose gel electrophore-
sis. The expression of the GAPDH genes was considered en-
dogenous reference, and oocytes from controls were used
as calibrators. Calculations of relative quantification were
performed with StepOne V2.1 software.

Table 1. Primer Sequences Used in Quantitative Real-Time PCR

Gene Primer Pair Sequence (5’-3’) Size (bp)

TFAM
F: AAGTGATCTCATCCGTCGAAG 21

R: CTCCGTTCCAGTTCTTAAGCA 21

GAPDH
F: CAAGGTCATCCATGACAACTTTG 23

R: GTCCACCACCCTGTTGCTGTAG 22

3.5. Statistical Analysis

Data are indicated as mean ± standard deviation or
percent. Statistical analysis was performed using SPSS ver-
sion 20 (IBM, Armonk, NY, USA). The tests ofχ2 and One-way
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ANOVA was performed and followed by Tukey’s post-hoc
tests to analyze differences among the groups and gene ex-
pression, respectively. The values of P < 0.05 were consid-
ered significant.

4. Results

4.1. Estrous Cycle and Ovary Morphology

An essential feature of PCOS is the disruption of the es-
trous cycle. This feature was seen in the mice with PCOS
(Figure 1). While the control mice showed a cycle of 4 - 5
days on a regular basis with the presence of CL. The vagi-
nal smears of mice with PCOS had leukocytes (a symbol of
constant pseudodiestrus and acyclic model). The histology
of PCOS ovaries indicated atretic follicles without a sign
of ovulation, absence of the CL and high early antral and
antral follicles in comparison to the control group. The
thickness of granulosa-theca cells in PCOS ovaries was sig-
nificantly greater than the ones in the control group.

4.2. ALA Effects on IVM Rate of PCOS Oocytes

The maturation of oocytes was followed during the
culture medium treated with different dosages of ALA (0,
50, and 100 µM). The results showed that the IVM rate of
PCOS oocytes in the medium treated with 50 µM of ALA in-
creased significantly in comparison to the control group (P
= 0.009). The improved maturation rate can be attributed
to oocyte quality. On the other hand, the higher dosage of
ALA negatively affected the maturation of oocytes. There-
fore, a dose-dependent pattern of ALA was established dur-
ing the culture of PCOS oocytes (Figure 2 and Table 2).

4.3. Gene Expression Results

The ratio of expression of TFAM gene in the PCOS ma-
tured oocytes treated with 50 and 100µM ALA, and the con-
trol group were 0.46 ± 0.09, 0.03 ± 0.09, and 0.025 ±
0.005, respectively (Figure 3). The rate of TFAM gene expres-
sion was significantly increased in the group treated with
50 µM of ALA (P < 0.05).

5. Discussion

In this study, an optimum range of ALA was detected
to improve the in vitro maturation of PCOS oocytes. The re-
sults of this study showed that the presence of ALA not only
improves the maturation rate of PCOS oocytes, but also
promotes the mature oocyte quality so that the percentage
of TFAM gene expression increases in the PCOS oocytes ma-
tured in the medium treated with ALA.

Different fatty acids have been detected in the follicular
fluid of which the most majors are linoleic acid (LA), oleic

Table 2. Effect of Supplementation of ALA on the IVM Medium of PCOS Oocytesa

Groups No. Oocytes with
PCOS

GV + Deg. MI MII

Control 188

M ± SD 56 ± 6.7 21 ± 3.4 111 ± 9.8

Percent 29.7% 11.17% 59.04%

50 µM ALA 110

M ± SD 10 ± 1.4 16 ± 2.7 84 ± 7.9

Percent 9.09% 14.54% 76.36%

P value 0.000b 0.47 0.009c

100 µM ALA 110

M ± SD 22 ± 3.6 17 ± 2.6 71 ± 7.1

Percent 20% 15.45% 64.54%

P value 0.114 0.68 0.42

Abbreviations: ALA, α-linolenic acid; Deg, degenerated oocyte; GV, germinal
vesicle; MI, metaphase I; MII, metaphase II; PCOS, polycystic ovarian syndrome.
aThere are significantly difference in the maturation rate of PCOS oocytes in the
group treated to 50 µM ALA in comparison to control group (without ALA).
bP value < 0.001.
cP value < 0.01.

acid (OA), stearic acid (SA), palmitic acid (PAL), and ALA (10).
We tried to detect the effect of ALA on the in vitro oocyte
maturation and to investigate its relationship with oocyte
quality of mouse with PCOS.

In many studies, the IVM medium was treated with dif-
ferent dosages of ALA (e.g., 0, 10, 50, 100, or 200 µM) to
evaluate its effect on cumulus cell expansion, the nuclear
and cytoplasmic maturation of oocytes. These studies re-
ported that supplementation of IVM medium with ALA at
the highest concentration (100 µM) had a deleterious ef-
fect on cumulus cell expansion (9, 10, 17). The similar re-
sults of bovine oocyte maturation indicated by Marei et
al. with a concentration of 50 µM of ALA (9). The study
of Veshkini et al. reported that the maturation medium
treated with 50 µM ALA improved the nuclear maturation
of goat oocytes (10).

The critical factors in determining the developmental
potential of fertilized oocytes are nuclear and cytoplasmic
maturation. The diameter of follicles and oocytes are of-
ten small (18) and the vital factors in the cytoplasm of these
oocytes are deficient (19). Preparation of the best matura-
tion media could overcome some disadvantages and limi-
tations of IVM conditions and promote their developmen-
tal potential (20). The previous studies indicated that fol-
licular fluid contains large amounts of fatty acids. There-
fore, each developmental phase of follicles needs fatty
acids (21). Also, another study demonstrated that supple-
mentation of IVM media with 50 µM ALA increased the
maturation rate of goat oocytes (MII oocytes), while this
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Figure 1. The ovary histology of PCOS and control mice. A) ovarian tissue with atretic follicles and thick granulosa-theca cells; B) ovarian tissue of a control group with several
CL (×40).

Figure 2. In vitro maturation of oocytes in medium treated with 50 µM of ALA. A)
GV oocytes, and B) MII oocytes (40×).

dosage of ALA had no effect on oocyte’s cytoplasmic ma-
turity (17). The study of Marei et al. found that matura-
tion medium of bovine oocytes treated with 50µM ALA in-
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Figure 3. Expression of the TFAM gene in the PCOS matured oocytes. The gene ex-
pression rate was increased in the oocytes treated with 50 µM of ALA compared to
the control group (*P value ≤ 0.05).

creased the maturation rate; however, no effect was shown
on cytoplasmic maturity (22). It seems that ALA increased
both PGE2 and PGF2a levels in the culture media of oocytes.
In fact, PGE2 has a major role in the nuclear maturation of
oocytes and it plays as an important paracrine and/or au-
tocrine regulator role in cumulus cells (23).

In this study, it was observed that the exogenous ALA
in the IVM medium influenced on oocyte nuclear and cy-
toplasmic maturation. To the best of our knowledge, there
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are a few studies have ever evaluated the oocyte develop-
mental competence in the presence of ALA (9, 10). However,
such an effect has not been observed with PCOS oocytes
of the mouse, and its role in oocyte cytoplasmic matu-
ration is less clear until now. In this study, the ALA that
was supplemented with the maturation medium affected
oocyte gene expression patterns during IVM process. In ad-
dition, the treatment of oocyte with 50 µM ALA increased
the frequency of TFAM gene compared with other groups
showing that a direct association existed between treat-
ment with the ALA and oocyte mitochondrial activity. Mi-
tochondrial metabolic activity plays a critical role in the
regulation of obvious signaling pathways during oocyte
maturation (13). In addition, it has been reported an as-
sociation between significant mtDNA replication and IVM
of oocytes (transition from germinal vesicle to metaphase
oocyte) (24). In this regard, TFAM activity was not only indi-
cated to be critical for maintenance, replication and tran-
scription of mtDNA, but also its transcriptional level was
recently reported to positively associated with the oocyte
maturation process (25, 26).

5.1. Conclusion

Overall, the results of the present study indicated that
supplementation of maturation medium with 50 µM ALA
increased IVM rate of PCOS oocytes. Also, ALA-treated
medium led to a promotion in the quality of the PCOS
oocyte via higher expression of TFAM gene. Therefore, the
results of the study may improve the outcomes of assisted
reproductive technique (ART) programs.
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