

The Regulatory Effect of *HOTAIR* on the Protein and RNA Levels of *ZEB1* and Its Potential Role in the EMT Process

Fatemeh Bossaghzadeh¹, Mohammadreza Hajjari ^{2,*}, Abdolkarim Sheikhi ³, Iman Salahshourifar ¹ and Shiva Irani ¹

¹Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

²Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

³Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran

*Corresponding author: Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Email: mohamad.hajjari@gmail.com

Received 2022 May 04; Revised 2022 June 25; Accepted 2022 June 28.

Abstract

Background: Invasion and metastasis in tumors are considered as two most important reasons for the reduction of treatment efficiency, as well as an increase in the mortality rate among the patients. According to the evidence, HOX transcript antisense RNA (*HOTAIR*) accounts for one of the main lncRNAs associated with the development and expansion of gastric cancer (GC).

Objectives: This research investigates the impact of *HOTAIR* suppression on the expression and translation of the *ZEB1* marker in GC.

Methods: The knockdown *HOTAIR* was in the AGS cell line using small interfering RNA targeting against *HOTAIR* (si-*HOTAIR*). The impact of *HOTAIR* expression on the cell proliferation was previously evaluated by the MTT assay. The expression of the zinc finger E-box binding homeobox 1 (*ZEB1*) gene in transfected cell lines was quantified compared to the control samples using the quantitative real-time polymerase chain reaction (qRT-PCR). The enzyme-linked immunosorbent assay (ELISA) was also used to assess the *HOTAIR* suppression impact on the *ZEB1* protein.

Results: The findings revealed that a decrease in the *HOTAIR* expression could cause a reduction in the proliferation and growth of cancer cells (Fold changes = 0/28, P-value < 0.01). According to the impact of changes in the *HOTAIR* expression levels on the *ZEB1* expression, the *ZEB1* expression level was directly correlated with *HOTAIR* so that a decrease in the *HOTAIR* expression led to a significant decline in the *ZEB1* expression level (P-value < 0.05). At the protein level, the effect of the knockdown of *HOTAIR* expression on the reduction of *ZEB1* protein was also observed.

Conclusions: Our findings showed a significant association between the *HOTAIR* and *ZEB1* expression levels. Overall, the *HOTAIR-ZEB1* axis plays a vital role in the epithelial-to-mesenchymal transition (EMT) process in human GC and represents a new therapeutic strategy for future GC treatment.

Keywords: Gastric Cancer, LncRNA, *HOTAIR*, *ZEB1*, EMT, Expression

1. Background

The third leading cause of cancer death is gastric cancer (GC) (1). GC-related morbidity and mortality are higher in East Asia, particularly in Korea, Japan, Mongolia, and China, than in most Western countries (2, 3). Tumor metastasis is one of the leading causes of death related to cancer (4, 5).

Tumor metastasis is a complex procedure in which cancer cells proliferate from the original tumor location to other organs. To some extent, metastatic cancer cells retain epithelial properties while displaying mesenchymal properties, including migration and invasion (6). This biological procedure is related to E-cadherin expression loss and the expression rise of zinc finger E-box binding

homeobox 1 (*ZEB1*), besides up-regulation of Vimentin and N-cadherin (6).

ZEB1 belongs to the *ZEB* transcription factor family which deals with controlling crucial variables during the invasive front of carcinomas by inducing epithelial-to-mesenchymal transition (EMT), providing cancer cells with a pre-invasive and stem-like phenotype, and determining a much worse clinical prognosis in most human malignancies (7, 8). EMT phenotype and cellular plasticity are induced by *ZEB1* (9). *ZEB1* increases transcriptional regulation of genes implicated in cancer progression in breast, prostate cancer cells, and GC (10, 11).

Long non-coding RNA (LncRNA) is a kind of non-coding RNA with a length above 200 nucleotides (nt) that

can influence target gene expression levels during the transcriptional and posttranscriptional stages (12). Some studies in GC have found that lncRNAs such as GIHCG, (13) ATB, (14) FEZF1 antisense RNA 1 (FEZF1-AS1) (15), SNHG15 (16), and CRNDE (17) are abnormally expressed and linked to cancer progression pathways. The human chromosome 12 gene HOX transcript antisense RNA (*HOTAIR*) has been shown to serve an oncogenic effect in cancer. *HOTAIR* dysregulation are linked to cancer progression, including ovarian cancer (18) and colon cancer (19). Nevertheless, there are limited reports on the biological mechanism of *HOTAIR* in GC (20).

HOTAIR has been identified as an overexpressed oncogene in solid tumors and hematologic cancers. *HOTAIR* expression was substantially linked with lymph node metastases, TNM stage, and invasion in GC was higher in the tumor than in the neighboring noncancerous tissues (21, 22). In patients with GC, a high *HOTAIR* expression was further employed to predict poor overall survival (23).

The involvement of *HOTAIR* in EMT process has been reported in several studies (24). In our previous study, we found that *HOTAIR* can induce EMT process through its effect on miR200 family members (25). In this study, we hypothesized that *HOTAIR* has a correlation with the *ZEB1*, as the target of this family.

2. Objectives

This study aimed to investigate the association between *HOTAIR* and *ZEB1* in GC on the AGS cell line.

3. Methods

3.1. Cell lines and Culture Conditions

The Pasteur Institute of Iran provided the AGS human GC cell line (Tehran, Iran). Cells were full-grown in RPMI 1640 medium (Gibco, USA) complemented with 10% fetal bovine serum (FBS) (Invitrogen, USA) and 1% Pen-Strep (Invitrogen), and then incubated at 37°C, 5% CO₂, and saturated humidity. When cells reached a proper confluence, they were passaged with trypsin. An inverted microscope was used to track cell growth. Here, cells were cultivated in the logarithmic growth phase (25).

3.2. Knockdown of *HOTAIR* in the AGS Cell Line

To silence the *HOTAIR* gene, AGS cells were transfected by 50 nM of siRNA targeted vs. *HOTAIR* (si*HOTAIR*), as well as a negative control siRNA (siNC) obtained from Sigma Company. The siRNAs comprised negative

control (MISSION® siRNA Universal Negative Control #1, SIGMA/SIC001) & *HOTAIR* siRNA-SASI (Hs02_00380445). In 24-well plates, AGS cells were grown to 50% confluence and then transfected by Lipofectamine 2000 (Invitrogen) following the manufacturer's instructions. The experiment was carried out twice more. At the time of transfection, the plated cells were 70-90 percent confluent (AGS: 60 × 10³ cells) and were harvested 48 h later. Finally, real-time polymerase chain reaction (RT-PCR) was used to test the knockdown of the *HOTAIR* gene, as detailed below (25).

3.3. Assay of Proliferation

An MTT kit (Atocell, England) was previously applied to perform a cell viability experiment based on the manufacturer's instructions. The cell line was seeded on a plate with 96 wells as part of replication research. AGS cells were then transfected with 50 nM of si-*HOTAIR*, a siNC, and MOCK 24 h after seeding. After 48 h, the Methyl Thiazol Tetrazolium (MTT) solution was added to each well and incubated for 4 h at 37°C in a humidified environment with 5% CO₂. Using an Elisa-reader, the wells' absorbance was evaluated at 490 nm (Biorad, USA). Each group had three replicate wells, and experiments were performed three times (25).

3.4. RNA Extraction & cDNA Synthesis from Total RNAs

RNX (CinnaGen) was applied to extract total RNAs from full-grown cells based on the manufacturer's instructions. DNaseI (Sigma) was used to treat the extracted RNA, which was subsequently kept at -80°C. RNA purity was evaluated utilizing a Nanodrop spectrophotometer (Epoch, Bioteck-USA) in addition to an A260/280 nm absorbance ratio. The RNA integrity was also tested utilizing electrophoresis on a 2% agarose gel with SafeStain (CinnaGen). Next, using a cDNA Synthesis Kit (TaKaRa, Japan), RNA was reverse transcribed into cDNA following the manufacturer's instructions.

The Oligo dt and random hexamer primers were used for protein-coding genes (*ZEB1* and *HPRT*) and the long non-coding gene *HOTAIR*. The cDNA was synthesized by a commercial kit (Takara Company), and the final volume of the reaction was made to 10 μL. The reaction was sited for 15 min at 37°C and for 5 sec at 85°C later to stop cDNA synthesis (deactivating the RT enzyme).

3.5. Quantitative Real-time PCR

In the ABI 7100 RT-PCR system (Applied Biosystems, USA), RT-qPCR was done utilizing SYBR-Green PCR Mix (Takara, Japan). The overall volume equaled 20 μL with 1 μL of cDNA, 0.5 μL of the reverse and forward primers

(10 μ M), and 10 μ L of 2x SYBR Green PCR super master mix. For PCR, the conditions were denaturation for 5 min at 95°C, 5-sec 40 cycles at 95°C, and extension/annealing for 30 sec at 60°C. The *HPRT* housekeeping gene was used as internal control. The Gen Runner & Primer BLAST was used to create primers based on the GenBank cDNA sequences. **Table 1** displays the primer sequences. The correctness of the qRT-PCR results was checked by calculating melting curves for the genes plus primer dimer fragments. To finish, genes' expression was evaluated using the Fold change $2^{-\Delta Ct}$ technique (Livak technique; [ΔCt : Ct gene of interest-Ct internal control]) in every analyzed sample. Standard curves constructed from raw data were used to measure primers' efficacy (LinRegPcr; Primer efficiency = 2 & Regression = 0.999).

Table 1. Primers Applied in the Research ^a

Target Gene	Primer Sequence (5' → 3')	Forward (F) & Reverse (R)
<i>HPRT</i>	GGACTTGCCTCTGGTCAG	F
<i>HPRT</i>	GTCAAGGGCATATCCTACACAA	R
<i>HOTAIR</i>	GAAAGGTCTGCTCCGCTTC	F
<i>HOTAIR</i>	TCCTCTGCCGCCGCTG	R
<i>ZEB1</i>	GCACCTGAAGAGGACCAAGAG	F
<i>ZEB1</i>	GGGGTCTGTATGCAAAGGTG	R

^a*HOTAIR*, *HPRT1*, and *ZEB1* primers reference: Gen Runner & Primer BLAST

3.6. The Extraction of Total *ZEB1* Protein from Cell Line

Protein extraction was performed as previously described (26). In brief, after removing the supernatant and adding some cold PBS, the solution was later centrifuged for 5 min at 1000 g. RIPA lysis buffer containing a suppressor was added to the cell pellet. Next, the suspension was incubated on the ice at 4°C for 30 min. Then specimens were centrifuged for 15 min at 4°C at 13000 g, and the supernatant was collected at -80°C. Protein concentrations were determined using the Bradford method.

3.7. The Evaluation of *ZEB1* Protein by ELISA

To this aim, 100 μ L of the extracted protein (10 μ g/mL) and 100 μ L of PBS were added to each of 96 wells and incubated overnight at 4°C. The wells were aspirated and later rinsed twice by a washing buffer, then blocked by adding 300 μ L of the inhibitor buffer to each well, and incubated at 37°C for 60 min. Subsequently, after rinsing, 100 μ L of *ZEB1* antibody (Cusabio, catalog number: CSB-PA026424LA01HU) was added to each well (1 μ g per well), and kept for 2 h at RT. The rinsing was repeated. Then,

100 μ L of HRP-conjugated secondary anti-rabbit antibody (Sigma Aldrich, catalog number: A6154) was added to the wells at a dilution rate of 1: 10000 and kept at RT for 2 h. Next 100 μ L of TMB solution (Sigma-Aldrich, catalog number: T0440) was added to wells and located for 30 min in the dark. After adding 100 μ L of H₂SO₄ stop solution, an ELISA reader was used to read the OD at 450 nm.

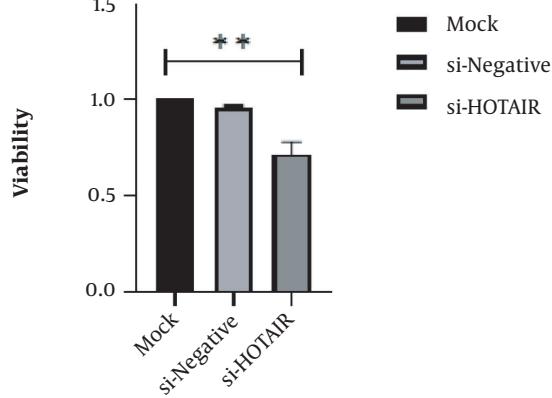
3.8. Statistical Analysis

Using one-way analysis of variance (ANOVA) by Graphpad Prism 9 software, statistical analysis was carried out by 95% confidence interval (CI). Data were presented as mean \pm SD. A P-value < 0.05 was considered as statistically significant. Analysis of the *HOTAIR* and *ZEB1* expression was done three times for each specimen.

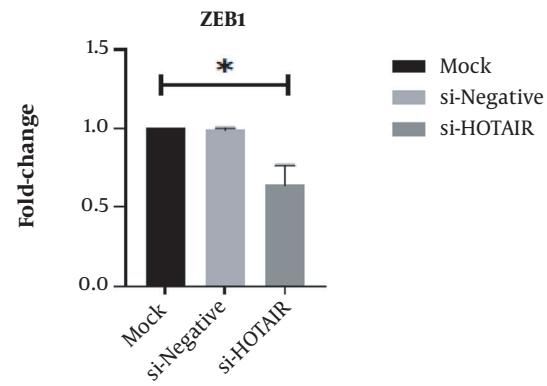
4. Results

4.1. The *HOTAIR* Expression Level in AGS Downregulated by si-*HOTAIR*

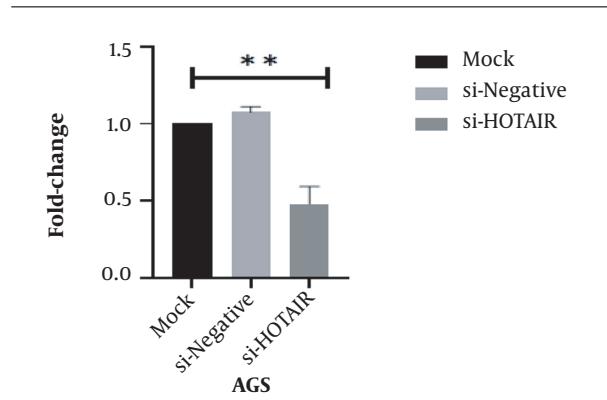
As anticipated, the *HOTAIR* knockdown resulted in a reduced number of cells in accordance with our previous report on the *HOTAIR* functional role in GC cell lines (25). A statistically significant decline was observed in developing si-*HOTAIR* transfected cells as compared with MOCK and siNC groups (approximately for the AGS cell line, Fold change = 0.28; P = 0.0038, **P < 0.01; [Figure 1](#)).


After treating the AGS cell line with siRNA targeting the *HOTAIR*, the *HOTAIR* expression level was assessed using quantitative RT-PCR. As illustrated in [Figure 2](#), there was a reduction in the *HOTAIR* expression level in AGS (Fold change = 0.48; **P < 0.01; [Figure 2](#))

4.2. The Impact of *HOTAIR* Knockdown on the *ZEB1* Gene Expression


After treating the AGS cell line with siRNA targeting the *HOTAIR*, the *ZEB1* expression level was assessed using quantitative RT-PCR. As observed in [Figure 3](#), the expression of *ZEB1* was significantly declined in samples transfected by si*HOTAIR*. The authenticity of the results was confirmed by one-way ANOVA (Fold change = 0.65; P = 0.0288, *P < 0.05; [Figure 3](#))

4.3. The Impact of *HOTAIR* Suppression on the Protein Expression of *ZEB1* in AGS Cell Line


The results revealed that protein expression of *ZEB1* was significantly reduced in si*HOTAIR* transfected samples. The suppression of *HOTAIR* expression was directly associated with the reduction of *ZEB1* protein expression. The authenticity of the results was confirmed by one-way ANOVA (P = 0.350, *P < 0.05, [Figure 4](#)).

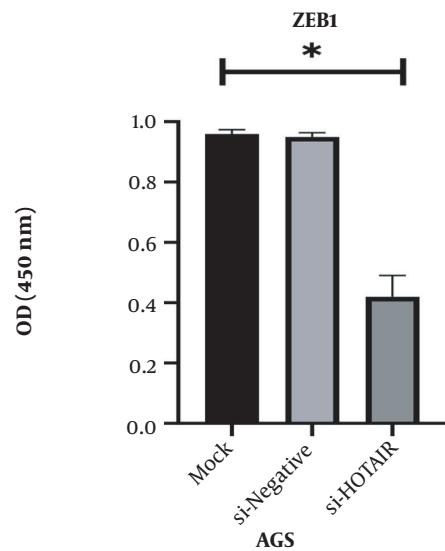

Figure 1. MTT assay was conducted to assess cell proliferation in the si-HOTAIR-transfected AGS cell line. There was a statistically significant reduction in the si-HOTAIR transfected cells' growth as compared with the MOCK and siNC groups (**P < 0.01 vs. NC). HOTAIR, Hox transcript antisense RNA.

Figure 3. The impact of HOTAIR knockdown on the ZEB1 expression. Data were expressed as mean \pm SD, *P < 0.05. RT-qPCR, reverse-transcription quantitative polymerase chain reaction; HOX antisense intergenic RNA (HOTAIR); Zinc finger E-box binding homeobox 1 (ZEB1).

Figure 2. RT-qPCR demonstrated that HOTAIR expression was down-regulated by si-HOTAIR. The HOTAIR expression level in si-HOTAIR-transfected AGS cells. Data were presented as mean \pm SD, **P < 0.01. RT-qPCR, reverse transcription-quantitative polymerase chain reaction; HOTAIR, Hox transcript antisense RNA.

Figure 4. The impact of HOTAIR suppression on the ZEB1 protein expression in AGS cell line. Data were expressed as mean \pm SD, *P < 0.05. RT-qPCR, reverse-transcription quantitative polymerase chain reaction; HOX antisense intergenic RNA (HOTAIR); Zinc finger E-box binding homeobox 1 (ZEB1).

5. Discussion

Studies show that the expression of *HOTAIR* is significantly higher in tumors compared to normal tissues. On the other hand, many important processes in GC are influenced by this regulatory RNA. Identifying the mode of action of this RNA is effective in better understanding of pivotal molecular mechanisms in GC (27).

The results of this study showed that the *HOTAIR* gene may have a significant effect on the growth and proliferation of cancer cells. In fact, increased *HOTAIR* expression can be considered as an important sign in the proliferation and spread of cancerous mass. Regulating the growth and proliferation of cancer cells requires influencing cell cycle and its inhibitors. Considering the mechanism of *HOTAIR* action on cell cycles and the path of apoptosis can have a significant impact on better understanding the role of *HOTAIR* on the proliferation and development of malignant tumors. The molecular pathway of *HOTAIR* in GC has also been investigated (28).

Xu *et al.* stated that the decrease of *HOTAIR* expression could be accompanied by the decrease of invasion potential and suppressing the EMT pathway. In this study, *HOTAIR* was shown to impact a wide range of markers and transcription factors involved in the EMT pathway, and the decrease of *HOTAIR* expression accounted for an important target in suppressing the invasion in GC (23). Zhang *et al.* also showed that *HOTAIR* could be regarded as an important factor in the EMT pathway and metastasis of GC (29).

Previous studies demonstrated that lncRNAs are abnormally expressed in cancer and act as oncogenes or tumor suppressors, revealing an important role in cancer prognosis (30). *HOTAIR* is a possible therapeutic target in treating GC, according to current research findings. *HOTAIR* has been shown in several investigations to induce EMT by inhibiting target genes (31, 32). We discovered a potential action mechanism for *HOTAIR* in the up-regulation of *ZEB1*, one of the most critical markers of EMT.

It was previously revealed that miR-200 acts as a tumor suppressor factor by inhibiting EMT and tumor growth in GC by targeting *ZEB1* and *ZEB2* (28).

Takei *et al.* showed that a lncRNA (*HOTAIR*) is expressed more vastly in 60As6 than HSC-60 cells. Expression of *HOTAIR* promotes EMT in 60As6 cells. They discovered that *HOTAIR* binds and targets miR-217, which binds to *ZEB1*. In the orthotopic tumor mouse model, the knocking down *HOTAIR* in 60As6 cells greatly declined invasion activity and peritoneal dispersion, and significantly extended longevity. The *HOTAIR-miR-217-ZEB1* axis, linked

to EMT, appears to prevent peritoneal spread. They concluded that EMT is accelerated in scirrhouse gastric tumors by at least two distinct mechanisms: (i) *HOTAIR* overexpression (60As6 & 44As3 cell lines) and (ii) miR-200 family down-regulation (58As9 cell line). Both methods then work together to increase *ZEB1* expression and give cells mesenchymal characteristics (33).

This study revealed that a drop in *HOTAIR* expression was linked to reducing cancer cell proliferation and growth. The decrease of *HOTAIR* expression and the *ZEB1* gene transcription could happen alongside each other. According to our results, assessing the effect of suppressing *HOTAIR* expression in the AGS cell line at the level of protein by the ELISA technique showed that suppressing *HOTAIR* expression could decrease the expression of *ZEB1* protein. Considering the key role of the *ZEB1* gene as an important marker in progressing the EMT pathway and invasion, it can be concluded that *HOTAIR* can be a pivotal regulator in the occurrence of metastasis and invasion in GC tumors.

Our results suggested a new mechanism mediated by *HOTAIR* and *ZEB1* that mediates the transitions between EMT and MET programs. As a result of their common molecular properties in the EMT process, *ZEB1* and *HOTAIR* were studied. However, more investigations are needed to define the precise regulation mechanism of *HOTAIR* on the *ZEB1*. Further studies are needed to investigate this axis by overexpressing *HOTAIR* and analyzing interactions between *HOTAIR* and regulatory elements, evaluation of *HOTAIR* expression changes on other markers and transcription factors in the EMT pathway, as well as on cell cycle inhibitors and apoptosis for better understanding the effects on cell proliferation and inhibition of apoptosis. Finally, it is recommended to evaluate the effect of *HOTAIR* knockdown on the expression and translation levels of *ZEB1* markers in other cancer cell lines. However, further studies on animal models are necessary.

5.1. Conclusions

The *HOTAIR-ZEB1* axis appears to play a key role in human GC, making it a possible therapeutic target for the future. As far as the researchers investigated, this is the first research on the effect of *HOTAIR-ZEB1* axis in GC. Nevertheless, more research on the specific mechanism is needed.

Acknowledgments

We acknowledge the Iranian Council of Stem Cell Technology, Shahid Chamran University of Ahvaz, and Islamic Azad University for financial support of this study.

Footnotes

Authors' Contribution: Study concept and design: M. H.; Analysis and interpretation of data: M. H.; Drafting of the manuscript: F. B.; Critical revision of the manuscript for important intellectual content: M. H., and F. B.; Statistical analysis: M. H..

Conflict of Interests: The authors did not receive any financial or research support in the last five years, personal financial interests, stocks or shares of companies, and consulting fees. We do not have any personal or professional relations with organizations and individuals (parents and children, spouses, family relations, etc.) and unpaid membership in a governmental or non-governmental organization. Also, none of the authors were editorial board members of the journal.

Data Reproducibility: The data presented in this study is openly available to readers upon request.

Funding/Support: This study was financially supported by the Iranian Council of Stem Cell Technology, Shahid Chamran university of Ahvaz, and Islamic Azad University.

References

1. Sadegh Z, Pishkar L, Chaleshi V. Evaluation of AK023391 lncRNA and FOXO3a Genes' Expression in Tissues from Iranian Gastric Cancer Patients Compared with Healthy Tissues and Their Relationship with Clinicopathological Features. *Gene Cell Tissue*. 2021; **In Press** (In Press). <https://doi.org/10.5812/gct.117415>.
2. Thrift AP, El-Serag HB. Burden of Gastric Cancer. *Clin Gastroenterol Hepatol*. 2020; **18**(3):534-42. [PubMed ID: 31362118]. [PubMed Central ID: PMC8859863]. <https://doi.org/10.1016/j.cgh.2019.07.045>.
3. Chen W, Zheng R, Zeng H, Zhang S, He J. Annual report on status of cancer in China, 2011. *Chin J Cancer Res*. 2015; **27**(1):2-12. [PubMed ID: 25717220]. [PubMed Central ID: PMC4329176]. <https://doi.org/10.3978/j.issn.1000-9604.2015.01.06>.
4. Cervantes A, Roda D, Tarazona N, Rosello S, Perez-Fidalgo JA. Current questions for the treatment of advanced gastric cancer. *Cancer Treat Rev*. 2013; **39**(1):60-7. [PubMed ID: 23102520]. <https://doi.org/10.1016/j.ctrv.2012.09.007>.
5. Shah MA. Gastrointestinal cancer: targeted therapies in gastric cancer-the dawn of a new era. *Nat Rev Clin Oncol*. 2014; **11**(1):10-1. [PubMed ID: 24300880]. <https://doi.org/10.1038/nrclinonc.2013.231>.
6. Putzke AP, Ventura AP, Bailey AM, Akture C, Opoku-Ansah J, Celiktas M, et al. Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. *Am J Pathol*. 2011; **179**(1):400-10. [PubMed ID: 21703419]. [PubMed Central ID: PMC3123858]. <https://doi.org/10.1016/j.ajpath.2011.03.028>.
7. Yun EJ, Baek ST, Xie D, Tseng SF, Dobin T, Hernandez E, et al. DAB2IP regulates cancer stem cell phenotypes through modulating stem cell factor receptor and ZEB1. *Oncogene*. 2015; **34**(21):2741-52. [PubMed ID: 25043300]. <https://doi.org/10.1038/onc.2014.215>.
8. Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. *Cell Cycle*. 2015; **14**(4):481-7. [PubMed ID: 25607528]. [PubMed Central ID: PMC4614883]. <https://doi.org/10.1080/15384101.2015.1006048>.
9. Kondo M, Ogino H, Ogawa H, Afroj T, Toyoda Y, Sakaguchi S, et al. A case of pulmonary pleomorphic carcinoma with malignant phenotypes induced by ZEB1-associated epithelial-mesenchymal transition. *Respir Med Case Rep*. 2018; **25**:119-21. [PubMed ID: 30112272]. [PubMed Central ID: PMC6092312]. <https://doi.org/10.1016/j.rmc.2018.07.008>.
10. Orellana-Serradell O, Herrera D, Castellon EA, Contreras HR. The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. *Asian J Androl*. 2018; **20**(3):294-9. [PubMed ID: 29271397]. [PubMed Central ID: PMC5952486]. https://doi.org/10.4103/ajaa.ajaa_61_17.
11. Maturi V, Enroth S, Helden CH, Moustakas A. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells. *J Cell Physiol*. 2018; **233**(10):713-27. [PubMed ID: 29744893]. [PubMed Central ID: PMC6055758]. <https://doi.org/10.1002/jcp.26634>.
12. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. *Nat Rev Genet*. 2014; **15**(1):7-21. [PubMed ID: 24296535]. <https://doi.org/10.1038/nrg3606>.
13. Li Z, Ma YY, Wang J, Zeng XF, Li R, Kang W, et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. *Oncotargets Ther*. 2016; **9**:139-48. [PubMed ID: 26770063]. [PubMed Central ID: PMC4706124]. <https://doi.org/10.2147/OTT.S95565>.
14. Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. *Exp Mol Med*. 2015; **47**:e184. [PubMed ID: 26380927]. [PubMed Central ID: PMC4650928]. <https://doi.org/10.1038/emm.2015.68>.
15. Shi C, Sun L, Song Y. FEZF1-AS1: a novel vital oncogenic lncRNA in multiple human malignancies. *Biosci Rep*. 2019; **39**(6). [PubMed ID: 31175144]. [PubMed Central ID: PMC6591563]. <https://doi.org/10.1042/BSR20191202>.
16. Mokhtar A, Kong C, Zhang Z, Du Y. Down-regulation LncRNA-SNHG15 contributes to proliferation and invasion of bladder cancer cells. *BMC Urol*. 2021; **21**(1):83. [PubMed ID: 34016097]. [PubMed Central ID: PMC8139049]. <https://doi.org/10.1186/s12894-021-00852-1>.
17. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. *Nature*. 2012; **489**(7414):101-8. [PubMed ID: 22955620]. [PubMed Central ID: PMC3684276]. <https://doi.org/10.1038/nature11233>.
18. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. *Genetics*. 2013; **193**(3):651-69. [PubMed ID: 23463798]. [PubMed Central ID: PMC3583990]. <https://doi.org/10.1534/genetics.112.146704>.
19. Guan D, Zhang W, Zhang W, Liu GH, Belmonte JC. Switching cell fate, ncRNAs coming to play. *Cell Death Dis*. 2013; **4**: e464. [PubMed ID: 23328671]. [PubMed Central ID: PMC3563984]. <https://doi.org/10.1038/cddis.2012.196>.
20. Tang Q, Hann SS. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer. *Cell Physiol Biochem*. 2018; **47**(3):893-913. [PubMed ID: 29843138]. <https://doi.org/10.1159/000490131>.
21. Yu X, Li Z. Long non-coding RNA HOTAIR: A novel oncogene (Review). *Mol Med Rep*. 2015; **12**(4):5611-8. [PubMed ID: 26238267]. <https://doi.org/10.3892/mmr.2015.4161>.
22. Wu ZH, Wang XL, Tang HM, Jiang T, Chen J, Lu S, et al. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. *Oncol Rep*. 2014; **32**(1):395-402. [PubMed ID: 24840737]. <https://doi.org/10.3892/or.2014.3186>.
23. Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, et al. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. *Int J Biol Sci*. 2013; **9**(6):587-97. [PubMed ID: 23847441]. [PubMed Central ID: PMC3708039]. <https://doi.org/10.7150/ijbs.6339>.
24. Cantile M, Di Bonito M, Cerrone M, Collina F, De Laurentiis M, Botti G. Long Non-Coding RNA HOTAIR in Breast Cancer Therapy. *Cancers (Basel)*. 2020; **12**(5). [PubMed ID: 32397382]. [PubMed Central ID: PMC7281113]. <https://doi.org/10.3390/cancers12051197>.

25. Bossaghzadeh F, Hajjari M, Sheikhi A, Salahshourifar I, Irani S. HOTAIR Induces the Downregulation of miR-200 Family Members in Gastric Cancer Cell Lines. *Iran Biomed J.* 2022;26(1):77-84. [PubMed ID: 34923813]. [PubMed Central ID: PMC8784900]. <https://doi.org/10.52547/ibj.26.1.77>.
26. Kamazani FM, Sotoodehnejad Nematalahi F, Siadat SD, Pournour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. *Sci Rep.* 2021;11(1):24419. [PubMed ID: 34952904]. [PubMed Central ID: PMC8709863]. <https://doi.org/10.1038/s41598-021-03031-2>.
27. Brzozowa M, Mielanczyk L, Michalski M, Malinowski L, Kowalczyk-Ziomek G, Helewski K, et al. Role of Notch signaling pathway in gastric cancer pathogenesis. *Contemp Oncol (Pozn).* 2013;17(1):1-5. [PubMed ID: 23788953]. [PubMed Central ID: PMC3685346]. <https://doi.org/10.5114/wo.2013.33765>.
28. Lee NK, Lee JH, Park CH, Yu D, Lee YC, Cheong JH, et al. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma. *Biochem Biophys Res Commun.* 2014;451(2):171-8. [PubMed ID: 25063030]. <https://doi.org/10.1016/j.bbrc.2014.07.067>.
29. Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. *Oncogene.* 2014;33(31):4069-76. [PubMed ID: 24013226].
30. Guo L, Gu J, Hou S, Liu D, Zhou M, Hua T, et al. Long non-coding RNA DANCR promotes the progression of non-small-cell lung cancer by inhibiting p21 expression. *Oncotargets Ther.* 2019;12:135-46. [PubMed ID: 30613152]. [PubMed Central ID: PMC6306065]. <https://doi.org/10.2147/OTT.S186607>.
31. Song Y, Wang R, Li LW, Liu X, Wang YF, Wang QX, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. *Int J Oncol.* 2019;54(1):77-86. [PubMed ID: 30431069]. [PubMed Central ID: PMC6254860]. <https://doi.org/10.3892/ijo.2018.4625>.
32. Cong N, Du P, Zhang A, Shen F, Su J, Pu P, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. *Oncol Rep.* 2013;29(4):1579-87. [PubMed ID: 23381389]. <https://doi.org/10.3892/or.2013.2267>.
33. Takei Y, Hara T, Suzuki A, Miura K, Yanagihara K. Long Noncoding RNA HOTAIR Promotes Epithelial-Mesenchymal Transition and Is a Suitable Target to Inhibit Peritoneal Dissemination in Human Scirrhous Gastric Cancers. *Pathobiology.* 2020;87(5):277-90. [PubMed ID: 32937635]. <https://doi.org/10.1159/000508350>.