

Prevalence and Antimicrobial Resistance Patterns in ESKAPE Pathogens in Iran

Shahnaz Armin¹, Fatemeh Fallah¹, Abdollah Karimi ¹, Fariba Shirvani¹, Leila Azimi ^{1,*}, Nasim Almasian Tehrani ^{1,2}, Nafiseh Abdollahi ¹, Parisa Mobasseri¹, Maryam Rajabnejad ¹, Roxana Mansour Ghanaiee ¹, Seyedeh Mahsan Hoseini-Alfatemi¹, Seyed Alireza Fahimzad¹, Najmeh Karami¹, Mercedeh Tajbakhsh¹, Ghazaleh Ghandchi¹ and Sedigheh Rafiei Tabatabaei ¹

¹Pediatric Infections Research Center, Research Institute of Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

²Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

*Corresponding author: Pediatric Infections Research Center, Research Institute of Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: leilaazimi1982@gmail.com

Received 2022 July 05; Revised 2022 August 24; Accepted 2022 September 08.

Abstract

Background: The spread of resistant bacteria has caused serious concern worldwide. The spread of multidrug-resistant (MDR) and extensive drug-resistant (XDR) limits the choice of antibiotics, making available antibiotics less effective.

Objectives: This study aimed to investigate resistance patterns to seven global threatening organisms announced by the Centers for Disease Control and Prevention (CDC) for one year in Iran, called ESKAPE bacteria (*Enterococcus* spp., *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* spp.).

Methods: Clinical isolates were collected from 10 selective hospitals in nine provinces. Antibiotic susceptibility testing was performed according to the Clinical and Laboratory Standards Institute for each bacterium.

Results: A total of 5522 bacterial species were considered, of which 30% were ESKAPE. Multidrug-resistant *A. baumannii* and *Staphylococcus aureus* methicillin-resistant *Staphylococcus aureus* (MRSA) were the most identified in gram-negative and -positive bacteria, with the frequency of 44% and 39%, respectively. The remaining bacteria, including *E. coli*, *K. pneumoniae*, *Enterobacter* spp., *P. aeruginosa*, and *Enterococcus* spp., had the frequency of 30%, 32%, 21%, 20%, and 22%, respectively.

Conclusions: The determined patterns for the antibiotic resistance of the ESKAPE bacteria can help determine antibiotic stewardship. Also, the high rates of the ESKAPE bacteria in Iran could be alarming for healthcare centers not to misuse broad-spectrum antibiotics.

Keywords: ESKAPE, Antibiotic-Resistant Pattern, Iran

1. Background

Antibiotic resistance is a growing problem in clinical centers throughout the world. This condition may limit treatment options and increase patient mortality and morbidity (1, 2). Incorrect and unnecessary usage of antibiotics and, in some circumstances, prophylaxis with broad-spectrum antibiotics increase the risk of antibiotic resistance in different societies (3). Various reports in Iran show different antibiotic-resistant patterns for causative microorganisms (4-7). Gram-negative bacteria show resistance to the third and fourth generations of cephalosporins, which can be important for the treatment of this type of bacteria (8). Carbapenem antibiotics are used as selected antibiotics for the treatment of these resistant bacteria. Unfortunately, there are reports on car-

bapenem resistance in *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, and *Klebsiella pneumoniae* as nosocomial isolates from all over the world (9). Some *A. baumannii* and *P. aeruginosa* organisms isolated from wound and burn infections are resistant to all antibiotics except colistin, and they can be designated as human "red alarm" pathogens (10, 11).

Methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant *S. aureus* (VRSA) are the most critical gram-positive nosocomial organisms, and their treatment is a big challenge for clinicians (12). Different reports of the ESKAPE bacteria, including *Enterococcus* spp., *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* spp. have been published (4-9, 12). The Centers for Disease Control

and Prevention (CDC) announced the ESKAPE bacteria as life-threatening microorganisms worldwide (13). All these antibiotic-resistant bacteria are in the World Health Organization's (WHO) priority group for which new antibiotics are urgently needed (14).

Some studies report the presence of the ESKAPE bacteria in Iran, which could subsequently cause complicated therapeutic problems and increase mortality and morbidity, as in other countries (6, 7, 10).

2. Objectives

This study's objective was to identify antibiotic-resistant patterns of bacteria containing multidrug-resistant (MDR) *P. aeruginosa* and *A. baumannii*, third-generation resistant *E. coli*, *K. pneumoniae*, *Enterobacter* spp., MRSA, VRSA, and vancomycin-resistant *Enterococcus* spp. (VRE) based on the Clinical and Laboratory Standards Institute (CLSI) 2015 and the WHO global antimicrobial resistance surveillance system (Glass).

3. Methods

3.1. Setting and Bacterial Isolates

In this cross-sectional study, the positive culture of *E. coli*, *K. pneumoniae*, *Enterobacter* spp., *P. aeruginosa*, *A. baumannii*, *S. aureus*, and *Enterococcus* spp. was gathered from nine provinces, including Mashhad, Hamedan, Tabriz, Tehran, Sanandaj, Zahedan, Golestan, Esfahan, and Ahvaz, in Iran between May 2016 and March 2017.

Selected bacteria from the culture in each city were collected from different clinical samples like blood, urine, CSF, bronchial samples, and wound. The collected bacteria were sent to the Pediatric Infections Research Center (PIRC) laboratory. All bacteria were identified according to conventional biochemical and microbiological methods such as colony morphology observation, gram stain, oxidase, triple sugar iron (TSI), DNase, and mannitol.

3.2. Categorized Bacteria into Five Groups of ESKAPE Bacteria

The five groups of the ESKAPE bacteria that are life-threatening include *E. coli*, *K. pneumoniae*, and *Enterobacter* spp. resistant to 3rd generation (3rdG) cephalosporin, according to the CLSI definition; MDR *P. aeruginosa* and *A. baumannii*: Based on the CDC guideline; MRSA: *S. aureus* resistant to cefoxitin 30 µg; VRSA: Vancomycin-resistant *S. aureus*; and VRE: Vancomycin-resistant *Enterococcus* spp. (15, 16).

3.3. Antibiotic Susceptibility Testing

Antibiotic susceptibility testing was carried out using Kirby-Bauer disc diffusion testing according to the Clinical and Laboratory Standards Institute guidelines (15) against ampicillin/sulbactam (10/10 µg), piperacillin-tazobactam (100/10 µg), cefepime (30 µg), imipenem (10 µg), meropenem (10 µg), gentamicin (10 µg), amikacin (30 µg), tobramycin (10 µg), ciprofloxacin (5 µg), trimethoprim/sulfamethoxazole (1.25/23.75 µg), and minocycline (30 µg) for gram-negative bacteria, and *E. coli* ATCC 25922 was used as a control strain in the antibiotic susceptibility testing. Erythromycin (15 µg), clindamycin (2 µg), ciprofloxacin (5 µg), doxycycline (30 µg), and trimethoprim/sulfamethoxazole (1.25/23.75 µg) were prepared for the *S. aureus* antibiotic test. Moreover, the use of *S. aureus* ATCC 2921375, considered the control in the minimum inhibitory concentration (MIC) method in the susceptibility of vancomycin, was evaluated by determining the MIC in *S. aureus*. Ciprofloxacin (5 µg), ampicillin (10 µg), gentamicin (120 µg), and linezolid (30 µg) were used to determine the antibiotic susceptibility in *Enterococcus* spp.

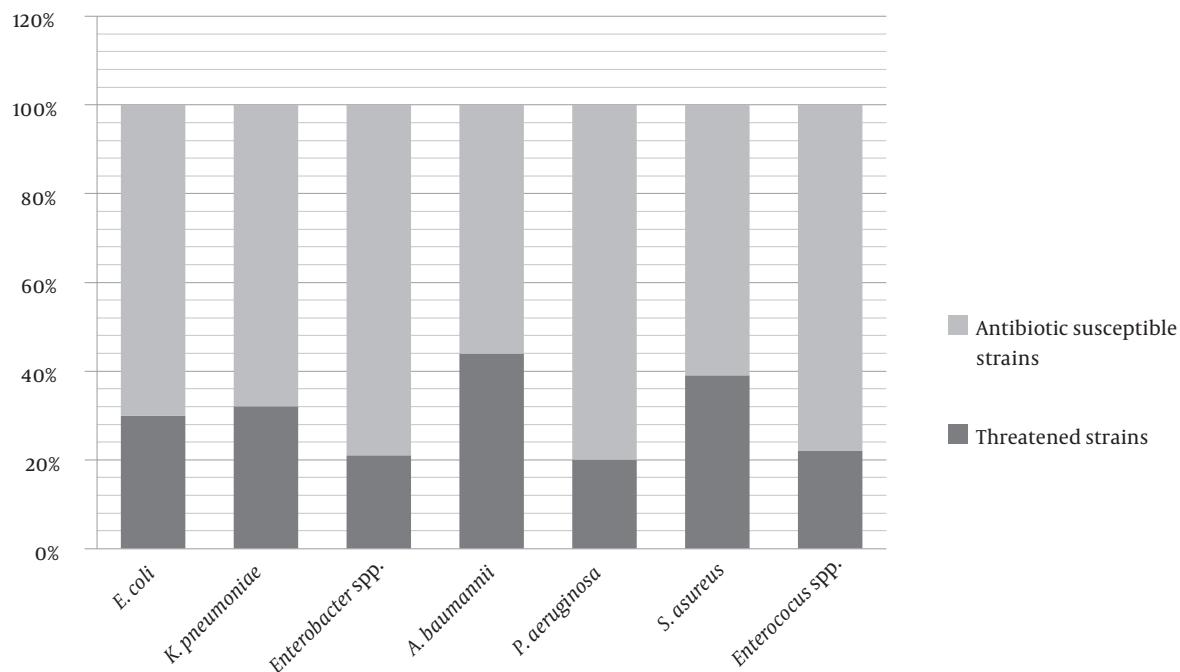
The antibiotic disks used in this study were purchased from MAST Company (Mast Diagnostics, UK), England, and Muller Hinton agar was purchased from BD Company, USA.

3.4. Statistical Analysis

Statistical data processing was performed using statistical package for the social sciences (SPSS) v. 22.0 (IBM SPSS Statistics) to determine the percentage of antibiotic resistance or susceptibility.

4. Results

This study collected 5522 bacteria from clinical specimens in microbiology laboratories in nine provinces in Iran. Based on the inclusion criteria, 1666 bacteria, including *E. coli*, *K. pneumoniae*, *Enterobacter* spp. resistant to 3rd generation cephalosporin, MDR *P. aeruginosa* and *A. baumannii*, MRSA, and VRE, were identified and involved in this study. The specimens were gathered from 568 (46%) females and 658 (53%) males. The median age was 43 ± 29 y. The frequency of multiple antibiotic-resistant bacteria is shown in Table 1.


The result of the different antibiotic susceptibility of the selected antibiotic-resistant isolates is shown in Table 2 and Figure 1.

Piperacillin-tazobactam and minocycline are the most effective antibiotics for MDR *P. aeruginosa* and *A. baumannii*, with 20% and 38% susceptibility rates, respectively (Table 2). Amikacin is the most effective antibiotic for *K. pneumoniae* and *Enterobacter* spp., with 56% and 38% susceptibility rates, respectively. For *E. coli*, imipenem was the

Table 1. The Frequency of the ESKAPE Bacteria^a

	<i>E. coli</i>	<i>K. pneumonia</i>	<i>Enterobacter</i> spp.	<i>P. aeruginosa</i>	<i>A. baumannii</i>	<i>S. aureus</i>	<i>Enterococcus</i> spp.	Total
Number of Bacteria	1222	696	621	675	879	615	814	5522
Threatened Bacteria	370 (30)	222 (32)	130 (21)	136 (20)	388 (44)	241 (39)	179 (22)	1666 (30)

^a Values are expressed as No. (%) unless otherwise indicated.

Figure 1. The frequency of ESKAPE bacteria and antibiotic susceptible strains

most effective antibiotic, with 94% susceptibility rate (Table 2). Resistance patterns of MRSA and *Enterococcus* spp. are shown in Tables 3 and 4, respectively.

5. Discussion

The ESKAPE bacteria, announced by CDC, are a considerable global health problem because infection by them can increase morbidity and mortality (13). These bacteria can prolong the hospitalization time and increase the imposition of costs on the health system and patients (6, 7, 10). *A. baumannii* is one of the most prevalent ESKAPE causes of infection and tends to become MDR isolates by obtaining antibiotic resistance plasmids. Unfortunately, 44% of *A. baumannii* strains were MDR based on our definition in this study. A systematic review in South East Asia in 2018 showed that 58.51% of *A. baumannii* isolates from the intensive care unit (ICU) were MDR (17). The higher rate of

MDR *A. baumannii* in a review in South East Asia compared to our results can be due to the different source of isolated bacteria. In our study, the specimens were collected from different clinical isolates, but in the review article, only ICU isolates were surveyed.

In a study in Kermanshah, Iran, in 2017, 50% of *A. baumannii* isolated from ICU were MDR and extensive drug-resistant (XDR) (18). In a study in 2017 on BAL specimens from Babul, 47.9% of the specimens were *A. baumannii*, and 91.4% were MDR. Owlia et al. showed high antibiotic resistance on MDR-resistant *A. baumannii* in Iran (19). These different rates in detecting MDR strains may be because of different kinds of specimens, populations, definitions, and quality of used antibiotic discs.

A study by Musyoki et al. on *A. baumannii* showed that 85% MDR *A. baumannii* and amikacin were the most effective antibiotics (20). However, our results showed minocycline as the most effective antibiotic. The difference be-

tween the two studies can be because of using different antibiotic therapy protocols in the two countries.

A study in Morocco in 2019 on MDR *A. baumannii* showed that colistin and co-trimoxazole were the most effective antibiotics. However, it is notable that the susceptibility to minocycline was not evaluated (21).

Our results showed that the presence of 20% of *P. aeruginosa* was MDR. However, in a Chinese study in 2018, 15% of isolated *P. aeruginosa* were MDR (22). The higher rate of identified MDR *P. aeruginosa* in our study may be because of using different antibiotic stewardship in these two countries and the different sources of specimens. Vahdani et al. and Lari et al. confirmed higher rates of resistance to all tested antibiotics except colistin (6, 23). It is foreseeable that we will have more antibiotic resistant bacteria in samples collected from burn patients because of the increased use of broad-spectrum antibiotics. In another study in Jordan on respiratory specimens, 21.5% of organisms were *P. aeruginosa*, and 52.5% were MDR (24).

Zarei-Yazdeli et al. revealed that 75% of isolates were MDR and that ciprofloxacin was the most effective antibiotic (25). A study in Egypt in 2019 confirmed 66.6% MDR *P. aeruginosa* strains and showed that imipenem had a low resistance rate (26). Also, in India in 2017, imipenem was the most active antibiotic for MDR *P. aeruginosa* (27). Different rates of MDR *P. aeruginosa* and different effective antibiotics in MDR strains indicate the need for antibiotic stewardship in healthcare to consider the most effective antibiotics for treating MDR strains of *P. aeruginosa*.

Our results showed 30% resistance to 3rdG cephalosporin in isolated *E. coli*. In a study in Saudi Arabia, in 2018, of clinical isolates, 49.5% was resistant to cefotaxime in *E. coli* specimens (28). In a study in Nepal in 2017 from blood cultures, 84.5% of isolated *E. coli* were resistant to 3rdG cephalosporins (29). A report from the heart ICU in Tehran in 2017 showed that all *E. coli* bacteria were resistant to cefotaxime (30). These differences in the results may be because of the source specimens of our study, as most *E. coli* were isolated from urine and different antibiotic usage in these countries.

The results of antibiotic susceptibility testing indicated that 32% of *K. pneumoniae* was resistant to the 3rd generation cephalosporin. Moremi et al. showed that 38.5% of *K. pneumoniae* was resistant to 3rdG cephalosporin isolated from burn wounds in India (31). Various antibiotic therapies and sources of specimens can lead to different results in different studies. Mamishi et al. reported 29% cefotaxime-resistant *K. pneumoniae* isolated from different clinical specimens (32). This result is almost similar to ours, and it can be a similar antibiotic usage in Iran to treat *K. pneumoniae* infection. In our study, 3rdG, cephalosporin-resistant *K. pneumoniae* showed resistance

Table 2. The Resistance Pattern to Antibiotics in the ESKAPE Bacteria

	SAM			PITZ			FEP			IMI			MER			GM			AK			TO			CIP			SXT			MIN		
	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R			
3rdG, Cephalosporin Resistant <i>E. coli</i>																																	
	14	9	77	94	4	2	84	5	11	57	6	38	91	2	7	35	3	62	22	1	77												
3rdG, Cephalosporin Resistant <i>K. pneumoniae</i>																																	
	8	4	89	50	11	39	49	8	43	37	1	62	56	2	42																		
3rdG, Cephalosporin-Resistant <i>Enterobacter</i> spp.																																	
MDR <i>P. aeruginosa</i>																																	
	20	10	70	2	1	97	10	3	87	7	1	92	3	4	93	15	4	81	4	3	94	6	0	94	3	3	94						
MDR <i>A. baumannii</i>																																	
	6	10	84	1	0	99	0	1	99	0	1	99	8	3	88	7	1	93	13	2	85	3	1	96	4	3	92	38	9	53			

Abbreviations: SAM, ampicillin-sulbactam; PITZ, piperacilline-tazobactam; FEP, ceftazidime; IMI, imipenem; MER, meropenem; GM, gentamicin; AK, amikacin; TO, tobramycin; CIP, ciprofloxacin; SXT, co-trimoxazole; MIN, minocycline.

Table 3. Antibiotic Resistance Pattern in MRSA

	E	CD	CIP	DOX	SXT
Resistance	75	59	68	37	30
Intermediate	14	11	8	24	4
Sensitive	11	30	24	39	66

Abbreviations: E, erythromycin; CD, clindamycin; CIP, ciprofloxacin; DOX, doxycyclin; SXT, trimethoprim/sulfamethoxazole.

Table 4. The Antibiotic Resistance Pattern of VRE

	CIP	AM	GM (120)	LZD
Resistance	98	81	100	16
Intermediate	0.4	–	–	6
Sensitive	1.6	19	–	78

Abbreviations: CIP, ciprofloxacin; AM, ampicillin; GM, gentamycin; LZD, linezolid.

to cefepime (89%) and, consequently, to co-trimoxazole (81%). In Yazdansetad et al.'s study, co-trimoxazole in 3rd generation cephalosporin-resistant strains had the highest resistance (33), similar to the results of our study. Ferreira et al., in their study on *K. pneumoniae* isolated from ICU patients showed that 3rdG cephalosporin-resistant strains were ESBL (34).

Our study showed that 21% of *Enterobacter* spp. was resistant to 3rdG cephalosporin. In a study in Germany in 2019, 21% of collected *Enterobacter* spp. was resistant to 3rdG cephalosporin (35). In a study on *E. cloacae* in nosocomial infections in Tehran (2012), 23% of bacteria were resistant to these groups of antibiotics (36), similar to our results. The reason is the proximity of antibiotic therapy patterns in these two studies. A study in Ethiopia in 2018 showed that 79.6% of gram-negative bacteria were resistant to ceftazidime (37), which is a higher rate compared to our results. The reason is the extensive use of this antibiotic in Ethiopia.

The resistance pattern of *S. aureus* in the north, west, and south of Iran showed that 53.7%, 40.27%, and 43% were MRSA, respectively (38-40). This result is higher than our result by 27%, which might be due to consuming materials and testing the antibiotic susceptibility process. Our results showed that 68% and 59% were resistant to ciprofloxacin and clindamycin, respectively. Kaur and Chate showed 100% resistance to ciprofloxacin and 97% to clindamycin in collected MRSA (41). The results of the Indian study are higher than ours probably because of the different rate of antibiotic consumption in the two countries. Co-trimoxazole is the most effective antibiotic on MRSA strains in our study.

The rate of VRE collected in our study was 22%. In a study in 2018 in the northwest of Iran, the prevalence of

VRE was 18.75% in different clinical specimens (42). In a study in 2017 in Saudi Arabia, the VRE rate was 17% (43). These frequencies are lower than ours, resulting from different methods and consumption materials used in these two studies. Also, a different pattern of antibiotic usage in the two countries could be another reason. In a study from two centers in Tehran on VRE cases in children with acute lymphoblastic leukemia, the VRE prevalence was 25%, similar to our results (44). Similarly, Armin et al. showed low resistance to linezolid (7). In our study, a high percentage of VRE cases was susceptible to linezolid (78%).

5.1. Conclusions

This study's results can be used as antibiotic stewardship in the considered hospitals in this research. The rate of antibiotic resistance in most bacteria causing nosocomial infection can be a guide in the experimental administration of antibiotics. This data can help physicians use more correct antibiotics to treat infectious patients. Moreover, it can be an alarmingly high rate of emerging bacteria in a selected hospital in Iran, and it may be a warning to stop misusing of broad-spectrum antibiotics.

On the other hand, the emergence of these resistant strains shows high resistance to available antimicrobial agents. Thus, we are encountering a limited choice of antibiotics, which may become narrower in the future. These results give valuable information in strategic planning for antibiotic prescription, especially in empiric therapy.

Footnotes

Authors' Contribution: Shahnaz Armin: Study concept and design; Fatemeh Fallah: Critical revision of the manuscript for important intellectual content; Abdollah

Karimi: Critical revision of the manuscript for important intellectual content; Fariba Shirvani: Drafting of the manuscript; Leila Azimi: Study concept and design and Drafting of the manuscript; Nasim Almasian Tehrani: Administrative technical, and material support; Nafiseh Abdollahi: Acquisition of data; Parisa Mobasseri: Analysis and interpretation of data; Maryam Rajabnejad: Acquisition of data; Roxana Mansour Ghanaie and Seyedeh Mahsan Hoseini-Alfatemi: Analysis and interpretation of data; Seyed Alireza Fahimzad: Statistical analysis; Najmeh Karami: Analysis and interpretation of data; Mersedeh Tajbakhsh: Drafting of the manuscript; Ghazaleh Ghandchi: Acquisition of data; Sedigheh Rafie Tabatabaei: Study concept, design, and supervision.

Conflict of Interests: Sedigheh Rafie Tabatabaei is the editor-in-chief of the Archives of Pediatric Infectious Diseases. The authors declare no potential conflict of interest with the published text.

Funding/Support: The research was supported by the Elite Researcher Grant Committee under award number [940290] from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

References

- Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. *Infect Drug Resist.* 2018;11:1645-58. [PubMed ID: 30349322]. [PubMed Central ID: PMC6188119]. <https://doi.org/10.2147/IDR.S173867>.
- Azimi T, Maham S, Fallah F, Azimi L, Gholinejad Z. Evaluating the antimicrobial resistance patterns among major bacterial pathogens isolated from clinical specimens taken from patients in Mofid Children's Hospital, Tehran, Iran: 2013-2018. *Infect Drug Resist.* 2019;12:2089-102. [PubMed ID: 31410032]. [PubMed Central ID: PMC6645606]. <https://doi.org/10.2147/IDR.S215329>.
- Shallcross LJ, Davies DS. Antibiotic overuse: a key driver of antimicrobial resistance. *Br J Gen Pract.* 2014;64(629):604-5. [PubMed ID: 25452508]. [PubMed Central ID: PMC4240113]. <https://doi.org/10.3399/bjgp14X682561>.
- Salehi B, Goudarzi H, Nikmanesh B, Houri H, Alavi-Moghaddam M, Ghalavand Z. Emergence and characterization of nosocomial multidrug-resistant and extensively drug-resistant *Acinetobacter baumannii* isolates in Tehran, Iran. *J Infect Chemother.* 2018;24(7):515-23. [PubMed ID: 2955392]. <https://doi.org/10.1016/j.jiac.2018.02.009>.
- Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Clonal relationships, antimicrobial susceptibilities, and molecular characterization of extended-spectrum beta-lactamase-producing *Escherichia coli* isolates from urinary tract infections and fecal samples in Southeast Iran. *Rev Soc Bras Med Trop.* 2018;51(1):44-51. [PubMed ID: 29513841]. <https://doi.org/10.1590/0037-8682-0080-2017>.
- Vahdani M, Azimi I, Asghari B, Bazmi F, Rastegar Lari A. Phenotypic screening of extended-spectrum ss-lactamase and metallo-ss-lactamase in multidrug-resistant *Pseudomonas aeruginosa* from infected burns. *Ann Burns Fire Disasters.* 2012;25(2):78-81. [PubMed ID: 23233825]. [PubMed Central ID: PMC3506211].
- Armin S, Fallah F, Karimi A, Rashidan M, Shirdust M, Azimi L. Genotyping, antimicrobial resistance and virulence factor gene profiles of vancomycin resistance *Enterococcus faecalis* isolated from blood culture. *Microb Pathog.* 2017;109:300-4. [PubMed ID: 28578090]. <https://doi.org/10.1016/j.micpath.2017.05.039>.
- Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang J, et al. Characterization of Extended-Spectrum beta-Lactamase-Producing Enterobacteriaceae From Retail Food in China. *Front Microbiol.* 2018;9:1709. [PubMed ID: 30135680]. [PubMed Central ID: PMC6092486]. <https://doi.org/10.3389/fmicb.2018.01709>.
- Cai B, Echols R, Magee G, Arjona Ferreira JC, Morgan G, Ariyasu M, et al. Prevalence of Carbapenem-Resistant gram-Negative Infections in the United States Predominated by *Acinetobacter baumannii* and *Pseudomonas aeruginosa*. *Open Forum Infect Dis.* 2017;4(3):ofx176. [PubMed ID: 29026867]. [PubMed Central ID: PMC5629822]. <https://doi.org/10.1093/ofid/ofx176>.
- Azimi I, Rastegar Lari A, Alaghehbandan R, Alinejad F, Mohammadpoor M, Rahbar M. KPC-producer gram negative bacteria among burned infants in Motahari Hospital, Tehran: first report from Iran. *Ann Burns Fire Disasters.* 2012;25(2):74-7. [PubMed ID: 23233824]. [PubMed Central ID: PMC3506210].
- Liu X, Wu X, Tang J, Zhang L, Jia X. Trends and Development in the Antibiotic-Resistance of *Acinetobacter baumannii*: A Scientometric Research Study (1991-2019). *Infect Drug Resist.* 2020;13:3195-208. [PubMed ID: 32982334]. [PubMed Central ID: PMC7502395]. <https://doi.org/10.2147/IDR.S264391>.
- Rice LB. Antimicrobial resistance in gram-positive bacteria. *Am J Infect Control.* 2006;34(5 Suppl 1):S11-9. [PubMed ID: 16813977]. <https://doi.org/10.1016/j.ajic.2006.05.220>.
- Centers for Disease Control and Prevention. *Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report)*. 2019. Available from: <https://www.cdc.gov/drugresistance/biggest-threats.html>.
- World Health Organization. *WHO publishes list of bacteria for which new antibiotics are urgently needed*. 2017. Available from: <https://www.who.int/news-room/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed>.
- Clinical and Laboratory Standards Institute. *Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement M100-S21*. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect.* 2012;18(3):268-81. [PubMed ID: 21793988]. <https://doi.org/10.1111/j.1469-0691.2011.03570.x>.
- Teerawattanapong N, Panich P, Kulpokin D, Na Ranong S, Kongpakwattana K, Saksinanon A, et al. A Systematic Review of the Burden of Multidrug-Resistant Healthcare-Associated Infections Among Intensive Care Unit Patients in Southeast Asia: The Rise of Multidrug-Resistant *Acinetobacter baumannii*. *Infect Control Hosp Epidemiol.* 2018;39(5):525-33. [PubMed ID: 29580299]. <https://doi.org/10.1017/ice.2018.58>.
- Eghbalimoghadam M, Farahani A, Akbar FN, Mohajeri P. Frequency of Class 1 Integron and Genetic Diversity of *Acinetobacter baumannii* Isolated from Medical Centers in Kermanshah. *J Nat Sci Biol Med.* 2017;8(2):193-8. [PubMed ID: 2871486]. [PubMed Central ID: PMC5523527]. <https://doi.org/10.4103/0976-9668.210007>.
- Owlia P, Azimi I, Gholami A, Asghari B, Lari AR. ESBL- and MBL-mediated resistance in *Acinetobacter baumannii*: a global threat to burn patients. *Infect Med.* 2012;20(3):182-7. [PubMed ID: 22992558].
- Musyoki VM, Masika MM, Mutai W, Wilfred G, Kuria A, Muthini F. Antimicrobial susceptibility pattern of *Acinetobacter* isolates from patients in Kenyatta National Hospital, Nairobi, Kenya. *Pan Afr Med J.* 2019;33:146. [PubMed ID: 31558943]. [PubMed Central ID: PMC6754852]. <https://doi.org/10.11604/pamj.2019.33.146.17220>.
- El Mekes A, Zahlane K, Ait Said I, Tadlaoui Ouafi A, Barakate M. The clinical and epidemiological risk factors of infections due to multi-drug

resistant bacteria in an adult intensive care unit of University Hospital Center in Marrakesh-Morocco. *J Infect Public Health*. 2020;13(4):637-43. [PubMed ID: 31537511]. <https://doi.org/10.1016/j.jiph.2019.08.012>.

22. Liu L, Liu B, Li Y, Zhang W. Successful control of resistance in *Pseudomonas aeruginosa* using antibiotic stewardship and infection control programs at a Chinese university hospital: a 6-year prospective study. *Infect Drug Resist*. 2018;11:637-46. [PubMed ID: 29750044]. [PubMed Central ID: PMC5936004]. <https://doi.org/10.2147/IDR.S163853>.

23. Lari AR, Azimi L, Soroush S, Taherikalani M. Low prevalence of metallo-beta-lactamase in *Pseudomonas aeruginosa* isolated from a tertiary burn care center in Tehran. *Int J Immunopathol Pharmacol*. 2015;28(3):384-9. [PubMed ID: 25816399]. <https://doi.org/10.1177/0394632015578343>.

24. Al Dawodeyah HY, Obeidat N, Abu-Qatouseh LF, Shehabi AA. Antimicrobial resistance and putative virulence genes of *Pseudomonas aeruginosa* isolates from patients with respiratory tract infection. *Germs*. 2018;8(1):31-40. [PubMed ID: 29564246]. [PubMed Central ID: PMC5845973]. <https://doi.org/10.18683/germs.2018.1130>.

25. Zarei-Yazdeli M, Eslami G, Zandi H, Kiani M, Barzegar K, Alipanah H, et al. Prevalence of class 1, 2 and 3 integrons among multidrug-resistant *Pseudomonas aeruginosa* in Yazd, Iran. *Iran J Microbiol*. 2018;10(5):300-6. [PubMed ID: 30675326]. [PubMed Central ID: PMC6340001].

26. Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd El-Baky RM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-beta-lactamases producing *Pseudomonas aeruginosa* isolated from hospitals in Minia, Egypt. *Infect Drug Resist*. 2019;12:2125-33. [PubMed ID: 31406468]. [PubMed Central ID: PMC6642648]. <https://doi.org/10.2147/IDR.S198373>.

27. Dash M, Narasimham M, Padhi S, Pattnaik S. Antimicrobial resistance pattern of *Pseudomonas aeruginosa* isolated from various clinical samples in a tertiary care hospital, South Odisha, India. *Saudi J Health Sci*. 2014;3(1):15-9. <https://doi.org/10.4103/2278-0521.130200>.

28. Taha MME, Homeida HE, Dafalla OME, Abdelwahab SI. Multidrug resistance, prevalence and phylogenetic analysis of genes encoding class II and III integrons in clinically isolated *Escherichia coli*. *Cell Mol Biol (Noisy-le-grand)*. 2018;64(5):122-6. [PubMed ID: 29729705].

29. Nepal K, Pant ND, Neupane B, Belbase A, Baidhya R, Shrestha RK, et al. Extended spectrum beta-lactamase and metallo beta-lactamase production among *Escherichia coli* and *Klebsiella pneumoniae* isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. *Ann Clin Microbiol Antimicrob*. 2017;16(1):62. [PubMed ID: 28927454]. [PubMed Central ID: PMC5605977]. <https://doi.org/10.1186/s12941-017-0236-7>.

30. Mahmoudi S, Mahzari M, Banar M, Pourakbari B, Hagh Ashtiani MT, Mohammadi M, et al. Antimicrobial resistance patterns of gram-negative bacteria isolated from bloodstream infections in an Iranian referral paediatric hospital: A 5.5-year study. *J Glob Antimicrob Resist*. 2017;11:17-22. [PubMed ID: 28729206]. <https://doi.org/10.1016/j.jgar.2017.04.013>.

31. Moremi N, Claus H, Mshana SE. Antimicrobial resistance pattern: a report of microbiological cultures at a tertiary hospital in Tanzania. *BMC Infect Dis*. 2016;16(1):756. [PubMed ID: 27964724]. [PubMed Central ID: PMC5154146]. <https://doi.org/10.1186/s12879-016-2082-1>.

32. Mamishi S, Mahmoudi S, Naserzadeh N, Hosseinpour Sadeghi R, Hagh Ashtiani MT, Bahador A, et al. Antibiotic resistance and genotyping of gram-negative bacteria causing hospital-acquired infection in patients referred to Children's Medical Center. *Infect Drug Resist*. 2019;12:3377-84. <https://doi.org/10.2147/IDR.S195126>.

33. Yazdansetad S, Alkhudhairy MK, Najafpour R, Farajtabrizi E, Al-Mosawi RM, Saki M, et al. Preliminary survey of extended-spectrum beta-lactamases (ESBLs) in nosocomial uropathogen *Klebsiella pneumoniae* in north-central Iran. *Heliyon*. 2019;5(9):e02349. [PubMed ID: 31687535]. [PubMed Central ID: PMC6819946]. <https://doi.org/10.1016/j.heliyon.2019.e02349>.

34. Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, et al. High Prevalence of Multidrug-Resistant *Klebsiella pneumoniae* Harboring Several Virulence and beta-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. *Front Microbiol*. 2019;9:3198. [PubMed ID: 30723463]. [PubMed Central ID: PMC6349766]. <https://doi.org/10.3389/fmicb.2018.03198>.

35. Rohde AM, Zweigner J, Wiese-Posselt M, Schwab F, Behnke M, Kola A, et al. Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae - a prospective multicentre cohort study in six German university hospitals. *Antimicrob Resist Infect Control*. 2018;7:159. [PubMed ID: 30603083]. [PubMed Central ID: PMC6307128]. <https://doi.org/10.1186/s13756-018-0452-8>.

36. Rahbar M, Azimi L, Mohammad-Zadeh M, Alinejad F, Soleymanzadeh S, Sattarzadeh M, et al. [The prevalence of nosocomial infections caused by *Enterobacter cloacae* and antibiotic resistant patterns in samples isolated from patients in two hospitals in Tehran]. *Tehran Univ Med J*. 2012;70(3):183-7. Persian.

37. Gashe F, Mulisa E, Mekonnen M, Zeleke G. Antimicrobial Resistance Profile of Different Clinical Isolates against Third-Generation Cephalosporins. *J Pharm (Cairo)*. 2018;2018:5070742. [PubMed ID: 30271652]. [PubMed Central ID: PMC6151245]. <https://doi.org/10.1155/2018/5070742>.

38. Ghahremani M, Jazani NH, Sharifi Y. Emergence of vancomycin-intermediate and -resistant *Staphylococcus aureus* among methicillin-resistant *S. aureus* isolated from clinical specimens in the northwest of Iran. *J Glob Antimicrob Resist*. 2018;14:4-9. [PubMed ID: 29454049]. <https://doi.org/10.1016/j.jgar.2018.01.017>.

39. Moosavian M, Shahin M, Navidifar T, Torabipour M. Typing of staphylococcal cassette chromosome *mec* encoding methicillin resistance in *Staphylococcus aureus* isolates in Ahvaz, Iran. *New Microbes New Infect*. 2018;21:90-4. [PubMed ID: 29379604]. [PubMed Central ID: PMC5773478]. <https://doi.org/10.1016/j.nmni.2017.11.006>.

40. Dadashi M, Nasiri MJ, Fallah F, Owlia P, Hajikhani B, Emaneini M, et al. Methicillin-resistant *Staphylococcus aureus* (MRSA) in Iran: A systematic review and meta-analysis. *J Glob Antimicrob Resist*. 2018;12:96-103. [PubMed ID: 28941791]. <https://doi.org/10.1016/j.jgar.2017.09.006>.

41. Kaur DC, Chate SS. Study of Antibiotic Resistance Pattern in Methicillin Resistant *Staphylococcus aureus* with Special Reference to Newer Antibiotic. *J Glob Infect Dis*. 2015;7(2):78-84. [PubMed ID: 26069428]. [PubMed Central ID: PMC4448330]. <https://doi.org/10.4103/0974-777X.157245>.

42. Jahansepas A, Ahangarzadeh Rezaee M, Hasani A, Sharifi Y, Rahnamayeh Farzami M, Dolatyar A, et al. Molecular Epidemiology of Vancomycin-Resistant *Enterococcus faecalis* and *Enterococcus faecium* Isolated from Clinical Specimens in the Northwest of Iran. *Microb Drug Resist*. 2018;24(8):1165-73. [PubMed ID: 29708837]. <https://doi.org/10.1089/mdr.2017.0380>.

43. Alotaibi FE, Bukhari EE. Emergence of vancomycin-resistant enterococci at a teaching hospital, Saudi Arabia. *Chin Med J*. 2017;130(3):340-6. [PubMed ID: 28139519]. [PubMed Central ID: PMC5308018]. <https://doi.org/10.4103/0366-6999.198923>.

44. Nateghian A, Robinson JL, Arjmandi K, Vosough P, Karimi A, Behzad A, et al. Epidemiology of vancomycin-resistant enterococci in children with acute lymphoblastic leukemia at two referral centers in Tehran, Iran: a descriptive study. *Int J Infect Dis*. 2011;15(5):e332-5. [PubMed ID: 21334943]. <https://doi.org/10.1016/j.ijid.2011.01.006>.