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Abstract

Context: Vascular dementia (VaD) is the second most common type of dementia after Alzheimer’s disease worldwide. Vascular
dementia is a neurodegenerative disorder characterized by gradual cognitive impairment. Ischemic and hemorrhagic strokes result
in VaD, markedly distributing cerebral blood flow and decreasing patients’ cognitive and memory performance. Due to their high
energy demands, neurons are more sensitive to cellular architecture changes and exposed to mitochondrial stress than other cell
types. Mitochondrial dysfunction and selective autophagy of mitochondria, known as mitophagy, are associated with VaD. This
review aims to elucidate the association between mitophagy and VaD.
Evidence Acquisition: This review was conducted independently by at least two researchers dominant in various VaD studies. We
searched databases including Elsevier, Google Scholar, and PubMed using the terms ‘vascular dementia’, ‘vascular cognitive impair-
ment’, and ‘mitophagy’. We evaluated 70 articles on the relationship between VaD and mitophagy and interpreted the results. Adobe
Photoshop 2022 was used for drawing figures by researchers.
Results: The autophagy process plays a protective role in experimental VaD models via preserving vascular integrity and the struc-
ture of the blood-brain barrier, upregulating occludin and claudin protein expressions, reducing oxidative stress, and decreasing
cognitive dysfunction. Some studies claim that autophagy could have adverse effects in a time-dependent manner against neuronal
injury. Prolonged autophagy and overexpressed autophagic proteins induce ischemic injury and cause neuronal cells to undergo
apoptotic cell death.
Conclusions: Although there are limited studies on the activation of mitophagy-related pathways in VaD, and the definitive role of
mitophagy in neuronal healing is unclear, further research is needed to elucidate mitophagy pathways in neurons.
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1. Context

Vascular dementia (VaD) is the second most common
type of dementia after Alzheimer’s disease (AD) worldwide.
Vascular dementia is a neurodegenerative disorder char-
acterized by gradual cognitive impairment. Ischemic and
hemorrhagic strokes result in VaD, markedly disturbing
cerebral blood flow and decreasing patients’ cognitive and
memory performance (1-3). Neurons are more sensitive to
hypoxic changes and mitochondrial stress than other cell
types. Oxygen deprivation in neurons causes brain dam-
age within minutes (4). The distribution of cerebral blood
flow, which is the leading cause of VaD, affects patients’
cognitive and memory performance and declines energy
metabolism (5). Mitochondrial dysfunction and selective

autophagy of mitochondria, known as mitophagy, are as-
sociated with VaD. This review aims to elucidate the contri-
bution of mitophagy to VaD.

2. Evidence Acquisition

This review was conducted independently by at least
two researchers dominant in various types of VaD studies.
We searched databases including Elsevier, Google Scholar,
and PubMed using the terms ‘vascular dementia,’ ‘vascular
cognitive impairment,’ and ‘mitophagy.’ We evaluated 70
articles on the relationship between VaD and mitophagy
and interpreted the results. Adobe Photoshop 2022 was
used for drawing figures by researchers.
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3. Results

3.1. Role of Mitochondria in Vascular Dementia

Neurons are highly specialized and post-mitotic cells.
They cannot eliminate degraded proteins or damaged or-
ganelles by dividing them into other cells by mitosis (6).
Neurons require a large amount of adenosine triphos-
phate (ATP) to maintain neuronal activities, including an-
terograde and retrograde transports of neurotransmitters
and membrane-bound organelles. Maintaining the rest-
ing membrane potential of neurons and restoring ionic
balance after depolarization also occurs in the presence of
ATP. To execute all these physiological processes, neuronal
activities depend on mitochondrial function and oxygen
supply more than other cell types (7-9). Mitochondria
are the main organelles with prominent roles in energy
production and regulation of calcium trafficking between
intracellular and extracellular fluid (10). Mitochondrial
maintenance is vital for neuronal development, function,
and survival (11).

Several pathological mechanisms, including dysregu-
lation of mitochondrial morphology, mitochondrial dys-
function, and autophagic cell death, are markedly ob-
served in neurodegenerative disorders (12-14). It was stated
that both autophagy and mitophagy had protective roles
in various neurodegenerative diseases such as AD, Parkin-
son’s disease (PD), amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), and VaD by removing abnor-
mally aggregated proteins and maintaining cell integrity
via removing damage mitochondria (10, 15-17). Decreased
energy metabolism and low nutrient availability in neu-
rodegenerative diseases mainly damage the mitochondria
(18, 19). Mitochondrial injury related to VaD has been
demonstrated in previous studies (20-22). A decline in mi-
tochondrial ATP and mitochondrial DNA (mtDNA) levels
was observed in VaD-induced experimental rats (21, 23).

3.2. Neuroprotective Role of Mitophagy in Vascular Dementia

Autophagy is an intracellular degradation system that
removes the aged or damaged organelles and unfolds or
degraded proteins. It is characterized by forming and ex-
panding an isolation membrane known as a phagophore
(Figure 1). The phagophore fuses engulf cytoplasmic con-
stituents in double-membrane structures known as au-
tophagosomes (24-26). The autophagosomes deliver their
substrates to lysosomes for degradation. Autophagosome
fusing with lysosome is called autolysosome (27-29). This
process is vital for balancing energy sources, survival
during starvation, removing misfolded proteins, clearing

damaged organelles, including mitochondria and endo-
plasmic reticulum, and cell differentiation (27).

Researchers have used ischemic rodent models, in-
cluding chronic and focal hypoperfusion, subarachnoid
hemorrhage, and cerebral ischemia-reperfusion, to under-
stand vascular changes related to cognitive impairment
(30-33). These models can be used to elucidate the patho-
physiology of VaD. In previous studies, autophagy played
a protective role in experimental VaD models via preserv-
ing vascular integrity and the structure of the blood-brain
barrier, upregulating occludin and claudin protein expres-
sions, reducing oxidative stress, and decreasing cognitive
dysfunction (14, 22, 34, 35).

Selective autophagy of mitochondria, recognized as
mitophagy, is an essential mechanism for removing aged
and damaged mitochondria (15, 36). Eliminating dam-
aged mitochondria by mitophagy is necessary for main-
taining mitochondrial homeostasis and healing neuronal
injury (37). Due to their high energy demands, neurons
are more sensitive to changes in their cellular architecture
(15, 38). It is increasingly recognized that removing mis-
folded and aggregated proteins, damaged DNA, and mito-
chondria are necessary for maintaining the normal func-
tion and the lifespan of neurons (39). Deposition of ab-
normal proteins, lipids, and clots in the brain tissue is de-
tected in VaD, and those degraded molecules are removed
by autophagy to prevent atypical vascular accumulations
and maintain normal vascular biology (3).

Mitophagy levels vary in different regions of the brain.
Mitophagy highly occurs in the dentate gyrus, lateral ven-
tricle, and Purkinje cells, whereas mitophagy is rarely seen
in the brain’s striatum, cortex, and substantia nigra region
(39, 40). Age-related organelle damage increases neuronal
mitophagy. Higher kinetics of neuronal mitophagy exacer-
bates development of neurodegenerative diseases (40-42).

Neurons have three compartments, including axons,
dendrites, and soma, which differ from those of other cell
types. Mitophagy may occur differently in neurons than
in cells not containing cytoplasmic extensions. Neuronal
mitochondria are mainly located in areas with high en-
ergy demand, including the distal parts of axons and den-
drites, the nodes of Ranvier, presynaptic buttons, and post-
synaptic densities away from the cell body (43-46). Unlike
mitochondria, lysosomes are rarely found in axonal and
dendritic extensions. The process of mitophagy may oc-
cur in cell bodies where the lysosomes are located (47-49).
Mitophagosome undergoes maturation during its move-
ment from the axon to the cell body. Due to the spatial lim-
itations, rapid removal of damaged mitochondria is nec-
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Figure 1. Mitochondrial movement and mitophagy in neurons. Phagophore is known as an isolation membrane, surrounds damaged mitochondria, then fuses to mitochon-
dria, newly formed double-membrane structures known as autophagosomes. The autophagosomes deliver mitochondria to lysosomes for degradation. Autophagosome fuse
with lysosome is referred to as autolysosome.

essary for neuronal survival (39, 42). As discussed in the
next section, the literature also noted that the phospho-
rylation of Miro by PTEN-induced putative kinase protein
1 (PINK1) accelerates rapid mitochondrial transport from

axon to cell body (49).

Some studies claim that autophagy could have adverse
effects in a time-dependent manner against neuronal in-
jury (50, 51). Prolonged autophagy or overexpressed au-
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tophagic proteins induce ischemic injury and cause neu-
ronal cells to undergo apoptotic cell death. Apoptotic cell
death triggered by mitochondrial damage can cause cog-
nitive impairment (52). Therefore, the elimination of dam-
aged mitochondria is essential to minimize neuronal dam-
age. Previous studies suggest that autophagy is rapidly ac-
tivated and shows protective effects in the early stages of
ischemia, but in the long period of ischemia, autophagy
induces apoptotic cell death. The neuroprotective effect
of autophagy is controversial; it is unclear whether au-
tophagy has protective or damaging effects on VaD (10, 18,
19).

3.3. Mitophagy Pathways

3.3.1. PINK1/Parkin Pathway of Mitophagy in Vascular Dementia

Two major genes regulate mitophagy: first, mitochon-
drial kinase PINK1, and second, ubiquitin ligase Parkin.
PINK1/Parkin-mediated mitophagy is a well-known mech-
anism for regulating mitochondrial dynamics and degra-
dation of damaged mitochondria in response to stress (15,
36, 39, 53-55).

PINK1 is a serine/threonine kinase located in the inner
membrane of mitochondria (56, 57). The roles of PINK1
and Parkin have been identified in both non-neuronal and
neuronal cells of patients with hereditary PD. In response
to mitochondrial damage and depolarization of its inner
membrane, PINK1 accumulates on the outer mitochon-
drial membrane (OMM) (53, 57). Then, it induces phos-
phorylation of Parkin protein (Figure 2). Parkin bound
to Mfn2 in a PINK1-dependent manner; PINK1 phospho-
rylated Mfn2 and promoted its Parkin-mediated ubiqiti-
nation, and mitophagosome formation. Production of
microtubule-associated protein 1A/1B-light chain 3 II (LC3-
II) promotes the maturation of phagophores.

Parkin bound to mitofusin-2 (MFN2) allows for the in-
duction of autophagy receptors and the formation of mi-
tophagosome. Mitophagosomes fuse with lysosomes to
degrade damaged mitochondria (25, 34). Parkin acts as a
mitochondrial quality control center to maintain the or-
ganelle population by removing damaged mitochondria
(55-61). The expression of PINK1 and Parkin was upregu-
lated in VaD-induced rats (21). Miro is a Rho GTPase, pri-
marily found in neurons and located on the outer mito-
chondrial membrane. It anchors mitochondria to micro-
tubules, and the phosphorylation of Miro by PINK1 allows
mitochondria to move from the axon to the cell body. This
also protects neurons against mitochondrial stress.

Chronic cerebral hypoperfusion induces VaD, and acti-
vation of autophagy aggravates neuronal injury in brain

tissue (12, 62). Microtubule-associated protein 1A/1B-light
chain 3 II (LC3-II) is a crucial marker for autophagosomes
and autolysosomes (63). Upregulation of LC3 protein and
increased hippocampal LC3-II/ LC3-I levels were demon-
strated in VaD in both in vivo and in vitro studies (21, 23).
Decreased cerebral circulation increases mitochondrial
dysfunction, triggers oxidative stress, and causes death in
neurons and astrocytes (12).

3.3.2. Punctate-Mitochondria-Dependent Mitophagy Results

Mitochondrial fission is assumed to be crucial for mi-
tophagy. Dynamin-related protein-1 (DRP1), a large GTPase,
plays a major role in the mitophagic process. It is respon-
sible for the selection of the damaged mitochondria for
degradation.

DRP1 is also associated with four mitochondrial re-
ceptor proteins known as fission 1, mitochondria fission
factor, and mitochondrial dynamics protein of 49 kDa
and 51kDa (64, 65). The movement of DRP1 from the cy-
tosol to mitochondria promotes fission, called punctate-
mitochondria-dependent mitophagy. This process is cru-
cial for mitophagy and plays a vital role in neurodegenera-
tive disease (66). Expression of DRP1 in brain microvascular
endothelial cell culture markedly increased after induced
vascular damage. Punctate-mitochondria-dependent mi-
tophagy in brain microvascular endothelial cells was ob-
tained in vivo (67).

3.3.3. PI3K/Akt/mTOR Signaling Pathway Indirectly Induced Mi-
tophagy

The phosphoinositide 3-kinase (PI3K)/protein kinase B
(AKT)/mammalian target of the rapamycin (mTOR) path-
way is crucial for the maintenance of cellular homeosta-
sis via preventing abnormal cell division under physiolog-
ical conditions. Overexpression of this pathway causes the
initiation and progression of pathological diseases (68). It
was shown that the inhibition of PI3K/Akt/mTOR pathways
induced autophagy in middle carotid artery occlusion and
hypoperfusion rat models (69, 70). In these models, it has
been suggested that apoptosis of cells increases neuronal
damage, and activation of autophagic pathways by sup-
pressing apoptosis may prevent neuronal damage. Espe-
cially, enhancement of mitophagy by rapamycin possibly
improve neuronal damage by inhibiting apoptosis in VaD-
induced rats (21).

4. Conclusions

In conclusion, it was revealed that the autophagy pro-
cess plays a protective role in VaD via preserving vascular
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Figure 2. PINK1/Parkin mediated mitophagy. In response to mitochondria damage and decreased potential of the mitochondrial inner membrane, putative kinase protein 1
(PINK1) accumulates on the outer mitochondrial membrane; then, it induces phosphorylation of Parkin protein. Parkin bound to Mfn2 in a PINK1-dependent manner; PINK1
phosphorylated Mfn2 and promoted its Parkin-mediated ubiqitination, and mitophagosome formation. Production of microtubule-associated protein 1A/1B-light chain 3 II
(LC3-II) promotes the maturation of phagophores.

integrity and the structure of the blood-brain barrier and
reducing oxidative stress and cognitive dysfunction. Some
studies claim that autophagy could have adverse effects
in a time-dependent manner against neuronal injury. The
pathogenesis of VaD is partially known; however, there is
an urgent need to elucidate the mechanisms driving de-
mentia pathogenesis. Although there are limited studies
on the activation of mitophagy-related pathways in VaD,
and the definitive role of mitophagy in neuronal healing is
unclear, further research is needed to elucidate mitophagy
pathways in neurons.
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