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Abstract

Background: Early and appropriate antidotal therapy is crucial for patients with organophosphate poisoning.

Objectives: Given the lack of a comprehensive consensus on the optimal dose of pralidoxime for patients with
organophosphate poisoning, this study aims to develop a machine learning-based prediction model to determine the
individualized pralidoxime dose for these patients.

Methods: The dataset was divided into training and test sets with a 70:30 ratio. Feature selection was conducted using Pearson’s
correlation coefficient (filter approach) method. Both classification and regression were employed to develop the prediction
model using the selected features. The performance of the developed models was evaluated using ten-fold cross-validation and
various metrics, including sensitivity, specificity, accuracy, Fi-score, and AUC. The models were implemented and assessed using
the scikit-learn library in Python.

Results: After applying exclusion criteria, data from 325 patients were utilized to train and test the machine-learning models. In
the classification approach, the random forest method achieved superior performance with an AUC of 98.6. In the regression

approach, the gradient boosting regressor, with an R? value of 65.4, outperformed other algorithms. Feature selection revealed
that muscular weakness, plasma cholinesterase activity, and blood urea nitrogen were the most significant predictors of
pralidoxime dose in the classification model. In the regression model, the top predictors were age, HCO5;-VBG, and atropine

bolus. Many of the selected features coincide with those identified in previous studies, with muscular weakness being
particularly significant in both models.

Conclusions: The most effective algorithms could be employed to develop a clinical decision support system for personalized
pralidoxime dosage prediction in patients with organophosphorus poisoning. However, the study is constrained by its small
sample size, retrospective design, and the absence of an external validation cohort. Conducting a prospective multicenter study
with a larger sample size is crucial to validate the findings of this study.
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1. Background

Organophosphate (OP) poisoning is a major global
health issue caused by exposure to OP compounds,
which are widely used as pesticides. Organophosphates
are among the most common causes of accidental,
occupational, and suicidal intoxications due to their
widespread use, easy accessibility, and simplicity in

synthesis (1). Despite the role of pesticides in enhancing
agricultural productivity, concerns are increasing about
their adverse effects on human health (2).
Organophosphate poisoning is more prevalent in
developing countries where highly hazardous pesticides
(HHPs) are more readily available. Significant incidences
of intentional or unintentional OP poisoning occur in
the agricultural regions of developing countries in
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South Asia and Southeast Asia, including China, India,
Sri Lanka, Iran, and the Maldives (2, 3). Annually, the
global death toll from OP poisoning is estimated to
range from 250 000 to 350 000 (4). In rural areas,
poisoning  with  organophosphorus compounds
typically occurs deliberately with suicidal intent (5). One
study reported that 51.7% of OP poisonings were
deliberate, while 21.7% were accidental (4). Previous
studies have indicated that intentional self-poisoning is
associated with significantly higher mortality than
unintentional poisoning (6). Given the high prevalence
of intentional poisoning with organophosphorus
compounds, particularly in developing countries, and
the high mortality associated with it, implementing
necessary therapeutic interventions for these patients is
crucial.

Organophosphates inhibit the enzyme
acetylcholinesterase (AChE) by phosphorylating the
serine  hydroxyl group on the enzyme.
Acetylcholinesterase is responsible for hydrolyzing the
neurotransmitter acetylcholine (ACh) at cholinergic
synapses. Therefore, AChE inhibition leads to the
accumulation of ACh at the cholinergic synapse,
resulting in prolonged stimulation of nicotinic and
muscarinic ACh receptors, which manifests as OP
toxidrome (1, 7). In addition to supportive care, the
standard treatment includes three main therapeutic
approaches: Atropine to block muscarinic receptors,
oxime-type reactivators (e.g., pralidoxime, obidoxime)
to dephosphorylate the inhibited AChE and
benzodiazepines for seizure management.

In Iran, pralidoxime chloride (2-PAM) is the oxime of
choice and is commonly used as an antidote for OP
poisoning. It works by reactivating AChE, thus reducing
the accumulation of ACh (8). For adults, the initial
recommended dose of pralidoxime chloride typically
ranges from 1 to 2 grams, followed by a continuous
infusion at a rate of 250 to 500 mg per hour. However,
dosing guidelines can vary based on the specific product
used and the severity of the poisoning. Close
monitoring of the patient's clinical response is crucial to
determine the need for additional doses or adjustments
in the infusion rate. In pediatric patients, the dose of
pralidoxime is generally calculated based on body
weight, with an initial dose typically ranging from 20 to
50 mg/kg, followed by a continuous infusion at a rate of
5 to 10 mg/kg per hour (9-11).

There is a divergence of opinion regarding the
effectiveness of pralidoxime in treating OP poisoning;
some studies have reported that its administration leads
to a decrease in mortality among patients poisoned
with organophosphorus agents (12-15), while others

indicate no effect (16, 17). Several previous studies
examining the effectiveness of various dosages of
pralidoxime are outlined in Table 1 (11, 14, 16, 18-25). The
appropriate dose of pralidoxime for a specific individual
depends on several factors, including the severity of
poisoning, age, weight, and individual response (26).
Additionally, some studies recommend high-dose
pralidoxime (12), while others have reported that high
doses may be associated with a higher mortality rate
and recommend low-dose pralidoxime (27). With the
expansion of information technology in many research
fields, including healthcare, real-world studies such as
non-interventional and observational studies have
become significant data sources for clinical research
(28). Compared to traditional models, machine learning
approaches offer immense benefits in handling real-
world evidence. Unlike traditional models, which
cannot handle complex, interacting, high-dimensional
variables, machine learning models are more accurate
and provide greater generalizations (29). The use of
machine learning techniques based on real-world
research has become popular recently, with examples
including models for predicting tacrolimus blood
concentration in patients with autoimmune diseases,
the prediction of vancomycin dose through XGBoost,
and the prediction of warfarin maintenance dose
through LightGBM (30-32).

2. Objectives

In this study, we aimed to predict an optimal
pralidoxime therapeutic dose based on real-world
evidence, including initial symptoms, clinical
presentation, vital signs, and laboratory parameters at
presentation, using machine learning methods to
enhance its efficacy in patients poisoned by OPs.

3. Methods

3.1. Study Population

The roadmap of the proposed system for predicting
pralidoxime dose in patients with OP poisoning is
illustrated in Figure 1. This retrospective study was
conducted at Loghman Hakim Hospital, Tehran, Iran's
primary referral center for poisoned patients, from
March 2016 to April 2021. The study included patients
aged 14 years and older who had been poisoned with
OPs and met specific criteria. These criteria included
documented OP exposure and a plasma cholinesterase
(PChE) activity of less than 4300 U/L upon admission,
indicative of acute OP poisoning (33). A total of 325
patients were included, particularly those who received
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commonly recommended pralidoxime dose regimens.
These regimens typically involved an initial intravenous
infusion of 1- 2 g (10 - 20 mg/mL) over 15 - 30 minutes,
followed by a continuous infusion of 500 mg/h until 24
hours after the patient was weaned from atropine. The
study aimed to predict the outcome of dried pulmonary
secretions and adequate oxygenation following
pralidoxime administration. Exclusion criteria included
non-receipt of pralidoxime, multidrug toxicity, and the
presence of severe chronic comorbidities. Ethical
approval for the study was obtained from the ethics
committee (IR.SBMU.RETECH.REC.1401.257), and
informed consent was obtained from all participants.

Data collestion
32

98

Test_data

Modeltraining

Model training
15 classifiers
Evaluation models

Compare Compare
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ALC score MAE
accuracy score MSE
)
Random forest classifier Gradient boasting regressor
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Figure 1. Graphical abstract: The roadmap of the proposed system to predict
pralidoxime dose in patients with organophosphate poisoning

3.2. Collection and Processing of Data

Data for this study were obtained from electronic
medical records. Two researchers reviewed the medical
records of the patients, and a questionnaire was used to
extract clinical information from the electronic
databases of Loghman Hakim Hospital. The
questionnaire covered various patient demographics,
medical history, symptoms, and laboratory test results,
as well as hospital-related factors such as the need for
intubation and duration of hospitalization. The dataset
underwent several preparation processes, including the
removal of rows with missing values greater than 70%,
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application of min-max scalar and standard scalar, data
validation, under-sampling, and splitting of the dataset.

3.3. Feature Selection

Feature selection in machine learning involves
identifying the most relevant attributes or parameters
to improve model performance. In this research, the
filter approach using Pearson’s correlation coefficient
was employed to select features by assessing the
correlation between each variable and the predictive
outcome. The aim was to identify the key predictors of
the total pralidoxime dose necessary for maintaining
sufficient oxygenation. Only variables demonstrating a
strong correlation with the predictive outcome, such as
dried pulmonary secretions and adequate oxygenation,
were retained through the feature selection process.
Variables with zero correlation coefficients were
excluded from the feature subset, while those with high
coefficients were included in the selected variables
subset.

3.4. Statistical Analysis

Based on the outcomes of the Kolmogorov-Smirnov
and Shapiro-Wilk tests, it was determined that all
continuous variables exhibited non-normal
distributions. Consequently, these variables were
represented by their median values and interquartile
ranges and were analyzed using the Kruskal-Wallis and
Mann-Whitney U tests. Categorical variables were
depicted in terms of absolute frequencies (n) and were
analyzed using the chi-square test.

3.5. Model Development and Performance Evaluation

The prediction model for pralidoxime dose in
patients poisoned by OPs was assessed using two
methods: (1) Regression, with pralidoxime dose
considered as a continuous variable; and (2)
classification, with pralidoxime dose divided into two
classes, low dose, and high dose. In the low dose class,
patients received total doses of less than 14 000 g, and in
the high dose class, patients received total doses of 14
000 g or more. For the first method, 25 machine
learning models were used, and for the second method,
15 machine learning models were trained. Models with
the best performance are listed in Table 2 (the top ten
models for the regression method) and Table 3 (the top
14 models for the classification method). A ten-fold
cross-validation technique was employed to train and
test the machine learning algorithms using both
complete and selected feature datasets. This method
involves dividing the dataset into ten sections and
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performing the holdout method ten times. The final
dataset was randomly split into training (70%) and
testing (30%) sets. Model creation, hyper-parameter
tuning, and model performance evaluation were
conducted using these datasets. This approach prevents
random data bias and ensures an equal distribution of
data between the training and test sets. It is important
to note that the testing dataset was not used during the
training process. Hyperparameters were tuned using
the training dataset through the cross-validation
method. Python software was used to develop a model
utilizing classification models. The performance of the
classification algorithms was assessed by testing them
on the testing dataset after training. Five commonly
used efficiency testing metrics, including sensitivity,
specificity, accuracy, Fi-score, and AUC, were utilized to
evaluate the effectiveness of classification algorithms in
predicting the pralidoxime dose in OP-poisoned
patients. These performance measures were then used
to compare the performance of each trained classifier
with that of other machine-learning systems. The
efficiency evaluation metrics for the classifiers are as
follows:

TP+TN
Accuracy = x 100
TP+YN+FP+FN
Recall (aka sensitivity)= _Ir x 100
TP+ FN
Presicion = _Ir x 100
TP+ FP

Presicion x Recall

f — measure = 2 —
Presicion + Recall

Four performance measures were employed in the
regression method to evaluate the performance of each
algorithm: Mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), and R-

squared (R?). The calculations for these metrics are as
follows:

MAE = % > lvi— 9
j=1

V%Ji;(w@j)z

In the process of regression analysis, we employed
the standardization technique to scale the variables.

RMSE =

Standardization involves centering the values around
the mean and adjusting them to have a unit standard
deviation. This is achieved by dividing the variable by its
standard deviation after subtracting the mean, as
indicated by the following equation:

X — mean(X)
Standard Deviation(X)

X Standard =

4. Results

4.1. Patients

After a comprehensive review of electronic medical
records, a total of 5,380 patients diagnosed with OP
poisoning were identified within the database, forming
the primary cohort. Among them, 983 patients had
incomplete medical records, and 4,072 patients were
excluded based on predetermined exclusion criteria.
Specifically, 383 patients had a normal range of PChE,
1,057 patients had multidrug toxicity, 937 patients had
chronic comorbidity, 529 patients were admitted more
than 24 hours after poisoning, 549 patients were below
14 years of age, and 617 patients did not receive
pralidoxime. Ultimately, 325 patients were enrolled in
the study. Figure 2 depicts the patient selection process.
The descriptive characteristics of the study sample are
presented in Table 4.

Total number of OPs

poisoned patients
(5380)

Incomplete medical
record (983)

OPs poisoned patients
with complete medical

Excluded patients (4072):
1) Normal range of PC
2) Multidrug ta (1
chronic comorbidity (937)
AHAge below 14 years old (549)
5)Admitted after 24 hours (529)

6) Did not receive pralidoxime (617)

Figure 2. Patient selection flowchart
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Table 2. Results of Ten-Fold Cross-Validation for Regressors Performance on Selected Predictors After Feature Scaling in Regression Method

Index Model MAE MSE RMSE R RMSLE MAPE
Gbr Gradient boosting regressor 9208.1856 265695067.5245 15210.5268 0.6540 0.7210 0.8991
light gum Light gradient boosting machine 11082.3208 411516903.5829 18637.1318 0.5818 0.8653 12540
Et Extra trees regressor 9964.7046 390583726.4613 17809.5835 0.4884 0.7287 0.9194
Ada Adaboost regressor 14937.2844 428589688.6916 19027.8917 0.4837 1.1143 22290
xgboost Extreme gradient boosting 9210.9117 342642130.7921 17211.7812 0.4199 0.7087 0.9305
Rf Random forest regressor 11670.8163 4332643511262 19619.4416 0.4145 0.7812 1.0514
Huber Huber regressor 16389.3648 1018552916.3411 27720.5679 0.1742 11506 1.2774
Par Passive aggressive regressor 16079.8772 1110867086.3911 29187.1724 0.0923 11319 1.0646
En Elastic net 19619.8389 1026946561.5622 29350.4610 0.0035 12072 22364
Dt Decision tree regressor 10381.8142 832112670.2866 24221.9796 0.0017 0.8261 0.7595
Table 3. Results of Ten-Fold Cross-Validation for Classifiers Performance on Selected Predictors in Classification Method
Index Model Accuracy AUC Recall Precision 31 Kappa
rf Random forest classifier 0.9152 0.9865 0.9061 0.9308 0.9169 0.8307
light gum Light gradient boosting machine 0.9073 0.9756 0.9159 0.9129 0.9107 0.8145
gbc Gradient boosting classifier 0.9071 0.9584 0.9318 0.896 0.9125 0.8136
ada Ada boost classifier 0.8897 0.9218 0.897 0.8968 0.8945 0.7786
et Extra trees classifier 0.8798 0.9619 0.872 0.9013 0.883 0.7599
xgboost Extreme gradient boosting 0.8763 0.9548 0.8826 0.881 0.879 0.7528
1da Linear discriminant analysis 0.8275 0.8515 0.8379 0.8314 0.8328 0.6544
ridge Ridge classifier 0.7966 0.0 0.8212 0.7942 0.8044 0.5924
dt Decision tree classifier 0.7832 0.7839 0.7879 0.7967 0.7829 0.5672
Ir Logistic regression 0.748 0.8254 0.7871 0.751 0.7651 0.4947
qda Quadratic discriminant analysis 0.7069 0.8036 0.6477 0.826 0.6635 0.4168
knn K neighbors classifier 0.6947 0.7909 0.7015 0.7225 0.7043 0.3898
nb Naive bayes 0.6856 0.7843 0.7682 0.6856 0.7195 0363
Svm SVM - linear kernel 0.5796 0.0 0.5705 0.6766 0.5375 0.1577
4.2. Feature Selection

Significant and relevant features for predicting the

pralidoxime dose in OP-poisoned patients were selected
using Pearson’s correlation coefficient (filter approach).
Figure 3 shows the top ten variables selected for the
classification method, where muscular weakness, PChE
activity, and blood urea nitrogen (BUN) scored the
highest for predicting pralidoxime dose. In the
regression method, after scaling the variables using the
standardization technique, the top ten features in
predicting the dose of pralidoxime from most to least
important were age, HCO;VBG, bolus of atropine,

aspartate aminotransferase (AST), pulmonary rale, PH-
VBG, PChE activity, muscular weakness, BUN, and alanine
transaminase (ALT) (Figure 4).
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Figure 4. Variables are selected by feature selection using the regression method.

4.3. Performance of Prediction Models

Performance metrics were calculated to compare the
effectiveness of prediction models in classification and
regression methods. Table 2 presents the results of the
top ten prediction algorithms for the regression
method using selected standard features to predict the
pralidoxime dose in patients with OP poisoning. The
gradient-boosting regressor emerged as the most
accurate and responsive model, exhibiting the highest

R? value. This prediction model had an MAE of 9208.19,

an MSE of 265695067.52, an RMSE of 15210.52, and an R?
of 65.4. Figure 5 depicts the learning curves of the
regression method before (A) and after (B) feature
scaling, demonstrating improved convergence of
training and cross-validation scores after scaling. Table 3
summarizes the results of the top 14 prediction
algorithms for the classification method using selected
features to predict the pralidoxime dose in OP-poisoned
patients. Based on ten-fold cross-validation findings, the
random forest classifier showed the highest accuracy
and sensitivity, as well as the highest AUC value among
the classifiers tested. This model achieved a mean
accuracy of 91.5%, a recall or sensitivity of 90.6%, a
precision of 93.1%, an Fi-score of 91.7%, Kappa statistics of
83.1%, and an AUC of 98.6. Figure 6 presents the
confusion matrix (A) and learning curve (B) for this
model, indicating a good fit as the training and cross-
validation curves converge at a high score.

A Learning curve for gradien boosting regressor B Learning curve for gradien boosting regressor
10
L 05
0 00
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Figure 5. The learning curve of the regression method before (A) and after (B)
feature scaling
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Figure 6. The confusion matrix (A) and learning curve (B) for the classification
method

5. Discussion

Immediate antidotal treatment in patients with
severe OP poisoning is crucial. The first line of antidotal
therapy for OP poisoning includes atropine and
pralidoxime (34). In antidote therapy, prescribing the
correct dose of the antidote is vital, although the
appropriate dose of pralidoxime in patients with OP
poisoning remains controversial, with various dosage
schedules being employed (20, 35). Several studies have
investigated the ideal dose of pralidoxime in OP-
poisoned patients, but the results have been
inconclusive. For instance, one study reported that a
pralidoxime dose of 20.0 £12.7 g was more effective than
a dose of 7.2 £ 4.1 g, leading to a reduction in the
duration of hospitalization and mortality rate (19).
Another study found that a pralidoxime dose of 2 g
followed by an 8 mg/kg/h infusion was more effective
than a dose of 2 g followed by 1 g every 6 hours (20). We
hypothesize that an individualized pralidoxime dose,
determined based on clinical presentations and
laboratory parameters, might be helpful in these cases.

Machine learning techniques enable healthcare
providers and researchers to leverage large amounts of
patient data to make precise and individualized dose
predictions. By tailoring treatment plans to the unique
characteristics of each patient, machine learning can
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contribute to improved treatment outcomes, reduced
adverse effects, and enhanced patient safety. Machine
learning algorithms can analyze complex patterns and
relationships within patient data to make accurate dose
predictions (36). For instance, in one study, researchers
used machine learning methods to develop a predictive
model for determining the appropriate dosage of
lapatinib in patients with metastatic HER2(+) breast
cancer, utilizing real-world data and applying both
machine learning and deep learning techniques (29).
Another study reported an optimal dosing algorithm for
vancomycin in patients with MRSA and other gram-
positive bacterial infections, developed using machine-
learning methods (31). Asiimwe et al. assessed the
performance of 21 machine-learning algorithms in
predicting stable warfarin doses in sub-Saharan Black-
African patients (37).

In this study, we applied a machine learning
technique for the first time to predict pralidoxime doses
in patients poisoned by OPs based on demographic
profiles, clinical symptoms, and laboratory parameters.
We employed two different methods for this purpose.
The first method, classification, grouped patients into
two categories based on the pralidoxime dose: Either
low dose (< 14000 g) or high dose (= 14000 g). In the
second method, after feature scaling using the
standardization technique, the pralidoxime dose was
included in the machine-learning model as a
continuous variable. A total of 35 features were selected
for both the classification and regression methods. The
following features were among the top ten in both
methods: Age, muscular weakness, ALT, AST, BUN, and
initial PChE level. Apart from these shared features, in
the classification method, the last measured level of
PChE (last measurement within the first 24 hours of
hospitalization), ALP, PCO,-VBG, and the amount of
consumed toxin was among the top ten predictors of
pralidoxime. In the regression method, additional top
predictors included HCO3-VBG, received a bolus of
atropine, pulmonary rale, and PH-VBG.

Many of the features selected in this study overlap
with those identified in our previous study, which
examined predictors of OP poisoning severity (38). The
AChE enzyme prevents the buildup of the
neurotransmitter ACh at various muscarinic and
nicotinic sites in the body by hydrolyzing it. This
enzyme has both a serine site and an anionic site. The OP
molecule attacks the serine site located within the active
site of the enzyme. As a result, through an irreversible
interaction, the serine site is phosphorylated, and a
strong covalent bond is formed, leading to the
inactivation of the enzyme's active site. Pralidoxime

Health Scope. 2024;13(2): e143897.

functions as a reactivator of AChE by attaching to the
enzyme's anionic site, close to the previously attached
OP molecule at the serine site. The pralidoxime
molecule sacrifices itself by becoming phosphorylated
instead of the enzyme since it has a higher affinity for
phosphorylation by OP agents than the enzyme's serine
site. Consequently, the OP molecule detaches from the
enzyme and forms an OP-pralidoxime complex, which is
then hydrolyzed. This process results in enzyme
reactivation (39). The main effect of pralidoxime is the
restoration of ACh esterase at nicotinic sites in the body;,
alleviating symptoms such as muscle weakness,
fasciculations, and paralysis (40). According to our
results, muscular weakness was one of the most
significant features in predicting the dose of
pralidoxime, selected in both the classification and
regression methods. Other predictors of pralidoxime
dosage are also features directly related to the severity
of organophosphorus poisoning and can be used to
predict the dosage of pralidoxime in these patients.

In the classification method among different
machine learning algorithms, the random forest
classifier demonstrated the strongest performance, with
an AUC value of 98.6%. In the regression method, the
gradient-boosting regressor showed the strongest

performance, with an R? value of 0.65. Both the random
forest classifier and the gradient boosting regressor are
decision-tree-based machine learning algorithms.
Algorithms utilizing decision trees demonstrate high
efficacy in predictive modeling, especially for small-to-
medium structured datasets with substantial missing
data (38).

The novelty of this study lies in the utilization of
machine learning methodology to forecast the optimal
dosage of pralidoxime for individuals affected by OP
poisoning. This investigation marks the inaugural
development of a machine learning-based predictive
model for pralidoxime dosage, employing two distinct
approaches: Classification and regression. The strength
of the study lies in the use of machine learning
methods, which offer numerous advantages such as
enhanced accuracy, efficiency, and decision-making
capabilities. Nevertheless, the study is subject to several
limitations, notably the small sample size and the
retrospective nature of the data, which led to a
considerable amount of missing data in the dataset.
Additionally, the absence of an external validation
cohort and the recruitment of patients solely from a
single hospital further constrain the study. Thus, to
obtain confirmatory results, a more robust multicenter
study with a larger sample size is imperative.
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5.1. Conclusions

Machine learning-based prediction algorithms can
be utilized to anticipate the appropriate dosage of
pralidoxime for patients suffering from
organophosphorus (OP) poisoning. Through the
application of feature selection techniques, age, HCO;-

VBG, received bolus of atropine, and AST were identified
as the most significant predictors of pralidoxime dosage
in the regression method. The gradient-boosting
regressor emerged as the most effective algorithm with
the highest predictive performance. In the classification
method, muscular weakness, the last measured level of
PChE, BUN, ALP, and AST were determined to be the most
crucial predictors of pralidoxime dosage, with the
random forest classifier demonstrating the best
predictive performance. These algorithms have the
potential to contribute to the development of a clinical
decision support system for the precise individualized
dosing of pralidoxime in OP poisoning cases.
Nevertheless, further research with a larger sample size
is imperative to substantiate these findings.
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Table 1. Characteristics of Previous Studies Investigating the Effectiveness of Pralidoxime in Patients with Organophosphates Poisoning *

Country, Pralidoxime

Authors Study Year Number of Patients Sex Age (y) Dosage Outcome
Control
group:2 g
L?/aedrl;xog;?;e Patients in the
then a bolus StUdY group
dose of 1g[4 h requq‘ed less
Pawar et al. . 200, poisoning by Male; control group: 52; Control group: 29 (22-35); for 48 h; study atropine,a
(14) RCT India, 2006 3 vicholinesterase pesticide  study group: 57 Study group: 28 (22-33) group:2g short d_uratlon
loading dose of ventilatory
over 30 min, support, and
then a les_s freque_ncy
constant of intubation.
infusion of 1
g/h for 48 h.
There was no
Control statistically
group: significant
Received L.V difference
saline; study between the
group: (30 two groups in
. . Sex ratio (male:female); | . mglkgloading terms of
pedetal RCT India, 2015 100 FEIEGENES TP control g<r0up: 1:1.56; st)udy Conio)] group: S dogsle %ver30 . mortality,
(16) poisoning group: 1:1.62 study group: 201£10.9 min followed  hemodynamic
by 8 mg/kg/h  parameters,
continuous atropine
infusionfora  requirements,
maximum of 7 duration of
days ventilation,
and ICU stay
Contrql Mortality was
group:
Normal saline "™
infusion: significantly
Male; control group: 92 Control group: 29.5 (23 - study gr(’)up:z geiagtiheenrtisn
E;‘lrtll;)ston et RCT erzl(_)aongka, ;isiga;;relgts with OP (80.7); study group: 96 42); study group: 31(22- g‘ig:czl(l)nig:lr:)se receiving
. (79.3) 48) thena ’ pralidoxime,
constant and the need
infusion of 0.5 for lnFubatlgn
g/h until 7 2 wassimilarin
days both groups
The incidence
of
intermediate
Control syndrome,
group: number of
Normalsaline  ventilation
infusion; days, total

study groups:  atropine
Majority of patientswere  Intermittent(1 requirement,
in the age group of 21-30  g/qsh), number of

Cross-sectional,

Thungaand nonrandomized India, 2013 256 OPs poisoned patients Sex ratio (male: female):

Pandey (18) observational 231 . PN
study years continuous hospitalization
infusion (500  days,and
mg/h), mortality rate
continuous significantly
infusion (1 reduced in
g/h) continuous
infusion of
pralidoxime at
500 mg/hour
In the study
group,
atients
g?gﬁ:ﬁl IPeceived
e significantl;
ileec:rllvte(;jtjl lo%ver dosesyof
. . atropine and
Due (19 Comparative Vietnam, Control group: 54; study l\gglg' .cotntjrol groul.J.GiO Control group: 25.5 £10; gtlyse' otf 7('12 * required a
ue (19) study 2014 group: 108 (55.6); study group: study group:29.5 £14.2 18 study shorter
(593) group: duration of
Receiveda hospital stay,
mean total
and the
dose of 20.0+ mortality rate
1278 was lower than
the control
group
Maheshetal. Randomized India, 2013  Control group: 45; study Male:female, control group:  Control group: 30.1+7.3; Control
(20) open-labeled group: 37 35:10; study group: 21:16 study group:31.3+8.9 group:2 g
prospective bolus followed
study by 1g/6 h;

study group: 2
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Authors Study Co‘l{zr;trry, Number of Patients Sex Age (y) gl(')asl;ggmme Outcome
Duration of
mechanical
ventilation,
mean dosage of
atropine
administered,

mg/kg/h and incidence

infusion of intermediate
syndrome were
significantly
lower in the
study group
than in the
control group
There was no
statistically

Control group: zlgnlflgant

- study group: Epar 'ti

30 mg(kg body g SEIVE! h

weightin200 ~>etween the

mLof normal WO groupsin

a3 relation to the

Chaudhary Case-control India, 2013 Control group: 35; study Male:female, control group:  Control group: 24.80 + 8.3; min followed total amount of

etal.(21) study ! group: 35 25:10; study group: 24:11 study group: 25.17 £ 9.2 by 2.0 gin 200 atropine

mL 6f normal admin_istered,
salineover3o ~ Recessity for
min;at6h intubation,
intervals for a\f/er age length
s ol
il 721 hospitalization,
and mortality
rate.
Control group: T}?ere was no
Normal ggalinep difference
infusion: between the
Study gréup: treatment and
PAM infusion Placelbto. Sops
. - in relation to
Cherian etal. RCT India, 2005 Contrt?l group: 11; study NA NA of 12 g/@ay for the necessity
(22) group:10 3daysin for intubation
- )
f:l\:je 4egcj?jie;for average length
3daysin Ef U
moderate ospltallzaqon,
cases and mortality
rate.
The
requirement of
ventilator
support (37 vs.
Control group: 22), the
Normal saline incidence of an
Cherian et al. RCT India, 1997 Control group: 55; Study Male, control group: 34 (62); Control group: 26.5 £10.3; tir;fus.lotn sor g mteé- medla;ee
(23) ! group: 55 study group: 41(75) study group: 28 £10.1 ¥s; study Symeeme(
group: vs.19), and the
Infusionof 12  mortality rate
gover 3 days (16 vs. 3) were
higherin the
study group
than in the
control group
The mortality
rate,
requirement of
Control group: ventilator, and
Banerjee et Open-label, Control -30: stud Mal 1 . . 1 343488 - " duration of
Tjee e . ontrol group: 30; study ale, control group:11(37);  Control group: 34.3 + 8.8; ; study group: : .
al.(24) pa_ra_llel-group India, 2011 group: 30 study group: 14 (47) study group:34.6+9.8 adoseof 0.5-1 hospital stay in
clinical study 16 h the two groups
8 failed to show
any statistically
significant
difference.
Pralidoxime
therapy did not
offer any
appreciable
Open-label, Control group: benefit over
. parallel- - study group:  atropine alone
Banerjee et group, India. 2014 Control group: 60; study Male, control group: 26 (43); Control group:34.3 £ 8.8; Adoseof1g in terms of
al. (25) e el ! group: 60 study group: 23 (38) study group:34.6 +9.8 every 6 hours  reducing
clinical trial for a period of morFality and
5 days ventilator
requirement.
Patients in the
study group
experienced
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Authors Study Country, Year Number of Patients Sex

Age(y)

Pralidoxime

Dosage Outcome

longer
duration
of
hospital
stay

?Values are expressed as No. (%), mean + SD or median (IQR) unless otherwise indicated.
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Table 4. The Study Sample's Descriptive Characteristics

Pralidoxime Dose

Variables Total (n =325) P-Value
Low Dose (n=172) High Dose (n=153)

Sex 0.06
Male 96 69 165
Female 76 84 160

Age 33(25) 31(22) - 0.092

Time to hospitalization 4(10) 4(7) - 0332

Sialorrhea 0.000
No 160 135 295
Yes 12 18 30

Bradycardia 0.370
No 169 152 321
Yes 3 1 4

Rales 0.000
No 153 m 264
Yes 171 153 324

Bronchospasm 0.467
No 16 97 213
Yes 56 56 12

Intubation 0.763
No 121 105 226
Yes 51 48 99

Incontinence 0.138
No 166 142 308
Yes 6 1 17

Fasciculation 0.000
No 160 122 282
Yes 12 31 43

Muscular weakness 0.000
No 141 47 188
Yes 31 106 137

Paralysis 0.000
No 172 140 312
Yes 0 3 3

Tachycardia 0.738
No 88 75 163
Yes 84 78 162

Confusion 0.270
No 98 96 194
Yes 74 57 131

Lethargy 0.180
No 170 153 323
Yes 2 0 2

Coma 0.380
No 127 106 233
Yes 45 47 92

Agitation 0.017
No 172 148 320
Yes 0 5 5

Seizures 0.621
No 167 147 314
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Pralidoxime Dose
Variables Total (n =325) P-Value
Low Dose (n =172) High Dose (n=153)

Yes 5 6 1
ICU admission 0.284

No 95 75 170

Yes 77 78 155
The amount of toxin consumed 90 (120) 150 (150) 100 0.00
GCS 15(7) 15(7) 12.5 0.589
Cholinesterase level first 305 (971) 317 (1114) 316.5 0.787
Cholinesterase level last 458 (835) 715 (1898) 583.50 0.172
PH-VBG 735 (0.11) 7.34(0.13) 7.345 0.291
PCO,-VBG 38.4 (14.4) 415 (11.7) 403 0.001
HCO ;-VBG 19.6 (4.7) 20.4(5.2) 20.4 0346
Cr 12(03) 12(03) 12 0.005
BUN 28(18.5) 33(15) 31 0.002
AST 26(163) 25(12) 25 0.595
ALT 19 (13) 17(9) 18 0.017
ALP 204(79) 178 (79) 192 0.002
Bulos of atropine 0.5(1) 1(1) 0.5 0.593

2Values are expressed as No. or median (IQR).
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