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Abstract

Context: Cesarean section (CS) represents a prevalent surgical intervention necessitating meticulous and efficacious

anesthetic administration to optimize maternal and neonatal well-being. This narrative review aims to comprehensively

examine the pharmacological properties, clinical applications, and safety considerations associated with the utilization of

ketamine and dexmedetomidine as anesthetic agents within the context of CS.

Evidence Acquisition: A structured literature search was performed across PubMed, Scopus, and Web of Science databases

using key terms including 'Ketamine', 'dexmedetomidine', 'cesarean section', 'anesthesia', and 'pharmacogenetics'. Inclusion

criteria were applied to guide the selection of relevant studies for a narrative synthesis. Data collection involved identifying

information pertinent to anesthesia types (neuraxial/general), administration routes [intravenous (IV)/intrathecal], dosages,

and maternal and neonatal outcomes for a qualitative summary. This narrative review did not include a formal risk of bias

assessment or quantitative meta-analysis.

Results: A narrative synthesis of the identified literature indicates that ketamine, recognized for its dissociative anesthetic

characteristics and significant analgesic potency, contrasts with dexmedetomidine, which offers distinct sedative and analgesic

actions while exhibiting limited respiratory depressant effects. The concurrent administration of these two pharmacological

agents holds the potential for synergistic interactions, potentially leading to improved patient outcomes through mechanisms

such as reduced opioid requirements, enhanced hemodynamic stability, and minimized postoperative adverse events.

Conclusions: This review underscores the potential for synergistic effects between ketamine and dexmedetomidine in

enhancing both analgesic efficacy and hemodynamic stability during CS. Furthermore, it examines the safety profiles associated

with this combination and considers relevant pharmacogenetic factors.
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1. Introduction

A cesarean section (CS) is a common surgical
intervention in obstetrics, frequently indicated by

various maternal and fetal conditions such as fetal

distress, cephalopelvic disproportion, placenta previa,
and specific maternal medical issues (1). This procedure

poses distinct challenges for anesthesia providers,

necessitating a meticulous balance between ensuring

maternal well-being and safeguarding fetal health. The
fundamental objectives of anesthesia during CS are to

achieve adequate surgical anesthesia, ensure maternal

comfort, and minimize fetal exposure to anesthetic

agents, all while concurrently managing the substantial
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physiological adaptations inherent to pregnancy (2).

The profound physiological alterations induced by

pregnancy significantly influence anesthetic
management. The physiological adaptations during

pregnancy encompass an augmentation in blood
volume, cardiac output, and heart rate. Furthermore,

the gravid uterus can exert aortocaval compression,

potentially resulting in supine hypotension syndrome
(3). Consequently, meticulous patient positioning and

vigilant hemodynamic surveillance are essential. The
cephalad displacement of the diaphragm, coupled with

heightened oxygen consumption and a reduction in

functional residual capacity, renders pregnant

individuals susceptible to rapid oxygen desaturation

during airway management (4). Delayed gastric
emptying and reduced lower esophageal sphincter tone

elevate the susceptibility to aspiration pneumonitis (5).
Furthermore, increased progesterone and estrogen

levels significantly impact the pharmacokinetic and

pharmacodynamic profiles of anesthetic agents (6). The
physiological state of pregnancy also induces a

hypercoagulable condition, thereby augmenting the
potential for thromboembolic events (7). Anesthesia

methods for CS need to consider these hemodynamic

and respiratory alterations, reduce pain after surgery,
and prevent negative complications like hypotension,

respiratory depression, and maternal anxiety, all
ensuring the best possible oxygenation and health for

the fetus. Regional anesthetic techniques,

encompassing spinal and epidural modalities, represent
the favored approach for planned CSs owing to their

established safety profile. This preference stems from
their capacity to maintain maternal consciousness and

limit fetal exposure to pharmacological agents (8).

While spinal anesthesia is characterized by its swift
onset and profound sensory and motor blockade,

epidural anesthesia affords greater adaptability for both
intraoperative management and subsequent

postoperative pain relief (9). Combined spinal-epidural

anesthetic techniques provide the advantages inherent
to both modalities. General anesthesia is limited to

cases of emergent CS or when regional anesthesia is
deemed unsuitable. The administration of general

anesthesia necessitates rapid sequence induction and

endotracheal intubation to minimize the potential for
pulmonary aspiration. In comparison to regional

anesthesia, general anesthesia is associated with an
elevated risk of maternal complications and fetal

depression (10).

Although regional anesthesia is the established

standard for CS, ongoing limitations include opioid-

induced respiratory depression, hypotension, and the

inherent variability in individual responses to

anesthetic agents (11). Ketamine and dexmedetomidine

present distinct benefits, such as the hemodynamic

support and opioid-sparing characteristics of ketamine,
and the sedative effects of dexmedetomidine without

causing respiratory depression (12, 13). Nevertheless,
there are existing gaps in the evidence concerning their

ideal application, dosage regimens, and the impact of

pharmacogenetic factors. This review aims to synthesize
the current body of evidence to inform clinical decision-

making in this context.

Ketamine, functioning as an N-methyl-D-aspartate

(NMDA) receptor antagonist, induces rapid analgesia,

amnesia, and dissociative anesthesia. Its capacity to

elevate blood pressure renders it particularly

advantageous in the management of hemodynamically

unstable patients (14). However, despite its efficacy,

ketamine administration carries a risk of

psychomimetic adverse effects, which can be mitigated

through the use of low dosages (15). Dexmedetomidine,

an alpha-2 (α2)-adrenergic receptor agonist, provides

both sedation and analgesia with a notable absence of

significant respiratory depression, which can be

advantageous for maintaining hemodynamic stability

during procedures such as endotracheal intubation.

However, its administration may be associated with the

development of bradycardia and hypotension,

particularly in patients experiencing hypovolemia (16).

Combining these agents can yield synergistic effects,

thereby enable the administration of lower dosages and

consequently minimize individual adverse effects.

Specifically, dexmedetomidine can attenuate the

psychomimetic effects associated with ketamine, while

ketamine enhances the analgesic properties of

dexmedetomidine (17). This synergistic approach

enhances patient well-being, diminishes the

requirement for opioid analgesics, and promotes

hemodynamic stability, which is of critical importance

in the context of CSs. Ketamine and dexmedetomidine

are critical agents in enhancing postoperative analgesia

and mitigating side effects associated with opioid

administration. This review investigates the utility of

ketamine and dexmedetomidine as adjunctive therapies

in the context of CS anesthesia. The scope of this analysis

encompasses their respective mechanisms of action,

pharmacokinetic profiles, clinical applications, safety

considerations, and the potential for synergistic

interactions when co-administered.

2. Literature Search Strategy

A structured and comprehensive literature search

was performed across PubMed, Scopus, and Web of

Science databases employing the following keywords:

https://brieflands.com/articles/aapm-163063
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'Ketamine', 'dexmedetomidine', 'cesarean section',

'anesthesia', and 'pharmacogenetics'. This search aimed

to provide a broad overview for a narrative synthesis,

rather than a systematic review or meta-analysis. The

search was conducted from the inception of each
database up to March 2025. Only articles published in

English were considered for inclusion. The inclusion

criteria for studies encompassed randomized controlled

trials (RCTs), non-randomized controlled clinical trials,

cohort studies, case-control studies, meta-analyses,
systematic reviews, case reports, and pharmacogenetic

association studies that assessed the utilization of

ketamine and/or dexmedetomidine in anesthesia for CS.

Studies that were not relevant to human CS or the

specified anesthetic agents (ketamine and
dexmedetomidine), or those focusing purely on basic

science research without direct clinical implications in
CS, were excluded from this narrative review.

Data extraction procedures prioritized the collection

of information pertaining to the anesthesia modality

(neuraxial/general), administration routes [intravenous

(IV)/intrathecal], administered dosages, and both

maternal and neonatal outcomes. As this is a narrative

review, a formal preferred reporting items for

systematic reviews and meta-analyses (PRISMA) flow

diagram was not generated, nor was the study

prospectively registered. Moreover, given the nature of

this review as a narrative synthesis, a formal assessment

of the risk of bias for individual studies was not

conducted.

3. Pharmacology of Ketamine and
Dexmedetomidine; Mechanism of Action,
Pharmacokinetic Profile, and Pharmacodynamic
Effects

Ketamine, a distinct dissociative anesthetic agent,

primarily exerts its pharmacological action through

non-competitive antagonism of the NMDA receptor (18).

The NMDA receptor, a subtype of glutamate receptors, is

critically involved in synaptic plasticity, nociception,

and the development of central sensitization, a key

mechanism underlying chronic pain conditions (19). By

impeding the function of the NMDA receptor, ketamine

disrupts the transmission of pain signals within the

central nervous system, thereby effectively diminishing

pain perception (20). However, the pharmacological

influence of ketamine extends beyond its role as an

NMDA receptor antagonist. It interacts with a diverse

array of other receptor systems, playing a role in its

intricate and multifaceted clinical effects. This

substance exerts its effects through interactions with

several receptor types. Notably, it engages α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

receptors, which may underlie its rapid antidepressant

properties. It also binds to opioid receptors, particularly

the mu (μ) subtype, contributing to its analgesic effects.

Furthermore, it interacts with muscarinic receptors,
leading to anticholinergic effects, such as elevated heart

rate and bronchodilation; it finally modulates

monoaminergic systems, encompassing dopamine,

norepinephrine, and serotonin, which are implicated in

its psychotropic actions (21-23). Ketamine exhibits a
pharmacokinetic profile characterized by its rapid

absorption via multiple routes of administration,

including IV, intramuscular (IM), and intranasal (IN)

(24). While IV administration facilitates the most

immediate onset of action, IM and IN routes present
viable alternatives for administration when IV access is

not feasible. Following its systemic uptake, ketamine
undergoes significant hepatic biotransformation,

primarily mediated by the cytochrome P450 (CYP)

enzymatic system, with the CYP3A4 isoenzyme
identified as the principal catalyst (25). This metabolic

process yields several compounds, including
norketamine, which also exhibits a degree of

pharmacological activity (26). Ketamine is characterized

by a relatively brief elimination half-life, typically
ranging from 2 to 3 hours. This pharmacokinetic

property results in a rapid onset and offset of its
pharmacological action. Such a profile is particularly

advantageous in medical procedures of short duration,

including CS, where the precise and timely
management of anesthetic depth is of paramount

importance (27). The metabolic profile of ketamine can
be influenced by several factors, including genetic

polymorphisms affecting CYP enzymes, hepatic

function, and concurrent administration of other

medications (28). Ketamine is well-established for its

significant analgesic properties, which are evident even

when administered at dosages below those required for

general anesthesia. It elicits a dissociative state in

patients, a condition marked by profound analgesia,

amnesia, and a feeling of being disconnected from their

surroundings (24). When administered at low dosages

during CS, ketamine can contribute to hemodynamic

stability through the augmentation of sympathetic

tone. This effect may be particularly advantageous in

patients presenting with pre-eclampsia or those

susceptible to hypotension induced by other anesthetic

agents (29). Conversely, the administration of ketamine

at higher doses can precipitate excessive sympathetic

nervous system stimulation, potentially leading to

adverse cardiovascular events such as hypertension,

tachycardia, and an elevation in myocardial oxygen

demand (30).
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Dexmedetomidine, a highly selective agonist of the

α2-adrenergic receptor, exerts its pharmacodynamic

actions through the activation of these receptors. These

receptors are predominantly located within the locus

coeruleus, a nucleus in the brainstem critically involved

in the modulation of arousal states and the activity of

the sympathetic nervous system (31). Activation of α2-

adrenergic receptors within the locus coeruleus leads to

a reduction in norepinephrine release. This

consequently diminishes sympathetic outflow, resulting

in pharmacological effects such as sedation, anxiolysis,

and analgesia (32). Furthermore, dexmedetomidine

exerts its analgesic action at the spinal level by

activating α2-receptors in the dorsal horn. This

activation inhibits the transmission of nociceptive

signals, thereby augmenting its analgesic properties

(33). Unlike non-selective adrenergic receptor agonists,

which can activate both α1 and α2 subtypes,

dexmedetomidine exhibits high selectivity for α2-

receptors. This pronounced selectivity mitigates adverse

effects such as vasoconstriction and tachycardia,

rendering it a preferred agent in specific clinical

scenarios (34). Typically administered via the IV route,

dexmedetomidine allows for fine-tuned regulation of its

plasma concentration. The compound undergoes

hepatic biotransformation via glucuronidation and CYP

enzymes (35). Its pharmacokinetic profile is

characterized by a rapid distribution phase followed by

a more protracted elimination phase. The elimination

half-life of the drug is within the range of 2 to 3 hours,

and its clearance rate is susceptible to alterations in the

presence of hepatic or renal dysfunction, thereby

necessitating meticulous dosage adjustments in

affected patient populations. Dexmedetomidine elicits a

distinctive sedative state characterized as "awake

sedation", wherein patients exhibit a calm and

cooperative demeanor while retaining the capacity for

facile arousal (36). This particular attribute renders it

especially advantageous in medical interventions

necessitating patient collaboration, such as the

administration of regional anesthesia. In contrast to

other sedative agents, such as benzodiazepines and

opioids, dexmedetomidine exhibits a profile of minimal

respiratory depression, rendering it a potentially safer

option for patients with heightened susceptibility to

respiratory compromise (37). Furthermore,

dexmedetomidine offers hemodynamic advantages by

attenuating sympathetic nervous system activity and

promoting cardiovascular stability during surgical

procedures. The capacity of this agent to decrease heart

rate and blood pressure may offer specific benefits for

patients diagnosed with hypertension or tachycardia

(38) (Table 1). In the context of CS anesthesia, ketamine is

typically administered via the IV (0.25 - 0.5 mg/kg for

analgesia; 1 - 2 mg/kg for induction). It is also used off-

label as an adjunct via the epidural route.

Dexmedetomidine is administered via the IV as a bolus

(0.5 - 1 μg/kg; 0.2 - 0.7 μg/kg/h infusion) or intrathecally

(5 - 10 μg) (39, 40).

4. Ketamine and Dexmedetomidine in Cesarean
Section Anesthesia

As an adjunct to general anesthesia during CS,

ketamine presents a multimodal strategy for enhancing

patient outcomes (41). Its primary pharmacological

benefit is the reduction of opioid requirements, which

is clinically significant due to the potential for opioid-

induced respiratory depression in both the mother and

the adverse neonatal effects. Ketamine, as a non-

competitive antagonist at the NMDA receptor, disrupts

the process of central sensitization. This action leads to

a reduction in the perception of acute surgical pain and

mitigates the development of chronic postoperative

pain (40, 42). Consequently, the significant analgesic

efficacy of ketamine allows for a considerable decrease

in the required dosages of both intraoperative and

postoperative opioids, thereby minimizing their

associated adverse effects. Beyond its established

mechanism of action as an NMDA receptor antagonist,

ketamine also exhibits interactions with opioid

receptors, thereby potentiating analgesic outcomes

when administered concurrently with opioid

medications (43). Clinically, ketamine finds its primary

application as an adjunctive agent in the context of

general anesthesia (IV) or epidural analgesia. In

contrast, dexmedetomidine is preferentially employed

for sedation during neuraxial anesthesia (IV) or as a

component of balanced general anesthesia regimens.

Notably, RCTs have demonstrated that the

administration of low-dose ketamine (0.1 to 0.3 mg/kg

IV) can reduce postoperative pain scores by 30 - 50% (44).

Similarly, studies, including RCTs, have shown that

dexmedetomidine (0.5 μg/kg IV, prior to surgical

incision) can decrease intraoperative opioid

requirements by approximately 40% (39).

Maintaining hemodynamic stability is of critical

importance during CS, especially in individuals with

pre-eclampsia, obesity, or other coexisting medical
conditions that elevate their susceptibility to

hypotension (45). Low-dose ketamine exerts a
stimulatory effect on the sympathetic nervous system,

consequently leading to elevations in heart rate, blood

pressure, and cardiac output (46). The aforementioned
effect demonstrates particular utility in individuals with

pre-eclampsia, a condition frequently characterized by
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Table 1. Pharmacology of Ketamine and Dexmedetomidine

Feature Ketamine Dexmedetomidine Clinical Implication

Mechanism of action
Non-competitive NMDA receptor
antagonism; interacts with opioid, AMPA,
and muscarinic receptors.

Selective α2-adrenergic receptor agonist;
reduces norepinephrine release in the locus
coeruleus.

Ketamine reduces central sensitization and opioid
needs; dexmedetomidine stabilizes hemodynamics
via sympatholysis.

Routes of
administration

IV (0.25 - 0.5 mg/kg analgesia; 1 - 2 mg/kg
induction), epidural (off-label)

IV (0.5 - 1 μg/kg bolus; 0.2 - 0.7 μg/kg/h infusion);

intrathecal (5 - 10 μg, limited evidence)

Ketamine IV is preferred for rapid onset;
dexmedetomidine IV/intrathecal balances sedation
and analgesia.

Pharmacokinetics Rapid absorption; hepatic metabolism
(CYP3A4); half-life: 2 - 3 hours

Hepatic glucuronidation/CYP450; half-life: 2 - 3
hours; caution in hepatic/renal impairment.

Dose adjustments are needed in hepatic
dysfunction for both drugs.

Pharmacodynamic
effects

Dissociative anesthesia, analgesia, and
sympathetic stimulation (↑ BP/HR at high
doses)

Sedation, anxiolysis, and minimal respiratory
depression; ↓ HR/BP

Ketamine benefits hypotension; dexmedetomidine
risks bradycardia.

Advantages in CS Opioid-sparing, hemodynamic support in
pre-eclampsia/obesity

Sedation without respiratory depression
reduces opioid needs.

Synergistic when combined: Ketamine offsets
dexmedetomidine-induced bradycardia.

Disadvantages/side
effects

Psychomimetic effects (20%),
nausea/vomiting (15 - 30%), and
hypertension (high doses)

Bradycardia (10 - 15%), hypotension (5 - 10%), and
dry mouth

Low-dose ketamine (0.1 - 0.3 mg/kg) minimizes side
effects.

Abbreviations: NMDA, N-methyl-D-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; α2, alpha-2; IV, intravenous; CYP, cytochrome P450; CS, cesarean
section.

reduced intravascular volume and compromised

vasomotor tone. Furthermore, in obese patients, who

may exhibit altered pharmacokinetic and

pharmacodynamic profiles with respect to anesthetic

agents, the hemodynamic properties of ketamine can

contribute to the maintenance of blood pressure during

both the induction of anesthesia and subsequent

surgical stimulation (47). Low-dose ketamine has

demonstrated efficacy in diminishing the requirement

for supplementary analgesic medications during and

after surgical procedures, consequently leading to a

more stable and effective management of pain. The

underlying mechanisms responsible for this reduction

in rescue analgesic use are likely complex and involve

several pharmacological actions of ketamine, including

its antagonism of NMDA antagonism, interactions with

opioid receptors, and potential anti-inflammatory

properties (48).

The primary application of dexmedetomidine in the
context of CS anesthesia is to induce procedural

sedation, particularly when administered in

conjunction with regional anesthetic techniques, such

as spinal or epidural anesthesia (49). Dexmedetomidine,

through the activation of α2-adrenergic receptors
within the locus coeruleus, diminishes the release of

norepinephrine. This pharmacological action results in

a state of tranquil sedation that is not typically

associated with clinically significant respiratory

depression. This characteristic is of critical importance
during CS procedures, as maternal respiratory

compromise can negatively impact fetal oxygenation

(50). Clinical experience and observational studies
suggest that dexmedetomidine is efficacious in

diminishing anxiety, a prevalent condition among

women undergoing CS, and in enhancing patient

compliance during the procedure, thereby facilitating a

more seamless surgical course. Its distinctive property

of inducing "awake sedation" enables patients to

maintain responsiveness to verbal commands while

experiencing a reduction in anxiety and discomfort (51).

Academically, dexmedetomidine exhibits

noteworthy cardiovascular stabilizing properties,

particularly advantageous for patients with pre-existing

cardiac conditions. Its mechanism of action, involving

the reduction of sympathetic nervous system outflow,

effectively mitigates the potential for intraoperative

hypotension and bradycardia. These hypotensive and

bradycardic events can be precipitated by surgical

stimuli or the administration of anesthetic agents (52).

This attenuation of hemodynamic instability is

especially critical in individuals with compromised

cardiac function, who demonstrate heightened

susceptibility to such fluctuations. The resultant
decrease in heart rate and blood pressure typically

manifests gradually and is generally well-tolerated,

contingent upon the maintenance of adequate patient

hydration. Furthermore, dexmedetomidine's capacity to

preserve hemodynamic stability concurrently with
minimal respiratory depression renders it a clinically

significant adjunct in CS anesthesia (53).

The combined application of ketamine and

dexmedetomidine presents a potentially advantageous

strategy for optimizing both analgesia and sedation in

the context of CS (44). The pronounced analgesic effects

of ketamine, when integrated with the sedative and

hemodynamically stabilizing properties of

dexmedetomidine, culminate in a well-rounded
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Table 2. Ketamine and Dexmedetomidine in Cesarean Section Anesthesia

Feature Ketamine Dexmedetomidine Combination (Ketamine + Dexmedetomidine)

Primary role in
CS

Adjunct to general anesthesia; opioid-sparing
analgesia; hemodynamic support

Procedural sedation (regional anesthesia);
anxiolysis; cardiovascular stability

Synergistic analgesia and sedation; combined
benefits of hemodynamic stability and opioid
reduction; minimization of individual side effects

Mechanism of
action benefits

NMDA receptor antagonism (analgesia, prevention
of central sensitization); sympathetic stimulation
(hemodynamic support); opioid receptor
interaction (enhanced analgesia)

α2-adrenergic receptor agonism (reduced
norepinephrine release, spinal analgesia);
minimizes sympathetic outflow
(hemodynamic stability, anxiolysis)

Combined NMDA antagonism and α2 agonism;
attenuation of individual side effects
(dexmedetomidine minimizes ketamine's
psychomimetic effects); enhanced analgesic and
sedative profile

Hemodynamic
effects

Increased heart rate, blood pressure, and cardiac
output (low doses); beneficial in pre-eclampsia,
obesity, and hypotension.

Reduced sympathetic tone; minimized risk
of hypotension and bradycardia; gradual
reduction in heart rate and blood pressure;
stable cardiovascular parameters

Potentially additive hypotensive effects; requires
careful hemodynamic monitoring; combined
effect on cardiovascular stability needs careful
titration.

Analgesic effects
Potent analgesic; reduces intraoperative and
postoperative opioid requirements; effective pain
control in pre-eclampsia and obese patients

Sedation and analgesia without significant
respiratory depression; reduces opioid
needs

Enhanced analgesia allows for lower doses of each
drug and optimized pain control.

Sedative effects Dissociative anesthesia; amnesia "Awake sedation"; anxiolysis; improved
patient cooperation

Balanced sedation; attenuation of ketamine's
emergence agitation.

Respiratory
effects

May cause respiratory depression, particularly at
higher doses; risk of laryngospasm.

Minimal respiratory depression; safe in
patients with compromised respiratory
function

Careful monitoring of respiratory function is
crucial; the combination can potentiate
respiratory depression.

Adverse effects
considerations

Emergence phenomena, hypertension/tachycardia,
nausea/vomiting

Hypotension, bradycardia, dry mouth, and
nausea

Potentially increased risk of hypotension,
bradycardia, and respiratory depression; requires
careful titration and monitoring.

Patient
population
benefits

Beneficial in pre-eclampsia, obese patients, and
those at risk of hypotension.

Valuable in patients with underlying
cardiovascular conditions and anxiety.

Optimized outcomes for patients with
comorbidities; reduced overall side effects

Dosing
considerations

Low-dose ketamine preferred; careful titration
based on patient factors

Careful dosing based on patient factors,
especially in hepatic or renal impairment

Careful titration is crucial; individual patient
factors must be considered; further research is
needed to establish optimal dosing guidelines.

Clinical use
Often used in emergency cases where hemodynamic
support is needed or rapid sequence inductions are
required.

Used most often as an adjunct to regional
anesthesia, or as a component of TIVA (total
IV anesthesia).

Used when synergistic effects are desired to
achieve analgesia, sedation, and hemodynamic
control with reduced side effects.

Abbreviations: CS, cesarean section; NMDA, N-methyl-D-aspartate; α2, alpha-2; IV, intravenous.

anesthetic profile. This synergistic combination may

facilitate the administration of lower individual

dosages, thereby mitigating the potential for agent-

specific adverse effects. Dexmedetomidine has the

capacity to mitigate the psychomimetic sequelae

associated with ketamine administration, including

phenomena such as hallucinations and nightmares,

which can emerge as a significant clinical consideration

at elevated dosages. Conversely, ketamine may

potentiate the analgesic properties of

dexmedetomidine, thereby contributing to more

efficacious pain management (39). To mitigate potential

adverse effects while optimizing therapeutic outcomes,

meticulous dose titration of these agents is paramount.

Notably, both ketamine and dexmedetomidine are

associated with the risk of inducing hypotension, a

concern that is particularly pronounced in patients with

hypovolemia. The concurrent administration of these

two medications may also synergistically augment this

hypotensive effect (54). Consequently, rigorous

surveillance of hemodynamic variables, encompassing

blood pressure, heart rate, and oxygen saturation, is of

paramount importance. While respiratory depression is

an infrequent occurrence with dexmedetomidine

monotherapy, its potential arises with elevated dosages

of ketamine or its concurrent administration with other

respiratory depressant agents. Emergence agitation, a

recognized adverse effect of ketamine, can be mitigated

through the application of reduced dosages and the

concomitant use of dexmedetomidine (55). The

determination of the optimal dosing strategy for

ketamine and dexmedetomidine in the context of CS

anesthesia remains an area requiring further scholarly

inquiry to develop evidence-based clinical

recommendations. In determining the suitable dosage

and synergistic application of these pharmacological

agents, a thorough evaluation of specific individual

patient characteristics is essential. These factors

encompass age, weight, the presence of comorbidities,

and the specific anesthetic technique employed (Table

2).

5. Pharmacogenetics and Personalized Medicine

The nascent field of pharmacogenetics presents a

substantial opportunity to transform anesthetic

practices, particularly concerning the application of
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ketamine and dexmedetomidine in the context of CS.

Genetic polymorphisms, which represent variations in

DNA sequences, can significantly modulate the way

individuals metabolize and respond to these anesthetic

drugs. This genetic variability ultimately contributes to

inter-patient differences in both the effectiveness and

potential toxicity of these agents (56). Understanding

these individual genetic differences can lead to more

personalized anesthetic approaches, optimizing

outcomes and minimizing adverse effects.

Ketamine undergoes significant hepatic metabolism,

primarily facilitated by the CYP enzyme system, with

CYP3A4 being a key enzyme involved. Genetic

polymorphisms in CYP3A4, as well as in other CYP

enzymes that metabolize ketamine (such as CYP2B6 and

CYP2C9), can lead to variations in enzyme activity (25,

57). Individuals possessing genetic variants that result in

increased enzyme activity may exhibit accelerated

ketamine metabolism. This rapid metabolism can

culminate in lower circulating plasma concentrations

of the drug, potentially resulting in subtherapeutic

effects. Conversely, individuals exhibiting diminished

enzymatic activity may experience a decelerated

metabolic rate, consequently leading to elevated plasma

drug concentrations and a heightened susceptibility to

adverse effects, such as protracted psychomimetic

effects or cardiovascular instability (58). For instance,

single-nucleotide polymorphisms (SNPs) within the

CYP3A4 gene can modulate its expression and catalytic

efficiency, thereby influencing the clearance of

ketamine (25).

Similarly, dexmedetomidine, an α2-adrenergic

receptor agonist, exerts its sedative, analgesic, and

hemodynamic effects through interactions with

adrenergic receptors, particularly the α2A-adrenergic

subtype. Polymorphisms within the genes encoding

these receptors, such as variations in the alpha-2A

adrenergic receptor (ADRA2A) gene, can modulate

receptor sensitivity and downstream signaling cascades,

thereby influencing the pharmacological response to

dexmedetomidine. Individuals exhibiting specific

ADRA2A genotypes may demonstrate variable responses

to dexmedetomidine, necessitating tailored dosage

adjustments to achieve the desired clinical outcomes

(59). Notably, particular polymorphisms within the

ADRA2A gene have been correlated with a spectrum of

sedation levels and hemodynamic changes following

dexmedetomidine administration (60). Genetic

variations influencing responsiveness to both ketamine

and dexmedetomidine are compiled in Table 3.

Understanding the inherent genetic diversity among

individuals holds the potential to revolutionize

anesthetic practices by enabling clinicians to

personalize drug administration. This tailored approach

aims to optimize therapeutic outcomes while

mitigating the incidence of adverse effects. The

application of pharmacogenetic analysis, which

involves the examination of an individual's genetic

makeup to identify pertinent polymorphisms, could

facilitate more precise dose adjustments for agents such

as ketamine and dexmedetomidine. By identifying

patients possessing genetic variations that predispose

them to altered drug metabolism or receptor sensitivity,

clinicians can individualize pharmacological

interventions by adjusting the dosage and route of

administration of these agents to optimize the

therapeutic window (61). In the context of ketamine,

this could involve tailoring the dose based on an

individual's CYP enzyme activity. This personalized

approach aims to ensure the patient receives a sufficient

drug concentration to achieve the desired analgesic and

amnestic effects while concurrently minimizing the

occurrence of excessive adverse effects. Personalized

dexmedetomidine administration could involve

tailoring the dosage based on a patient's α2-adrenergic

receptor genotype. This approach aims to ensure the

delivery of an appropriate drug quantity to achieve the

desired sedation level and hemodynamic stability while

mitigating the risks of bradycardia or hypotension (62).

Such individualized strategies hold promises for

enhancing patient outcomes by decreasing the

occurrence of adverse effects and improving the efficacy

of anesthesia. The integration of pharmacogenetics into

clinical anesthesiology remains nascent, necessitating

additional investigation to substantiate current

methodologies. Robust, large-scale clinical

investigations are imperative to pinpoint the most

pertinent genetic indicators influencing patient

response to ketamine and dexmedetomidine.

Furthermore, these studies are crucial for the

formulation of evidence-based protocols that

incorporate pharmacogenetic data to guide dosage

administration. While routine application of

pharmacogenetic testing is not yet established, genetic

variations in CYP3A4 or ADRA2A may offer potential for

refining dosage adjustments. For instance, individuals

identified as poor metabolizers of CYP3A4 (comprising 5

- 10% of the Caucasian population) might necessitate a

20–30% reduction in ketamine dosage to mitigate the

risk of prolonged sedative effects (25).

6. Adverse Effects and Safety Considerations

Ketamine, while recognized for its potent analgesic

and anesthetic properties, is also associated with a
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Table 3. Genetic Polymorphisms Affecting Ketamine and Dexmedetomidine

Drug; Gene Polymorphism/Variant Potential Impact Clinical Implications

Ketamine

CYP3A4 SNPs (CYP3A4*1B, CYP3A4*22) Variable enzyme activity (increased or
decreased); altered ketamine metabolism

Dose adjustments are needed to achieve therapeutic levels;
risk of subtherapeutic effects or toxicity

CYP2B6 SNPs (CYP2B6*6, CYP2B6*9) Variable enzyme activity; altered ketamine
metabolism

Similar to CYP3A4, potential for altered ketamine clearance

CYP2C9 SNPs (CYP2C9*2, CYP2C9*3)
Variable enzyme activity; altered ketamine
metabolism

Similar to CYP3A4, potential for altered ketamine clearance

OPRM1 (μ-opioid
receptor)

SNPs (A118G)
Altered opioid receptor sensitivity; variable
analgesic response to ketamine

Variability in ketamine's analgesic efficacy; potential need
for alternative analgesics

CHRM2 (muscarinic
receptor)

- Altered muscarinic receptor sensitivity
Variability in anticholinergic side effects (e.g., tachycardia,
dry mouth)

Dexmedetomidine

ADRA2A
SNPs (-1291 C>G, -1296 C>T,
RS553668)

Altered α2A-adrenergic receptor sensitivity;
variable sedative and hemodynamic response

Dose adjustments needed to achieve desired sedation and
hemodynamic stability; risk of bradycardia or hypotension

ADRA2C - Altered α2C-adrenergic receptor sensitivity Potential variations in sedative and hemodynamic effects

CYP2A6 -
Variation in the enzymes that metabolize
dexmedetomidine.

Altered dexmedetomidine clearance and potential for
toxicity

UGT1A4 -
Variation in the enzymes that metabolize
dexmedetomidine.

Altered dexmedetomidine clearance and potential for
toxicity

Abbreviations: SNP, single-nucleotide polymorphism; CYP, cytochrome P450; α2, alpha-2; μ, mu; ADRA2A, alpha-2A adrenergic receptor.

spectrum of potential adverse effects. Notably,

emergence phenomena, encompassing hallucinations,

vivid dreams, and agitation, represent a common

sequelae. These psychomimetic effects can induce

significant distress in patients, frequently necessitating

clinical intervention. The likelihood and intensity of

emergence phenomena exhibit a dose-dependent

relationship, with escalating dosages correlating with

an increased risk profile. Strategies aimed at mitigating

these undesirable effects include the administration of

lower ketamine doses, the concurrent use of

benzodiazepines or alternative sedative agents, and the

provision of a tranquil and minimally stimulating

environment during the emergence phase (63).

Ketamine's impact on the cardiovascular system

represents another critical consideration.

Administration of the drug at elevated dosages can

induce sympathetic nervous system activation,

subsequently resulting in hypertension, tachycardia,

and myocardial oxygen demand. These physiological

alterations pose a specific risk for individuals with pre-

existing cardiovascular conditions (64). In academic

terms, ketamine administration is associated with an

elevation in cerebral blood flow and intracranial

pressure (ICP), thereby establishing it as a

contraindication in patient populations presenting

with head trauma or pre-existing elevated ICP.

Conversely, the cardiovascular effects observed at sub-

anesthetic dosages are typically minimal and may even

confer therapeutic benefits in individuals experiencing

hypotension (65). Furthermore, ketamine has the

potential to induce adverse effects, such as nausea and

vomiting, a phenomenon attributed to its interaction

with the chemoreceptor trigger zone (66).

Laryngospasm, a rare yet potentially critical

complication, may also arise, particularly in individuals

exhibiting airway hyperreactivity. Consequently,

meticulous surveillance of airway patency and

respiratory function is paramount (67). To mitigate

these risks, precise dose titration based on the patient's

clinical condition and existing comorbidities is

essential.

While generally exhibiting a favorable safety profile,

dexmedetomidine administration is associated with

specific adverse effects stemming from its agonistic

activity at α2-adrenergic receptors. The most frequently

observed of these are hypotension and bradycardia. The

former arises due to a reduction in sympathetic nervous

system outflow, whereas the latter is mediated through

both central and peripheral mechanisms. The

aforementioned hemodynamic effects typically exhibit

a dose-dependent relationship and may be more

pronounced in patients with hypovolemia or pre-

existing cardiovascular pathologies. Consequently,

meticulous monitoring of blood pressure and heart rate

is essential, and therapeutic interventions such as dose

adjustments or the administration of fluids or

vasopressors might be indicated (68). Regarding

respiratory function, dexmedetomidine generally elicits

minimal depression, particularly when administered
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Table 4. Prevalence and Severity of Adverse Effects with Ketamine, Dexmedetomidine, and a Combined Regimen for Cesarean Section Anesthesia

Dexmedetomidine
Combination (Ketamine + Dexmedetomidine;

%) Prevalence (%) Severity (%)

Psychomimetic effects (hallucinations,
agitation) Common (20 - 30) Rare (< 1) Moderate (10 - 15) 15 - 30 Moderate

Hypertension Common (15 - 25 at high doses) Rare (< 5) Low (5 - 10) 15 - 25 Mild -
moderate

Tachycardia Common (20 - 30 at high doses) Rare (< 5) Low (5 - 10) 20 -
30

Moderate

Bradycardia Rare (< 1) Common (10 - 15)
Moderate (10 -

20)
10 - 15 Moderate

Hypotension Rare (< 5) Common (10 - 20) Moderate (15 - 25) 10 - 20 Moderate

Respiratory depression Rare (< 1) Rare (< 1) Low (2 - 5) < 5 Severe

Nausea/vomiting Common (15 - 30) Low (5 - 10)
Moderate (10 -

20)
15 - 30 Mild

Dry mouth Rare (< 1) Common (20 -
30)

Moderate (15 - 25) 20 -
30

Mild

Laryngospasm Rare (< 1) Not reported Rare (< 1) < 1 Severe

Emergence agitation Common (10 - 20) Not reported Low (5 - 10) 10 - 20 Moderate

within the recommended dosage range.

Notwithstanding its relative safety profile, the potential

for respiratory depression exists, particularly with

elevated dosages or in individuals exhibiting

compromised respiratory physiology, including

conditions such as obstructive sleep apnea or chronic

obstructive pulmonary disease. Consequently,

continuous vigilance of respiratory rate and arterial

oxygen saturation is paramount. Minor adverse effects

associated with dexmedetomidine administration may

include dry mouth, nausea, and headache. The

occurrence of dry mouth is mechanistically linked to its

anticholinergic properties, whereas nausea and

headache are reported with lower frequency (69).

The concurrent administration of ketamine and
dexmedetomidine may elicit additive or synergistic

pharmacological interactions, potentially escalating the

likelihood of specific adverse events. For instance, the

combined use of these agents could potentiate the

occurrence of hypotension and bradycardia.
Consequently, rigorous hemodynamic surveillance is

warranted, and more intensive therapeutic

interventions may become necessary to manage these

potential complications (44, 70) (Table 4).

7. Conclusions

Ketamine, due to its significant analgesic and

hemodynamic stabilization capabilities, presents a

valuable option for managing intricate obstetric

scenarios, notably in patients diagnosed with pre-

eclampsia or obesity. Conversely, dexmedetomidine

provides unique sedative and anxiolytic effects without

compromising respiratory function, positioning it as a

beneficial adjunct to regional anesthesia techniques.

The synergistic application of these two

pharmacological agents facilitates a balanced anesthetic

strategy, leading to a reduction in opioid utilization and

a consequent minimization of undesirable side effects.

As previously elucidated, the pharmacogenetic profile

of these medications significantly influences inter-

individual variability in patient responses, thereby

emphasizing the importance of tailored anesthetic

protocols. Current evidence academically substantiates

the efficacy of ketamine and dexmedetomidine as

valuable adjuncts in CS anesthesia. These agents offer

the benefits of opioid-sparing analgesia and the

maintenance of hemodynamic stability. Current

recommendations suggest the administration of low-

dose IV ketamine (0.1 to 0.3 mg/kg) and

dexmedetomidine (0.5 μg/kg). However, it is crucial to

acknowledge the role of pharmacogenetic variability,

which necessitates a personalized approach to drug

dosage to optimize patient outcomes. To further refine

clinical guidelines, additional RCTs are warranted to

focus on comparing neuraxial and general anesthesia

protocols in the context of CS to provide a more robust

evidence base for anesthetic management.

8. Limitations of This Narrative Review

As a narrative review, this work inherently carries

certain limitations. Notably, it does not include a formal

quantitative meta-analysis, which is a standard

component of systematic reviews aimed at statistically

pooling data. While a structured search was performed,

the qualitative nature of the synthesis means that the

findings represent a broad overview rather than a
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statistically weighted conclusion from homogenous

studies. Furthermore, without a formal risk of bias

assessment, we were unable to formally evaluate the

internal validity of individual studies included in the

narrative. Furthermore, this narrative review does not

employ a formal evidence grading system (e.g., GRADE),

which means that the strength of the recommendations

or the overall quality of the underlying evidence cannot

be systematically quantified. Consequently, the clinical

considerations provided are based on a comprehensive

qualitative synthesis of the literature rather than a

formally graded evidence profile.
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