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Abstract

Background: Diabetes is a major health issue, particularly in underserved populations with limited access to healthcare. This

paper explores how the combination of artificial intelligence (AI) and mobile health (mHealth) applications can facilitate early

detection and management of diabetic complications in these communities. Utilizing AI and mHealth together provides a cost-

effective solution to help reduce healthcare gaps in resource-limited areas.

Methods: The paper proposes three key ideas: (1) A simple retinal screening pathway using smartphone fundus imaging,

analyzed on-device, to detect complications such as retinopathy and neuropathy; (2) a minimum viable dataset (MVD) that

includes basic health data and a retinal image for risk assessment; and (3) a negative predictive value (NPV)-first approach to

prioritize patients who need immediate care, thereby improving resource allocation. The manuscript also emphasizes the

implementation of edge AI, federated learning, offline functionality, and model compression to ensure the system functions

effectively in low-resource settings.

Conclusions: Finally, it recommends measuring success using metrics such as “time-to-action” and “intervention reach”,

ensuring improved health outcomes and offering practical solutions for diabetes care in underserved communities, while

providing a model for future healthcare improvements.
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1. Background

In underserved populations, artificial intelligence

(AI) integrated with mobile health (mHealth)

applications can play a pivotal role in the early detection

and management of diabetic complications. This

perspective examines how such technologies may

reduce healthcare disparities by enabling timely

monitoring and intervention, particularly in settings

where specialist access and longitudinal follow-up are

limited.

Diabetes remains a global challenge, with the

heaviest burden falling on communities experiencing

delayed diagnosis and fragmented care. Unlike studies

that assess AI methods or mobile platforms in isolation,

we emphasize their integration and field practicality for

low-resource settings — where offline functionality, low

total cost of ownership, and minimal training

requirements are decisive. By highlighting scalable,

cost-effective solutions, we outline how AI-enabled

mHealth can meaningfully address inequities in

detection and care escalation when resources are scarce

(1, 2).

2. Methods

We advance three practice-oriented proposals to

focus development and evaluation on what matters

most in the field. First, a single-touch retinal triage

pathway: Smartphone fundus imaging analyzed on-

device as the entry point for complication screening.
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Retinal microvascular change serves as a systemic

barometer; when coupled with lightweight models, a

single exam can stratify risk not only for retinopathy but

also for co-morbid neuropathy and nephropathy,

triggering context-appropriate next steps [tele-

ophthalmology, foot exam, urine albumin-to-creatinine

ratio (ACR)] even in clinics with intermittent

connectivity. Second, a minimum viable dataset (MVD)

for low-resource risk stratification: Age, sex, a brief

symptom checklist, two vitals (blood pressure, weight),

one retinal image, and — where available — step count or

heart rate from commodity wearables. This

parsimonious bundle enables useful stratification while

respecting data minimization and device constraints.

Third, negative predictive value (NPV)-first optimization

for early screening: In constrained systems, the most

valuable model safely rules out those who can wait.

Calibration and thresholds should therefore prioritize

high NPV in high-risk subgroups so that scarce specialty

slots are reserved for those most likely to benefit (3-5).

Translating these proposals into durable services

requires an implementation architecture specifically

tailored to constraint: Edge AI and federated learning to

protect privacy and reduce bandwidth demands; offline-

first design with graceful synchronization for

intermittent networks; model compression and

quantization for on-device inference; and human-

centered workflows that fit the routines of community

health workers rather than the reverse. Beyond

technical deployment, sustainability depends on

routine device turnover plans, straightforward

retraining schedules, and locally owned data

governance (6-8).

3. Conclusions

Evaluation should move beyond single summary

statistics to outcomes that reflect actual access and

timeliness. We therefore recommend reporting (1) time-

to-action from the first algorithmic signal to a

documented clinical response, and (2) intervention

reach — the proportion of high-risk individuals

receiving a definitive action within 30 days — both

disaggregated by sex, age, and other locally relevant

strata (9). These measures align technology claims with

patient-level benefit and equity.

Taken together, AI-enabled mHealth can compress

time to intervention, personalize surveillance, and

reallocate scarce expertise toward those most in need in

underserved communities. By centering single-touch

retinal triage, a MVD suitable for constrained

environments, NPV-first calibration, and equity-aware

evaluation, this manuscript contributes both

immediate guidance for current programs and a

reproducible framework for future development and

governance of digital diabetes care in low-resource

settings.
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