



## Concurrent Outbreaks of H3N2 Influenza A and Dengue Fever in Southern Iran: An Overview of Syndemic Challenges

Masoud Mardani  <sup>1</sup>, Amirreza Keyvanfar  <sup>1,\*</sup>

<sup>1</sup> Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

\*Corresponding Author: Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: amirrezakeyvanfar@yahoo.com

Received: 17 December, 2025; Accepted: 18 December, 2025

**Keywords:** Epidemics, Dengue, Disease Outbreaks, H3N2, Influenza A virus

Health officials in Hormozgan province, southern Iran, have issued a critical warning regarding simultaneous outbreaks of H3N2 influenza A and dengue fever. They note that the rising pattern of this syndemic – a synergistic epidemic – signals an active transmission chain, a saturated spread pattern, and the inadequacy of initial containment measures, which poses severe challenges for the healthcare system (1). The preconditions for dengue fever are firmly established in southern Iran, shaped by a favorable climate, the presence of the Aedes aegypti, deficiencies in environmental improvement, and a recent outbreak in this region (2). Concurrently, like much of the Northern Hemisphere, Iran is experiencing a seasonal surge of influenza A (H3N2) (3). This convergence of a highly transmissible respiratory virus and a potentially severe arbovirus in one region constitutes more than two concurrent outbreaks. It creates a syndemic where the diseases interact within a vulnerable population and a burdened system, compounding clinical and public health burdens (4, 5). This editorial contends that an effective response demands an immediate paradigm shift from disease-specific reactions to an integrated strategy where clinical vigilance is dual and health policy is holistic.

The syndemic threat of H3N2 influenza and dengue fever manifests through these synergistic mechanisms. First, their initial clinical presentations are indistinguishable, with most patients presenting with fever, headache, and myalgia. This overlap creates a significant diagnostic dilemma for clinicians in the critical early phase of the illnesses (6). The danger is that early dengue fever may be misdiagnosed as influenza,

leading to the prescription of non-steroidal anti-inflammatory drugs (NSAIDs), which can exacerbate dengue hemorrhage complications (7). Second, the syndemic leads to a huge influx of febrile individuals to healthcare facilities. These patients compete for finite health resources, such as hospital beds, nursing staff, and intravenous fluids, thereby imposing a severe operational burden on the healthcare system (8, 9). Third, there is also the possibility of an immunological synergy between diseases. Schmidt et al. demonstrated that co-infection with influenza and dengue virus can exacerbate pneumonia by impairing monocyte recruitment to the lung (10).

In regions facing concurrent H3N2 influenza and dengue fever outbreaks, the traditional diagnostic approach for influenza-like illness is potentially dangerous. Clinicians must adopt a dual suspicion, considering any febrile patient a probable case of seasonal influenza, dengue fever, or other endemic febrile illness like Coronavirus disease 2019 (COVID-19) (11, 12). While documented co-infection with dengue virus and influenza A (H3N2) remains rare, the possibility must be acknowledged in areas of simultaneous circulation (13). Certain clinical and laboratory clues can assist clinicians in distinguishing between influenza and dengue fever. Cough, sore throat, and rhinorrhea are more suggestive of influenza, whereas abdominal pain, skin rash, marked leucopenia, and thrombocytopenia point toward dengue fever (6). However, for many patients, history taking, physical examination, and laboratory investigations are insufficient. Here, rapid diagnostic tests (RDTs) become essential. Clinicians must understand their limitations;

a negative result in the early febrile phase cannot definitively rule out infection. Therefore, a syndromic approach interpreting RDT results within the clinical context is the most reliable diagnostic strategy. For confusing cases, confirmatory molecular testing is definitive but often constrained by cost and availability (6, 11, 12, 14). To operationalize this novel diagnostic approach, national health authorities must develop and disseminate updated guidelines for febrile illness management. The ultimate goal is pragmatic: Not to achieve a definitive day-one diagnosis for all, but to ensure no patient is placed on a harmful therapeutic path due to diagnostic uncertainty.

Overcoming this syndemic demands a dual-track integrative strategy. Clinically, managing febrile illness requires a diagnostic algorithm that moves beyond supportive care alone, incorporating history taking, physical examination, and strategic use of RDTs to differentiate H3N2 influenza from dengue fever (12). To avert the most immediate danger, NSAIDs must be categorically avoided until dengue fever is confidently ruled out; analgesia should be restricted to acetaminophen (paracetamol) during the diagnostic window (7). Following a definitive diagnosis, treatment paths diverge: Prompt antiviral therapy (e.g., oseltamivir) for influenza (15) and meticulous fluid balance monitoring for dengue fever (16). Public health efforts must be equally unified and proactive. First, surveillance systems of flu-like illness and dengue fever must merge into an integrated “Febrile Syndrome Surveillance” dashboard to track disease outbreaks in real time and by geographic location (12). Second, public education campaigns must deliver a consolidated message, prompting concurrent measures: Mask wearing, social distancing, and influenza vaccination to combat respiratory spread (3), alongside protective clothing, mosquito nets, and repellent creams to prevent vector-borne transmission (2). Third, environmental health actions, specifically targeted source reduction to eliminate Aedes breeding sites, must be sustained (17). Finally, these responses require an enabling policy framework: National authorities must resource updated syndemic guidelines, pre-position critical supplies (diagnostic kits, intravenous fluids, and antiviral medication), and mandate training for healthcare workers to successfully navigate this syndemic (18, 19).

The concurrent outbreaks of H3N2 influenza and dengue fever in southern Iran represent not merely a provincial crisis but a national threat. This syndemic offers a probable preview of the evolving pattern of communicable diseases. Nevertheless, a critical

opportunity lies within this challenge. By navigating this syndemic effectively, we can refine the integrated diagnostic algorithm, harmonize treatment protocols, innovate public health education, and reform policymaking, forming a resilient response framework applicable to future epidemics. The ultimate objective is to build a healthcare system robust enough not merely to withstand, but to proactively manage the inevitable convergence of the diseases. Achieving this demands nothing less than a united front, where clinicians, epidemiologists, and policymakers transcend traditional silos in a shared mission for national health security.

## Footnotes

**AI Use Disclosure:** The authors declare that no generative AI tools were used in the creation of this article.

**Authors' Contribution:** M. M. conceptualized the topic and critically revised the manuscript. A. K. conceptualized the topic and wrote the primary draft of the manuscript.

**Conflict of Interests Statement:** The authors declared that they had no conflict of interest. M. M. is the Editor-in-Chief of the journal and A. K. is a peer-reviewer of the journal.

## References

1. The Islamic Republic News Agency. [Serious Vigilance: Simultaneous spread of influenza and dengue fever in Hormozgan]. 2025. FA. Available from: <https://www.irna.ir/news/86015382/>.
2. Yadegarynia D, Keyvanfar A, Keramati A, Najafiarab H, Norouzi S, Soleimani S, et al. A national report on 2024 dengue fever outbreak in Iran: has the game changed? *BMC Infect Dis.* 2025;25(1):1077. [PubMed ID: 40877799]. [PubMed Central ID: PMC12392607]. <https://doi.org/10.1186/s12879-025-11453-w>.
3. World Health Organization. *Seasonal Influenza-Global situation*. Geneva, Switzerland: World Health Organization; 2025. Available from: <https://www.who.int/emergencies/diseases-outbreak-news/item/2025-DON586>.
4. Suresh K. Global viralepidemias!-truce is the future of global public health. *Open J Pediatr Child Health.* 2024;9(1):6-18. <https://doi.org/10.17352/ojpcch.000053>.
5. Singer M, Bulled N, Ostrach B, Mendenhall E. Syndemics and the biosocial conception of health. *Lancet.* 2017;389(10072):941-50. [https://doi.org/10.1016/s0140-6736\(17\)30003-x](https://doi.org/10.1016/s0140-6736(17)30003-x).
6. Huang SY, Lee IK, Wang I, Liu JW, Hung SC, Chen CC, et al. Use of simple clinical and laboratory predictors to differentiate influenza from dengue and other febrile illnesses in the emergency room. *BMC Infect Dis.* 2014;14:623. [PubMed ID: 25421019]. [PubMed Central ID: PMC4245735]. <https://doi.org/10.1186/s12879-014-0623-z>.
7. Kellstein D, Fernandes L. Symptomatic treatment of dengue: should the NSAID contraindication be reconsidered? *Postgrad Med.*

2019;131(2):109-16. [PubMed ID: 30575425]. <https://doi.org/10.1080/00325481.2019.1561916>.

8. Alessa AI, Abdullah Abdulkarim Ibrahim A, Ahmed Abdullah Mohammed A, Sultan Abdulrazaq Saad A, Atheer Mohammad Olayan A, Reem Falah Ali A. The Syndemic Threat: A Review of the Health Security Implications of Concurrent and Interacting Outbreaks. *Saudi J Med Public Health.* 2024;1(2):940-7. <https://doi.org/10.64483/202412254>.

9. Bulled N, Singer M. An Update on Syndemics: Editorial Comments. *Trop Med Infect Dis.* 2025;10(7). [PubMed ID: 40711064]. [PubMed Central ID: PMC12299863]. <https://doi.org/10.3390/tropicalmed10070187>.

10. Schmid MA, Gonzalez KN, Shah S, Pena J, Mack M, Talarico LB, et al. Influenza and dengue virus co-infection impairs monocyte recruitment to the lung, increases dengue virus titers, and exacerbates pneumonia. *Eur J Immunol.* 2017;47(3):527-39. [PubMed ID: 27995614]. <https://doi.org/10.1002/eji.201646675>.

11. Mitsakakis K, D'Acremont V, Hin S, von Stetten F, Zengerle R. Diagnostic tools for tackling febrile illness and enhancing patient management. *Microelectron Eng.* 2018;201:26-59. [PubMed ID: 32287568]. [PubMed Central ID: PMC7114275]. <https://doi.org/10.1016/j.mee.2018.10.001>.

12. Malavige GN, Wijewickrama A, Ogg GS. Differentiating dengue from other febrile illnesses: a dilemma faced by clinicians in dengue endemic countries. *Lancet Glob Health.* 2023;11(3):e306-7. [PubMed ID: 36796966]. [https://doi.org/10.1016/S2214-109X\(22\)00547-2](https://doi.org/10.1016/S2214-109X(22)00547-2).

13. Prasad GP, Gokila V, Aswathy VM, Sujith J. Intersecting Viral Burdens in Pediatrics: A Case Report of Dengue and Influenza A (H3N2) Co- Infection During Seasonal Transmission Peaks. *J Med Pharm Sci.* 2025;1:17-9.

14. Liles VR, Pangilinan LS, Daroy MLG, Dimamay MTA, Reyes RS, Bulusun MK, et al. Evaluation of a rapid diagnostic test for detection of dengue infection using a single-tag hybridization chromatographic-printed array strip format. *Eur J Clin Microbiol Infect Dis.* 2019;38(3):515-21. [PubMed ID: 30680559]. <https://doi.org/10.1007/s10096-018-03453-3>.

15. Gu C, Chen Y, Li H, Wang J, Liu S. Considerations when treating influenza infections with oseltamivir. *Expert Opin Pharmacother.* 2024;25(10):1301-16. [PubMed ID: 38995220]. <https://doi.org/10.1080/14656566.2024.2376660>.

16. Chan CY, Ooi EE. Dengue: an update on treatment options. *Future Microbiol.* 2015;10(12):2017-31. [PubMed ID: 26594048]. <https://doi.org/10.2217/fmb.15.105>.

17. Adesola RO, Ajibade FA, Idris I, Scott GY, Agaie MI. Addressing the Dengue fever challenges in Nigeria: A narrative review and recommendations for control. *Infezioni Med.* 2024;32(2). <https://doi.org/10.53854/iiim-3202-5>.

18. World Health Organization. *Clinical practice guidelines for influenza.* Geneva, Switzerland: World Health Organization; 2024. Available from: <https://www.who.int/publications/item/9789240097759>.

19. Allen UD, Aoki FY, Stiver HG. The use of antiviral drugs for influenza: recommended guidelines for practitioners. *Can J Infect Dis Med Microbiol.* 2006;17(5):273-84. [PubMed ID: 18382639]. [PubMed Central ID: PMC2095091]. <https://doi.org/10.1155/2006/165940>.