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Abstract

Background: Diabetes is a major health issue, particularly in underserved populations with limited access to healthcare. This
paper explores how the combination of artificial intelligence (AI) and mobile health (mHealth) applications can facilitate early
detection and management of diabetic complications in these communities. Utilizing Al and mHealth together provides a cost-
effective solution to help reduce healthcare gaps in resource-limited areas.

Methods: The paper proposes three key ideas: (1) A simple retinal screening pathway using smartphone fundus imaging,
analyzed on-device, to detect complications such as retinopathy and neuropathy; (2) a minimum viable dataset (MVD) that
includes basic health data and a retinal image for risk assessment; and (3) a negative predictive value (NPV)-first approach to
prioritize patients who need immediate care, thereby improving resource allocation. The manuscript also emphasizes the
implementation of edge Al, federated learning, offline functionality, and model compression to ensure the system functions
effectively in low-resource settings.

Conclusions: Finally, it recommends measuring success using metrics such as “time-to-action” and “intervention reach”,
ensuring improved health outcomes and offering practical solutions for diabetes care in underserved communities, while
providing a model for future healthcare improvements.
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1. Background we emphasize their integration and field practicality for
low-resource settings — where offline functionality, low

In underserved populations, artificial intelligence total cost of ownership, and minimal training
(AI) integrated with mobile health (mHealth)  requirements are decisive. By highlighting scalable,
applications can play a pivotal role in the early detection  ¢ogteffective solutions, we outline how Al-enabled
and management of diabetic complications. This  mHealth can meaningfully address inequities in

perspective examines how such technologies may detection and care escalation when resources are scarce
reduce healthcare disparities by enabling timely @a,2).

monitoring and intervention, particularly in settings
where specialist access and longitudinal follow-up are  2.Methods

limited. . .
We advance three practice-oriented proposals to

focus development and evaluation on what matters
most in the field. First, a single-touch retinal triage
pathway: Smartphone fundus imaging analyzed on-
device as the entry point for complication screening.

Diabetes remains a global challenge, with the
heaviest burden falling on communities experiencing
delayed diagnosis and fragmented care. Unlike studies
that assess Al methods or mobile platforms in isolation,
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Retinal microvascular change serves as a systemic
barometer; when coupled with lightweight models, a
single exam can stratify risk not only for retinopathy but
also for co-morbid neuropathy and nephropathy,
triggering context-appropriate next steps [tele-
ophthalmology, foot exam, urine albumin-to-creatinine
(ACR)] with
connectivity. Second, a minimum viable dataset (MVD)

ratio even in clinics intermittent
for low-resource risk stratification: Age, sex, a brief
symptom checklist, two vitals (blood pressure, weight),
one retinal image, and — where available — step count or
heart rate from commodity wearables. This
parsimonious bundle enables useful stratification while
respecting data minimization and device constraints.
Third, negative predictive value (NPV)-first optimization
for early screening: In constrained systems, the most
valuable model safely rules out those who can wait.
Calibration and thresholds should therefore prioritize
high NPV in high-risk subgroups so that scarce specialty

slots are reserved for those most likely to benefit (3-5).

Translating these proposals into durable services
requires an implementation architecture specifically
tailored to constraint: Edge Al and federated learning to
protect privacy and reduce bandwidth demands; offline-
first design with graceful synchronization for
intermittent networks; model compression and
quantization for on-device inference; and human-
centered workflows that fit the routines of community
health workers rather than the reverse. Beyond

technical deployment, sustainability depends on
routine device turnover plans, straightforward
retraining schedules, and locally owned data

governance (6-8).

3. Conclusions

Evaluation should move beyond single summary
statistics to outcomes that reflect actual access and
timeliness. We therefore recommend reporting (1) time-
to-action from the first algorithmic signal to a
documented clinical response, and (2) intervention
reach — the proportion of highrisk individuals
receiving a definitive action within 30 days — both
disaggregated by sex, age, and other locally relevant
strata (9). These measures align technology claims with
patient-level benefit and equity.

Taken together, Al-enabled mHealth can compress
time to intervention, personalize surveillance, and

reallocate scarce expertise toward those most in need in
underserved communities. By centering single-touch
retinal triage, a MVD suitable for constrained
environments, NPV-first calibration, and equity-aware
evaluation, this manuscript contributes both
immediate guidance for current programs and a
reproducible framework for future development and
governance of digital diabetes care in low-resource
settings.
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