

Microbiome and Immune System Maturation in Infants and Toddlers

Shaghayegh Rezai ¹, Milad Salimi Chegenie ², Bahareh Hajikhani ³, Somayeh Delfani ^{3,*}

¹ Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

² Department of English, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

³ Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding Author: Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: somayehdelfani@gmail.com

Received: 7 June, 2025; Revised: 20 August, 2025; Accepted: 25 August, 2025

Abstract

Context: From pregnancy to age two – the first 1,000 days – are pivotal for shaping the infant's immune system and microbiome. Both are highly plastic, and their bidirectional crosstalk is crucial for lifelong health. Early absence or dysbiosis of the microbiome has significant health consequences.

Evidence Acquisition: All manuscripts were collected from PubMed, Google Scholar, and other relevant databases published from 2021 through 2025. All searches were conducted using specific keywords, including “early-life microbiome”, “gut microbiome”, “oral microbiome”, “immunological development”, and “microbiota composition”.

Results: Imbalanced oral bacteria raise risks for oral and systemic diseases since the mouth seeds gut microbiota. The oral-gut microbiome is bidirectional, shaping disease via migration, metabolites, and immune/inflammatory signals. Antibiotic overuse, maternal infection, environmental factors, and genetics reduce beneficial bifidobacteria and increase harmful bacteria, promoting resistance. Probiotics such as *Bifidobacterium breve* M-16V and *B. longum* BB536 may lessen eczema, boost immunity, and counter resistance, while improving oral and gut diversity and potentially lowering asthma, allergy, and obesity risk. Microbial ecosystem transplantation (MET) offers precise microbiota restoration, especially for Cesarean-born infants.

Conclusions: The MET could tailor age-specific formulas for the first 1,000 days to support infants' gut microbiota, promoting development and reducing dysbiosis. Custom MET products may yield lasting immune and metabolic benefits. However, safety, efficacy, and long-term effects of probiotics, FMT, and MET in infants require more research, despite their promise for early-life microbiota management and health.

Keywords: Early Life Microbiome, Gut Microbiome, Oral Microbiome, Immunological Development, Microbiota Composition

1. Context

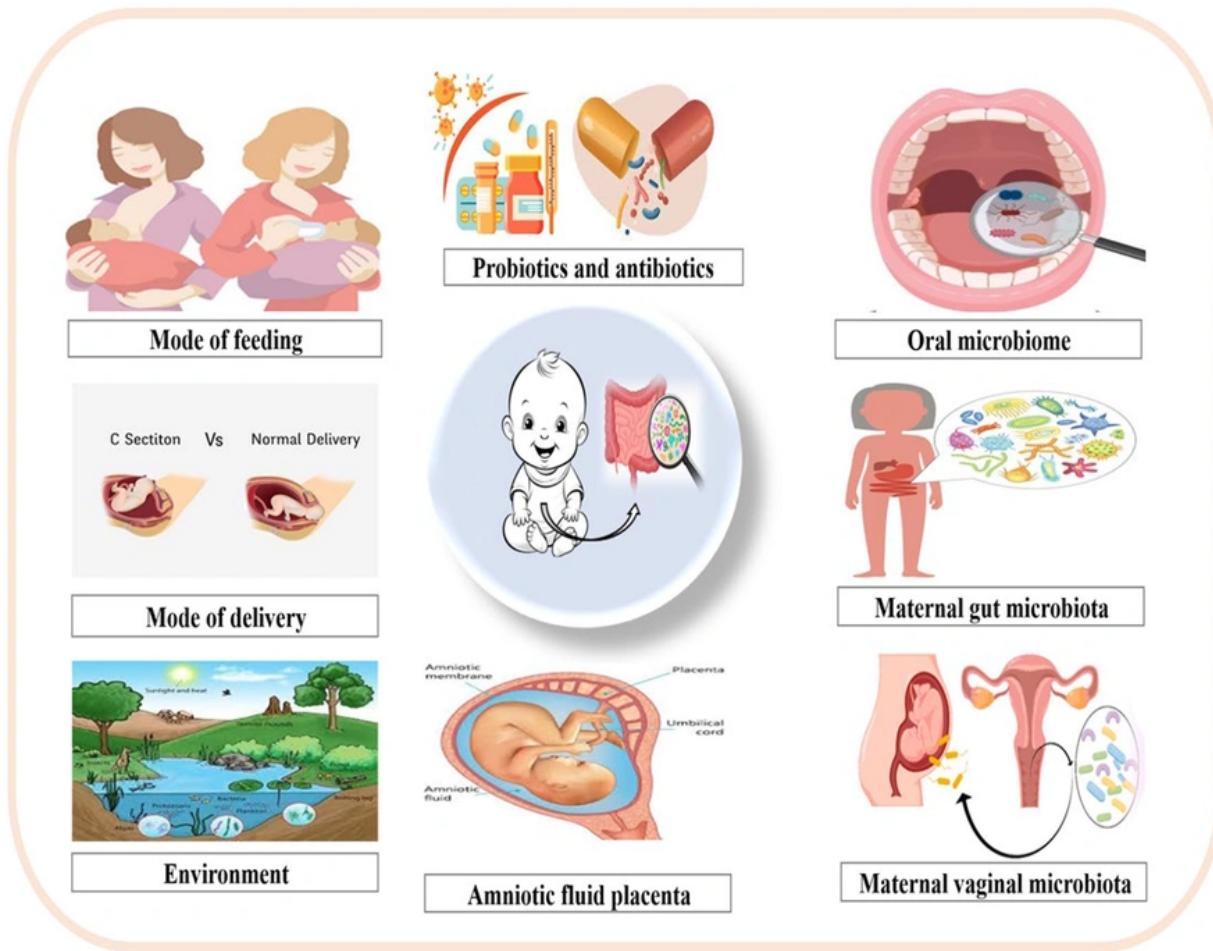
An infant's immune system is shaped by inherited factors (maternal genes/autoantigens), the gut microbiota, and exposure to pathogens. The microbiota's balance establishes immune homeostasis, fostering tolerance and defense. It interacts with immune cells, supports healthy responses, and is essential for immune development and organ maturation (1). Early life is crucial for forming a healthy gut and oral microbiome that guides immune development and lifelong health. A deficiency of beneficial bacteria, such as *Streptococcus*, in infancy can cause lasting immune problems and higher disease risk. Therefore, promoting healthy bacterial growth in babies

is important (2). A baby's early gut bacteria have a lasting impact on its health. The first microbes to colonize the gut, mainly facultative anaerobes such as *Enterobacteriales*, *Enterococci*, and *Staphylococci*, shape the gut's future microbial makeup and influence long-term development (3). Early colonizers occupy intestinal binding sites and resources, blocking newcomers. Mostly facultative anaerobes, they alter the gut by consuming nutrients, producing antimicrobials, and generating metabolites, shaping the community. Over time, the starter microbiota shifts to obligate anaerobes (e.g., *Clostridium leptum*, *Bifidobacterium*, *Bacteroides fragilis*) due to their influence. These initial colonizations are crucial for the mature microbiome and may affect future health (4).

When solid foods are introduced, the gut microbiota mainly includes *Firmicutes* and *Bacteroidetes*. The initial colonizers are affected by maternal and infant factors. These influences can result in different patterns in the growth of oral and gut microbes (5). Interruptions in initial oral microbial colonization can influence the development of both oral and systemic health issues in children (Figure 1) (6). Research links oral bacteria to weight gain, rheumatoid arthritis, and autism. The mouth is a gateway to the digestive tract, and oral microbes can influence the gut, suggesting oral microbiota may complement or substitute for gut microbiota. The gut microbiome protects against pathogens and strengthens immunity by colonizing mucosal surfaces and producing antimicrobial compounds (7). Immunosuppression or primary immunodeficiencies can disrupt how the microbiome educates the immune system. In healthy development, gut microbes promote the maturation of gut-associated lymphoid tissue (GALT), foster regulatory T-cells, stimulate secretory IgA, balance T-helper (Th) 1/Th2/Th17 responses, and reinforce barrier integrity. When immunity is compromised or drugs blunt microbial signals, education can be blunted or mistimed, leading to dysbiosis (lower diversity or pathobiont overgrowth), reduced antimicrobial peptides, and weaker colonization resistance. This can slow or skew immune maturation, raise mucosal inflammation and infection risk, and affect vaccine responses or immune reconstitution after transplant or chemotherapy. The microbiome also influences immunosuppressive therapy efficacy and toxicity, a bidirectional relationship, especially in early life when immune education is plastic (8). This review summarizes how the oral and gut microbiomes develop in the first 1,000 days and interact with the immune system, highlighting maternal health, delivery mode, feeding, antibiotics, host traits, and environment as key determinants of infant microbiota and immune maturation.

2. Evidence Acquisition

We conducted a structured literature search of PubMed, Scopus, and Google Scholar to identify studies published from 2021 through 2025 that investigate the development of the infant immune system in relation to the microbiome. A comprehensive search strategy and keywords related to early-life microbial communities and immune ontogeny were used, including terms such as “early-life microbiome”, “gut microbiome”, “oral microbiome”, “fecal microbiota”, “intestinal microbiota”, “immunological development”, “immune maturation”, “neonates”, and “infants”, to map cross-

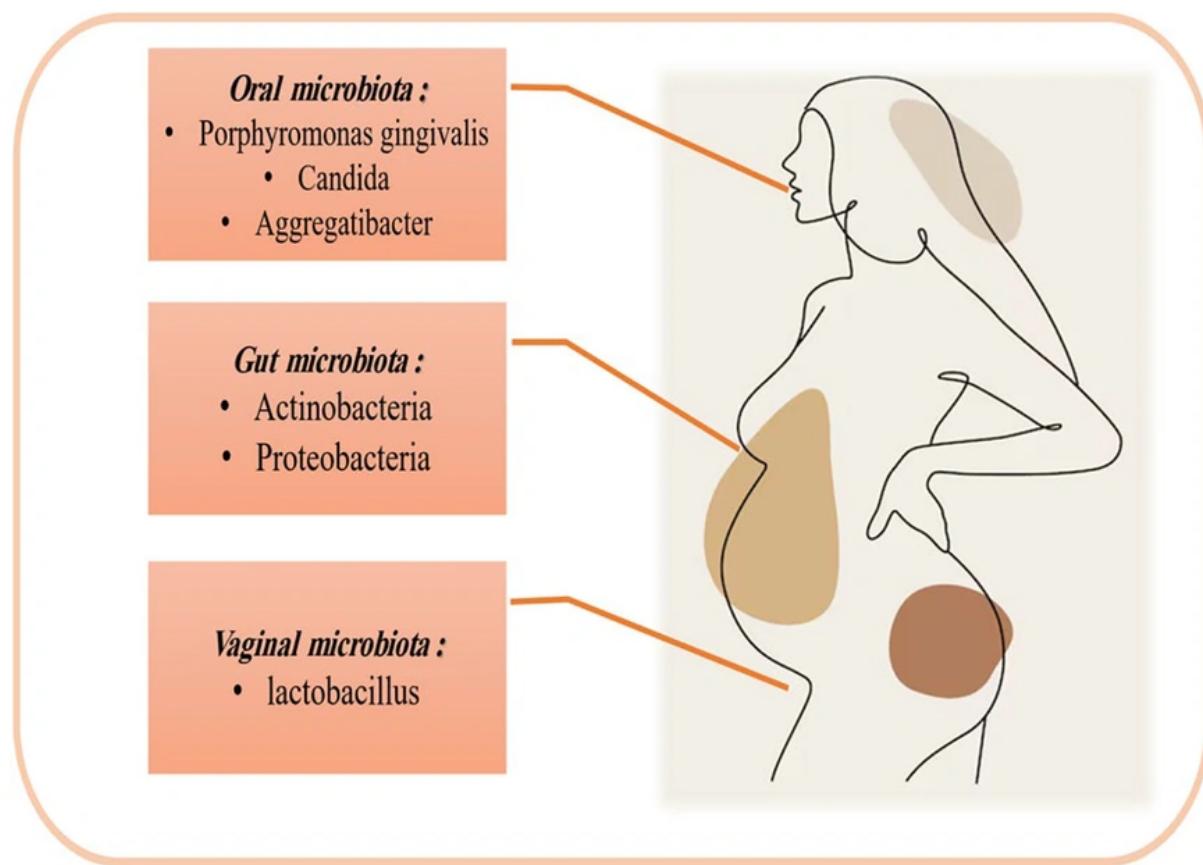

concept connections. All searches and study screenings were conducted to maximize sensitivity while maintaining specificity for infant populations and relevant immunologic and microbiome outcomes.

3. Results

3.1. Prenatal Factors

3.1.1. Maternal Microbiota

New evidence challenges the view of a sterile womb. Bacteria have been found in meconium, placenta, and amniotic fluid, with *Staphylococcus* most common in meconium and Enterobacteriaceae, *Enterococcus*, *Lactobacillus*, and *Bifidobacterium* also present (9). While some findings may reflect contamination, rigorous controls and advanced sequencing (e.g., PacBio SMRT) show fetal feces and amniotic fluid harboring microbial communities above background (10). Placental microbiota analyzed by Aagaard et al. reveal a distinct group dominated by intestinal-associated taxa – *Proteobacteria*, *Firmicutes*, *Bacteroidetes*, and *Fusobacteria* – related to the maternal oral microbiome and potentially influencing outcomes (11). The amniotic and placental microbiomes are alike. Imbalances in these microbes may cause chorioamnionitis. Amniotic fluid microbes might predict preterm birth (12). Amniotic and placental microbiomes are similar; imbalances can cause chorioamnionitis, and amniotic bacteria can predict preterm birth. Fetal colonization appears prenatal, sourced from maternal oral, gut, and vaginal microbiota, with maternal health shaping the baby's microbiome (13). Notably, the composition of the maternal oral, intestinal, and vaginal microbiota undergoes significant changes during pregnancy, which may explain the close relationship between maternal microbiota and that of the fetus and infant (Figure 2). During pregnancy, the maternal microbiome shifts: Oral taxa such as *Porphyromonas gingivalis* and *Aggregatibacter actinomycetemcomitans* rise in early to mid-pregnancy; *Candida* increases mid to late gestation; *Actinomyces* remains elevated (14). The gut microbiome shows more *Actinomycetes* and *Proteobacteria* and fewer butyrate-producing *Faecalibacterium*, with lower within-person but greater between-person diversity in the third trimester (14). Lower microbial diversity within individuals, but greater differences between individuals, occurs in the third trimester. This suggests chronic inflammation. These gut changes help regulate fetal metabolism. Maternal immune system adaptations are crucial for fetal acceptance, preventing rejection, and fighting infection (15). The vaginal microbiome


Figure 1. Key determinants of early microbial colonization include maternal gut and vaginal microbiota, oral microbiome, amniotic fluid, placenta, mode of delivery, feeding, probiotics and antibiotics, and the environment.

becomes *Lactobacillus*-dominated, with lower diversity and load early and a lower pH linked to better outcomes; reduced *Lactobacillus* associates with preterm labor. Maternal microbiome changes can reach the placenta/fetus via bloodstream or immune-cell routes; endometrial samples harbor gut and vaginal taxa (*Bacteroides*, *Proteus*, *Lactobacillus iners/crispatus*, *Prevotella amnii*). Microbes crossing the placenta may upregulate MAMP receptors and influence TH1/TH17 pathways (IRF7) (16).

3.1.2. Antenatal Antibiotics

Studies show that antibiotics taken during pregnancy can alter the developing baby's gut bacteria

(17). Research comparing infants exposed to prenatal antibiotics with those unexposed found lower levels of beneficial bacteria like *Bacteroides* and higher levels of potentially harmful bacteria such as *Escherichia* and *Shigella* in the antibiotic-exposed group (18). A broader analysis confirmed these findings, showing that antibiotic exposure in the womb is linked to decreased *Actinobacteria* and increased *Firmicutes* and *Proteobacteria* in infants' gut microbiomes (19). Prenatal antibiotics in mice disrupt offspring immunity by reducing butyrate and compromising ILC2, weakening antiviral immunity (20). Maternal antibiotics disrupt the infant gut microbiome, raising obesity, ear infections, and asthma risks, and may hinder immune development by altering gut and oral bacteria.

Figure 2. Schematic representation of pregnancy-related changes in the maternal microbiota: A pregnancy journey, noting increased abundances of *Porphyromonas*, *Candida*, and *Aggregatibacter* in the oral cavity; *Actinobacteria* and *Proteobacteria* in the gut; and *Lactobacillus* predominance in the vagina.

3.1.3. Prenatal Environmental Exposure

Early exposure to environmental pollutants and bacteria during development can influence the formation of the fetal oral and intestinal microbiota, as well as the immune system. Recent studies suggest that maternal inhalation of Particulate Matter 2.5 microns or less in diameter (PM2.5) can induce oxidative stress, inflammatory responses, hormonal disturbances, and epigenetic changes, potentially negatively affecting normal fetal development. Furthermore, inhaled PM2.5 can breach the alveolar epithelial barrier, enter the bloodstream, and accumulate in the placenta, possibly causing direct damage to its structure and function, which can impair fetal growth. In a research, pregnant mice were subjected to either filtered air (FA) or concentrated ambient PM2.5 (CAP), showing that

exposure to CAP altered the metabolome and disrupted metabolic pathways such as amino acid and lipid metabolism in both maternal blood and the placenta (21). Exposure of mothers to air pollutants during the initial and final stages of pregnancy has been associated with alterations in the fetal white blood cell distribution and may lead to an imbalance in fetal Th cell subsets, increasing the likelihood of allergic responses in offspring (22). Loss et al. studied the mRNA levels of Toll-like receptors (TLR) 1 to TLR9 and CD14 in umbilical cord blood, finding that the overall expression of innate immune receptors was typically elevated in the cord blood of infants born in rural regions, especially for TLR7 and TLR8 (23). Additionally, exposure to farm environments during pregnancy can influence the developing immune system of the offspring. Examination of umbilical cord blood from mothers

exposed to farms revealed a decreased Th2 immune response, a reduced number of white blood cells, an increase in Treg cells, and improved immunosuppressive functions, along with higher levels of pro-inflammatory cytokines such as TNF- α and IL-6 (24).

3.2. Postnatal Factors

3.2.1. Mode of Delivery

While the mother's body plays a role in initial fetal microbial exposure, a baby's microbiome is primarily established during birth. Vaginal delivery (VD) and cesarean section (CS) result in different microbial communities colonizing the newborn, impacting the development of both oral and gut microbiomes (25). The first week of life for vaginally delivered infants shows their mouths and intestines populated largely by bacteria also found in their mothers' vaginas, including *Lactobacillus*, *Prevotella*, and *Bifidobacterium* (26). Newborns delivered vaginally acquire bacteria from their mothers' vaginas and guts, including *Lactobacillus*, *Prevotella*, *Bifidobacterium*, *Bacteroidetes*, and *Escherichia coli*. These bacteria thrive in the infant gut. The VD is associated with higher levels of gram-negative bacteria in the infant, potentially increasing lipopolysaccharide (LPS) production (27). Exposure to LPS from gut microbes in newborns influences their immune response. The LPS stimulates immune cells, increasing markers like TNF- α and IL-18, suggesting a link between gut bacteria and the immune status of infants. This LPS exposure might contribute to developing tolerance to gut microbiota and activating the neonatal immune system, potentially reducing the risk of later immune disorders. Infants born vaginally exhibit heightened immune cell activity in their cord blood, including increased cytokine levels and expression of immune-related receptors (TLR2, TLR4, CD16, CD56), indicating a stronger initial immune response compared to those born via cesarean (28).

Babies born via CS acquire a different gut microbiome than those born vaginally. Their gut bacteria more closely resemble those on their mother's skin, such as *Staphylococcus*, *Corynebacterium*, and *Propionibacterium*, lacking the *Bifidobacterium* commonly found in vaginally delivered infants. The CS babies also have less bacterial diversity overall and a lower proportion of *Bacteroides*. Furthermore, they tend to have more potentially harmful bacteria, such as *C. perfringens* and *E. coli*. This altered microbiome may be related to lower levels of immune cells, like lymphocytes and dendritic cells, and reduced immune

receptor activity in their umbilical cord blood, suggesting a potentially weaker initial immune response (29). The timing of birth via CS may interfere with a key developmental window for the immune system, potentially reducing the positive effects of acquiring the mother's beneficial microbes and the immune system's natural activation during VD (27). Studies in mice indicate that the timing and strength of early immune system activation significantly impact long-term human immune health (30). The CS delivery is associated with a greater risk of childhood immune problems like asthma, allergies, leukemia, and inflammatory bowel disease (IBD) compared to VD. This difference likely stems from the impact of the delivery method on the infant's gut microbiome and immune system development. CS may expose newborns to more antibiotics and alter breast milk composition, increasing opportunistic pathogens and negatively affecting immune and metabolic development. While research, such as that by Selma-Royo et al., shows differences in early gut microbiota between home and hospital births, persisting for up to six months, the long-term impact of the delivery method appears to lessen over time (31). The impact of birth method on infant gut microbiota and subsequent development isn't solely determined by Cesarean versus VD. Other factors, such as the birth setting (e.g., home versus hospital), also play a significant role and need to be considered for a complete picture of how early colonization influences long-term health.

3.2.2. Feeding Methods

Newborns receive a significant bacterial inoculum through breast milk, which is not sterile as previously thought. This milk contains various bacterial species, such as *Staphylococcus*, *Streptococcus*, *Bifidobacterium*, *Propionibacterium*, and *Lactobacillus* (32). The World Health Organization advises starting breastfeeding immediately after birth and continuing exclusively for six months (33). The bacteria in a breastfed baby's mouth closely match those found in the mother's mouth, breast milk, and nipples. *Streptococcus* typically dominates the oral microbiome of exclusively breastfed infants, unlike formula-fed babies, who often show higher levels of *Actinomyces* and *Prevotella* (34). Additionally, infants who are fed formula without probiotics or human milk oligosaccharides (HMOs) tend to have lower levels of *Bifidobacterium* in their gut microbiota compared to breastfed infants, and adding *Bifidobacterium* to formula does not significantly increase its presence in the gut of infants (35). The differences in initial microbiota caused by varying

Table 1. The Impact of Various Probiotic Strains on the Microbiomes of the Infant Oral and Intestinal Tracts

Year	Author	Probiotics	Findings	Ref
2020	Kubota et al.	<i>Lactobacillus reuteri</i> DSM 17938	Marked increase in bowel movements in patients with functional constipation	(37)
2021	Mageswary et al.	<i>Bifidobacterium lactis</i> Probi-M8	Improving outcomes for hospitalized children under two with acute RTIs by decreasing symptom duration, antibiotic use, and hospital stays	(38)
2022	Sowden et al.	<i>L. acidophilus</i> , <i>B. bifidum</i> , and <i>B. infantis</i>	Preventing NEC and feeding problems in premature infants	(39)
2022	Guo et al.	Oropharyngeal Probiotic ENT-K12	Reduced acute respiratory infections, symptom duration, medication use, and school/work absences in school-aged children	(40)
2023	Luoto et al.	<i>L. rhamnosus</i> GG ATCC 53103	Promoting a Bifidobacteria-rich gut microbiome to reduce microbiota imbalances in preterm infants	(41)
2023	Li et al.	<i>L. paracasei</i> N1115	Increased lactic acid bacteria, fecal sIgA, and stable fecal pH	(42)
2023	Hiraku et al.	<i>B. longum</i> subsp. <i>infantis</i> M-63	Lower fecal pH, higher levels of acetic acid and IgA, and less frequent, less watery stools contributed to a Bifidobacteria-rich gut microbiome in full-term infants during key developmental stages	(43)

Abbreviations: RTIs, respiratory tract infections; NEC, necrotizing enterocolitis; sIgA, secretory immunoglobulin A.

feeding practices can have lasting impacts on the oral and intestinal microbiota of infants (Table 1) (36).

The development and maturation of both the innate and adaptive immune systems in newborns occur over time. Initially, during the first few days, immune-related components like secretory immunoglobulins in breast milk serve as the primary source of antibodies and immune cells (44). Breast milk is rich in secretory immunoglobulin A (sIgA), which plays a vital role in clearing pathogens, colonizing microbiota, and maintaining microbiota balance by affecting gene expression within the microbiota (45). Research indicates that maternal sIgA may help shape the oral microbiota by limiting the growth of potentially harmful species, safeguarding mucosal epithelial cells, and preventing the adhesion of specific pathogenic bacteria (46). Studies show that the levels of sIgA in the feces of breastfed infants at around six months are significantly higher compared to those fed formula. Additionally, breast milk contains various immunoglobulins, complement proteins, lysozyme, and lactoferrin – antimicrobial agents that protect infants from infections and support their immune development. In newborn mice, IgG from breast milk can enter the bloodstream through the Fc receptor (FcRn), providing crucial protection against mucosal diseases caused by *E. coli* (47). The predominant cytokine in human milk is IL-10, which helps suppress immune responses and promotes tolerance to dietary and microbial antigens (48). Breast milk also contains immune cells such as macrophages, neutrophils, and lymphocytes, which can be transferred directly to the infant, stimulating an immune response and influencing the development of the infant's immune cell types, particularly B and T-cells (49).

Human milk contains various bioactive components, particularly those related to the metabolism of HMOs

(50). A study examined the microbiota-dependent effects of HMOs. The HMOs act as infant prebiotics, promoting *Bifidobacterium*, *Streptococcus*, and *Staphylococcus*. They regulate intestinal epithelial cells, strengthen barrier function, and supply substrates that shape the developing microbiota and mucosal immunity. The HMOs also modulate immunity and compete with pathogens, reducing adhesion and invasion. Some gut bacteria ferment HMOs into short-chain fatty acids (SCFAs) that influence immunity and activate GPR41/43, a pathway linked to less allergic asthma and colitis in mice. Thus, higher HMO/SCFA levels from longer breastfeeding may help prevent allergies. Breast milk supports gut/oral microbiomes and immune development; prolonged breastfeeding is linked to better cognition and lower obesity/diabetes risk (51).

3.2.3. Antibiotic Exposure

Early exposure to antibiotics significantly alters the oral and intestinal microbiota. Studies show reduced microbial diversity and changes in bacterial community structure, with some bacteria (like *Granulicatella*) becoming less prevalent, while others (*Prevotella*) become more abundant after antibiotic treatment. Specific antibiotic use correlates with increases in certain bacterial families (Pasteurellaceae, Neisseriaceae) and decreases in others (Prevotellaceae) (52). This disruption is linked to an increased abundance of Enterobacteriaceae, antibiotic resistance genes (ARGs), and multidrug-resistant organisms (MDROs) (53). Long-term effects include altered proportions of oral bacteria like *Neisseria*, *Streptococcus mitis/dentisani*, *Prevotella*, and *Actinomyces*, depending on antibiotic exposure (36). Reduced microbial diversity persists into childhood. Animal studies show that early antibiotic exposure disrupts immune balance, potentially

increasing susceptibility to asthma, allergies, IBD, Crohn's disease, type 1 diabetes, and other diseases (54).

3.2.4. Environmental Exposure

Research increasingly indicates that environmental influences, rather than genetics, are the primary drivers of gut microbiome composition. This microbiome, along with environmental biodiversity and the human immune system, forms a complex, interacting network. Air pollutants, ingested through food and drink or inhaled and transported to the gut via the lungs, significantly alter the gut microbiome (55). This alteration manifests as shifts in bacterial populations (e.g., *Bacteroides*, *Firmicutes*, and *Verrucomicrobia*) and increased oxidative stress and inflammation, ultimately disrupting gut health (56). Exposure to farm environments helps shape a baby's gut bacteria in a way that protects against asthma. This demonstrates how the environment a baby is exposed to after birth plays a key role in the development of their gut and mouth bacteria (57).

4. Conclusions

The first 1000 days shape oral-gut microbiomes; the oral-gut axis links oral health to disease. Dysbiosis stems from antibiotic overuse, maternal health, and environment, with rising resistance. Probiotics guide microbiome development and immune maturation, reducing allergies, asthma, and infections; *Bifidobacterium breve* M-16V and *B. longum* BB536 show eczema benefits. FMT/microbial ecosystem transplantation (MET) could correct dysbiosis after cesarean birth, but safety formulations require evaluation. Future work: Personalized nutrition and maternal factors to craft pediatric therapies.

Footnotes

Authors' Contribution: S. R.: Investigation, formal analysis, and writing-original draft; M. S.: Writing-original draft, review, and editing; B. H.: Investigation and software; S. D.: Validation, writing-review, and editing.

Conflict of Interests Statement: The authors declare no conflict of interest.

Data Availability: The dataset presented in the study is available on request from the corresponding author during submission or after publication.

Funding/Support: The present study received no funding/support.

References

1. Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. *Cells*. 2023;12(1). [PubMed ID: 3661977]. [PubMed Central ID: PMC9818925]. <https://doi.org/10.3390/cells12010184>.
2. Choo SW, Mohammed WK, Mutha NVR, Rostami N, Ahmed H, Krasnogor N, et al. Transcriptomic Responses to Coaggregation between *Streptococcus gordonii* and *Streptococcus oralis*. *Appl Environ Microbiol*. 2021;87(22). e0155821. [PubMed ID: 34469191]. [PubMed Central ID: PMC8552878]. <https://doi.org/10.1128/AEM.01558-21>.
3. Korpela K, de Vos WM. Infant gut microbiota restoration: state of the art. *Gut Microbes*. 2022;14(1):2118811. [PubMed ID: 36093611]. [PubMed Central ID: PMC9467569]. <https://doi.org/10.1080/19490976.2022.2118811>.
4. Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, et al. Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird's-Eye View. *Front Microbiol*. 2017;8:1388. [PubMed ID: 28785253]. [PubMed Central ID: PMC5519616]. <https://doi.org/10.3389/fmicb.2017.01388>.
5. Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, et al. The role of the microbiome for human health: from basic science to clinical applications. *Eur J Nutr*. 2018;57(Suppl 1):1-14. [PubMed ID: 29748817]. [PubMed Central ID: PMC5962619]. <https://doi.org/10.1007/s00394-018-1703-4>.
6. Raspini B, Vacca M, Porri D, De Giuseppe R, Calabrese FM, Chieppa M, et al. Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point. *Front Cell Infect Microbiol*. 2021;11:590202. [PubMed ID: 33842380]. [PubMed Central ID: PMC8032992]. <https://doi.org/10.3389/fcimb.2021.590202>.
7. Kaan AMM, Kahhava D, Zaura E. Acquisition and establishment of the oral microbiota. *Periodontol 2000*. 2021;86(1):123-41. [PubMed ID: 33690935]. [PubMed Central ID: PMC8252790]. <https://doi.org/10.1111/prd.12366>.
8. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. *Cell*. 2014;157(1):121-41. [PubMed ID: 24679531]. [PubMed Central ID: PMC4056765]. <https://doi.org/10.1016/j.cell.2014.03.011>.
9. He Q, Kwok LY, Xi X, Zhong Z, Ma T, Xu H, et al. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. *Gut Microbes*. 2020;12(1):1794266. [PubMed ID: 32744162]. [PubMed Central ID: PMC7524391]. <https://doi.org/10.1080/19490976.2020.1794266>.
10. Stinson LF, Boyce MC, Payne MS, Keelan JA. The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. *Front Microbiol*. 2019;10:1124. [PubMed ID: 31231319]. [PubMed Central ID: PMC6558212]. <https://doi.org/10.3389/fmicb.2019.01124>.
11. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. *Sci Transl Med*. 2014;6(237):237ra65. [PubMed ID: 24848255]. [PubMed Central ID: PMC4929217]. <https://doi.org/10.1126/scitranslmed.3008599>.
12. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. *Am J Obstet Gynecol*. 2019;220(3):267 e1-267 e39. [PubMed ID: 30832984]. [PubMed Central ID: PMC6733039]. <https://doi.org/10.1016/j.ajog.2018.10.018>.

13. Ansari A, Bose S, You Y, Park S, Kim Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. *Int J Mol Sci.* 2021;22(15). [PubMed ID: 34360908]. [PubMed Central ID: PMC8347546]. <https://doi.org/10.3390/ijms22158145>.
14. Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. *Gut.* 2023;72(4):772-86. [PubMed ID: 36720630]. [PubMed Central ID: PMC10086306]. <https://doi.org/10.1136/gutjnl-2022-328970>.
15. Mor G. Introduction to the immunology of pregnancy. *Immunol Rev.* 2022;308(1):5-8. [PubMed ID: 35635382]. <https://doi.org/10.1111/imr.13102>.
16. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. *PLoS One.* 2012;7(6). e36466. [PubMed ID: 22719832]. [PubMed Central ID: PMC3374618]. <https://doi.org/10.1371/journal.pone.0036466>.
17. Sammar A, Flores E, Bernabeu M, Cabrera-Rubio R, Bauerl C, Selma-Royo M, et al. Shaping Microbiota During the First 1000 Days of Life. *Adv Exp Med Biol.* 2024;1449:1-28. [PubMed ID: 39060728]. https://doi.org/10.1007/978-3-031-58572-2_1.
18. Zou ZH, Liu D, Li HD, Zhu DP, He Y, Hou T, et al. Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units. *Ann Clin Microbiol Antimicrob.* 2018;17(1):9. [PubMed ID: 29554907]. [PubMed Central ID: PMC585143]. <https://doi.org/10.1186/s12941-018-0264-y>.
19. Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, et al. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. *Gut Microbes.* 2021;13(1):1-30. [PubMed ID: 33978558]. [PubMed Central ID: PMC8276657]. <https://doi.org/10.1080/19490976.2021.1897210>.
20. Benner M, Lopez-Rincon A, Thijssen S, Garssen J, Ferwerda G, Joosten I, et al. Antibiotic Intervention Affects Maternal Immunity During Gestation in Mice. *Front Immunol.* 2021;12:685742. [PubMed ID: 34512624]. [PubMed Central ID: PMC8428513]. <https://doi.org/10.3389/fimmu.2021.685742>.
21. Xu H, Yi X, Cui Z, Li H, Zhu L, Zhang L, et al. Maternal antibiotic exposure enhances ILC2 activation in neonates via downregulation of IFN γ signaling. *Nat Commun.* 2023;14(1):8332. [PubMed ID: 38097561]. [PubMed Central ID: PMC10721923]. <https://doi.org/10.1038/s41467-023-43903-x>.
22. Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. *BjOG.* 2024;131(5):538-50. [PubMed ID: 38037459]. [PubMed Central ID: PMC7615717]. <https://doi.org/10.1111/bjog.17727>.
23. Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, et al. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. *J Allergy Clin Immunol.* 2012;130(2):523-30 e9. [PubMed ID: 22846753]. <https://doi.org/10.1016/j.jaci.2012.05.049>.
24. Pfefferle PI, Buchele G, Blumer N, Roponen M, Ege MJ, Krauss-Etschmann S, et al. Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE Study. *J Allergy Clin Immunol.* 2010;125(1):108-15 e1-3. [PubMed ID: 19969338]. <https://doi.org/10.1016/j.jaci.2009.09.019>.
25. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. *Cell Host Microbe.* 2015;17(5):690-703. [PubMed ID: 25974306]. <https://doi.org/10.1016/j.chom.2015.04.004>.
26. Ma X, Ding J, Ren H, Xin Q, Li Z, Han L, et al. Distinguishable Influence of the Delivery Mode, Feeding Pattern, and Infant Sex on Dynamic Alterations in the Intestinal Microbiota in the First Year of Life. *Microb Ecol.* 2023;86(3):1799-813. [PubMed ID: 36864279]. <https://doi.org/10.1007/s00248-023-02188-9>.
27. Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. *Nat Commun.* 2018;9(1):5091. [PubMed ID: 30504906]. [PubMed Central ID: PMC6269548]. <https://doi.org/10.1038/s41467-018-07631-x>.
28. Pivrncova E, Kotaskova I, Thon V. Neonatal Diet and Gut Microbiome Development After C-Section During the First Three Months After Birth: A Systematic Review. *Front Nutr.* 2022;9:941549. [PubMed ID: 35967823]. [PubMed Central ID: PMC9364824]. <https://doi.org/10.3389/fnut.2022.941549>.
29. Lura MP, Gorlanova O, Muller I, Proietti E, Vienneau D, Reppucci D, et al. Response of cord blood cells to environmental, hereditary and perinatal factors: A prospective birth cohort study. *PLoS One.* 2018;13(7). e0200236. [PubMed ID: 29979752]. [PubMed Central ID: PMC6034853]. <https://doi.org/10.1371/journal.pone.0200236>.
30. Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. *Cell.* 2016;165(4):842-53. [PubMed ID: 27133167]. [PubMed Central ID: PMC4950857]. <https://doi.org/10.1016/j.cell.2016.04.007>.
31. Selma-Royo M, Dubois L, Manara S, Armanini F, Cabrera-Rubio R, Valles-Colomer M, et al. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding during the first year. *Cell Host Microbe.* 2024;32(6):996-1010 e4. [PubMed ID: 38870906]. [PubMed Central ID: PMC1183301]. <https://doi.org/10.1016/j.chom.2024.05.005>.
32. Damaceno QS, Gallotti B, Reis IMM, Totte YCP, Assis GB, Figueiredo HC, et al. Isolation and Identification of Potential Probiotic Bacteria from Human Milk. *Probiotics Antimicrob Proteins.* 2023;15(3):491-501. [PubMed ID: 34671923]. <https://doi.org/10.1007/s12602-021-09866-5>.
33. Blum J, Silva M, Byrne SJ, Butler CA, Adams GG, Reynolds EC, et al. Temporal development of the infant oral microbiome. *Crit Rev Microbiol.* 2022;48(6):730-42. [PubMed ID: 35015598]. <https://doi.org/10.1080/1040841X.2021.2025042>.
34. Oba PM, Holscher HD, Mathai RA, Kim J, Swanson KS. Diet Influences the Oral Microbiota of Infants during the First Six Months of Life. *Nutrients.* 2020;12(1). [PubMed ID: 33167488]. [PubMed Central ID: PMC7694519]. <https://doi.org/10.3390/nu12113400>.
35. Bazanella M, Maier TV, Clavel T, Lagkouvardos I, Lucio M, Maldonado-Gomez MX, et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. *Am J Clin Nutr.* 2017;106(5):1274-86. [PubMed ID: 28877893]. <https://doi.org/10.3945/ajcn.117.157529>.
36. Dzidic M, Collado MC, Abrahamsson T, Artacho A, Stensson M, Jenmalm MC, et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. *ISME J.* 2018;12(9):2292-306. [PubMed ID: 29899505]. [PubMed Central ID: PMC6092374]. <https://doi.org/10.1038/s41396-018-0204-z>.
37. Kubota M, Ito K, Tomimoto K, Kanazaki M, Tsukiyama K, Kubota A, et al. Lactobacillus reuteri DSM 17938 and Magnesium Oxide in Children with Functional Chronic Constipation: A Double-Blind and Randomized Clinical Trial. *Nutrients.* 2020;12(1). [PubMed ID: 31952280]. [PubMed Central ID: PMC7019518]. <https://doi.org/10.3390/nut12010225>.
38. Mageswary MU, Ang XY, Lee BK, Chung YF, Azhar SNA, Hamid IJA, et al. Probiotic Bifidobacterium lactis Probio-M8 treated and prevented acute RTI, reduced antibiotic use and hospital stay in hospitalized young children: a randomized, double-blind, placebo-controlled study. *Eur J Nutr.* 2022;61(3):1679-91. [PubMed ID: 34825264]. [PubMed Central ID: PMC8616720]. <https://doi.org/10.1007/s00394-021-02689-8>.

39. Sowden M, van Weissenbruch MM, Bulabula ANH, van Wyk L, Twisk J, van Niekerk E. Effect of a Multi-Strain Probiotic on the Incidence and Severity of Necrotizing Enterocolitis and Feeding Intolerances in Preterm Neonates. *Nutrients*. 2022;14(16). [PubMed ID: 36014810]. [PubMed Central ID: PMC9415863]. <https://doi.org/10.3390/nu14163305>.

40. Guo H, Xiang X, Lin X, Wang Q, Qin S, Lu X, et al. Oropharyngeal Probiotic ENT-K12 as an Effective Dietary Intervention for Children With Recurrent Respiratory Tract Infections During Cold Season. *Front Nutr*. 2022;9:900448. [PubMed ID: 35634421]. [PubMed Central ID: PMC9132010]. <https://doi.org/10.3389/fnut.2022.900448>.

41. Luoto R, Partty A, Vogt JK, Rautava S, Isolauri E. Reversible aberrancies in gut microbiome of moderate and late preterm infants: results from a randomized, controlled trial. *Gut Microbes*. 2023;15(2):2283913. [PubMed ID: 38010080]. [PubMed Central ID: PMC10730193]. <https://doi.org/10.1080/19490976.2023.2283913>.

42. Li P, Ren Z, Zhou J, Zhao A, Wang S, Xun Y, et al. Effect of Lactocaseibacillus paracasei N115 on Immunomodulatory and Gut Microbial Composition in Young Children: A Randomized, Placebo-Controlled Study. *Nutrients*. 2023;15(8). [PubMed ID: 37111189]. [PubMed Central ID: PMC10145370]. <https://doi.org/10.3390/nu15081970>.

43. Hiraku A, Nakata S, Murata M, Xu C, Mutoh N, Arai S, et al. Early Probiotic Supplementation of Healthy Term Infants with Bifidobacterium longum subsp. infantis M-63 Is Safe and Leads to the Development of Bifidobacterium-Predominant Gut Microbiota: A Double-Blind, Placebo-Controlled Trial. *Nutrients*. 2023;15(6). [PubMed ID: 36986131]. [PubMed Central ID: PMC10055625]. <https://doi.org/10.3390/nu15061402>.

44. Camacho-Morales A, Caba M, Garcia-Juarez M, Caba-Flores MD, Viveros-Contreras R, Martinez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. *Front Pediatr*. 2021;9:744104. [PubMed ID: 34746058]. [PubMed Central ID: PMC8567139]. <https://doi.org/10.3389/fped.2021.744104>.

45. Qi C, Tu H, Zhou J, Tu R, Chang H, Chen J, et al. Widespread vertical transmission of secretory immunoglobulin A coated trace bacterial variants from the mother to infant gut through breastfeeding. *Food Funct*. 2022;13(22):1543-54. [PubMed ID: 36260082]. <https://doi.org/10.1039/d2fo01244h>.

46. Donald K, Petersen C, Turvey SE, Finlay BB, Azad MB. Secretory IgA: Linking microbes, maternal health, and infant health through human milk. *Cell Host Microbe*. 2022;30(5):650-9. [PubMed ID: 35550668]. <https://doi.org/10.1016/j.chom.2022.02.005>.

47. Zheng W, Zhao W, Wu M, Song X, Caro F, Sun X, et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. *Nature*. 2020;577(7791):543-8. [PubMed ID: 31915378]. [PubMed Central ID: PMC7362890]. <https://doi.org/10.1038/s41586-019-1898-4>.

48. Pabst O, Mowat AM. Oral tolerance to food protein. *Mucosal Immunol*. 2012;5(3):232-9. [PubMed ID: 22318493]. [PubMed Central ID: PMC3328017]. <https://doi.org/10.1038/mi.2012.4>.

49. Ninkina N, Kukharsky MS, Hewitt MV, Lysikova EA, Skuratovska LN, Deykin AV, et al. Stem cells in human breast milk. *Hum Cell*. 2019;32(3):223-30. [PubMed ID: 30972555]. [PubMed Central ID: PMC6570695]. <https://doi.org/10.1007/s13577-019-00251-7>.

50. Delvaux A, Rathahao-Paris E, Guillon B, Cholet S, Adel-Patient K, Fenaille F, et al. Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers. *Anal Chim Acta*. 2021;1180:338878. [PubMed ID: 34538323]. <https://doi.org/10.1016/j.aca.2021.338878>.

51. Yu VWC, Yusuf RZ, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. *Cell*. 2016;167(5):1310-1322 e17. [PubMed ID: 27863245]. <https://doi.org/10.1016/j.cell.2016.10.045>.

52. Kennedy B, Peura S, Hammar U, Vicenzi S, Hedman A, Almqvist C, et al. Oral Microbiota Development in Early Childhood. *Sci Rep*. 2019;9(1):19025. [PubMed ID: 31836727]. [PubMed Central ID: PMC6911045]. <https://doi.org/10.1038/s41598-019-54702-0>.

53. Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. *FEMS Immunol Med Microbiol*. 2009;56(1):80-7. [PubMed ID: 19385995]. <https://doi.org/10.1111/j.1574-695X.2009.00553.x>.

54. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. *Sci Transl Med*. 2016;8(343):343ra82. [PubMed ID: 27306664]. [PubMed Central ID: PMC5308924]. <https://doi.org/10.1126/scitranslmed.ad7121>.

55. Cruells A, Cabrera-Rubio R, Bustamante M, Pelegri D, Cirach M, Jimenez-Arenas P, et al. The influence of pre- and postnatal exposure to air pollution and green spaces on infant's gut microbiota: Results from the MAMI birth cohort study. *Environ Res*. 2024;257:119283. [PubMed ID: 38830395]. <https://doi.org/10.1016/j.envres.2024.119283>.

56. Lehtimaki J, Thorsen J, Rasmussen MA, Hjelmsø M, Shah S, Mortensen MS, et al. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. *J Allergy Clin Immunol*. 2021;148(1):234-43. [PubMed ID: 33338536]. <https://doi.org/10.1016/j.jaci.2020.12.621>.

57. Depner M, Taft DH, Kirjavainen PV, Kalantra KM, Karvonen AM, Peschel S, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. *Nat Med*. 2020;26(11):1766-75. [PubMed ID: 33139948]. <https://doi.org/10.1038/s41591-020-1095-x>.