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Abstract

N

Background: The COVID-19 pandemic not only had a long-term impact on healthcare but also changed the epidemic trends of
diseases. The impact of COVID-19 on hepatitis E is still unclear.

Objectives: The aims of the study were to assess the impact of the COVID-19 pandemic on hepatitis E incidence and establish a
prediction model to predict the trend of hepatitis E in China.

Methods: Monitored data on the incidence of hepatitis E in China from January 2012 to July 2022 were collected. The causal
impact of the COVID-19 pandemic on hepatitis E incidence in China was explored using intervention analysis under the Bayesian
structured time series (BSTS) model. The BSTS and autoregressive (AR) integrated moving average (ARIMA) models were
established using training and testing sets, respectively, and the predictive performance of the models was compared.

Results: It was found that there were seasonal fluctuations in the hepatitis E incidence in China. The number of monthly
average hepatitis E cases decreased by 32% (95% CI: -40% ~ -23%) from January to December 2020 owing to the COVID-19 pandemic
(probability of causal effect: 99.89%, P = 0.001). From January 2020 to July 2022, it decreased by 15% (95% CI: -21% ~ -9.4%). Because
the error indicators of mean absolute error (MAD), mean absolute percentage error (MAPE), root mean square error (RMSE), and
root mean square percentage error (RMSPE) under the BSTS model were smaller than those under the ARIMA model, the
prediction accuracy of the BSTS model was higher.

Conclusions: During the COVID-19 pandemic, the overall incidence rate of hepatitis E in China decreased as a result of COVID-
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19. The BSTS model has strong application value to forecast the hepatitis E trend in China.

J

1. Background

Hepatitis E is caused by the hepatitis E virus (HEV), an
increasingly serious global public health problem,
which can be transmitted through contaminated food
or water (1), blood transfusions, organ transplants,
placentas, etc. (2). The results of a previous study
showed that the number of hepatitis E cases has been on
the rise from 1990 to 2019, with a 19% increase since 1990
(3). According to WHO data, around 20 million people
globally contract the HEV each year, leading to about 3.4
million acute cases and 70,000 hepatitis E-related

fatalities (4). The incidence of hepatitis E in low-income
countries (such as East Asia, South Asia, and Africa) is
relatively higher than that in high-income countries (5).
Meanwhile, pregnant women are the main high-risk
group for hepatitis E, with up to a 30% mortality rate (6).
Hepatitis E has imposed a significant economic burden
on the Chinese people. Data from the Chinese Centre for
Disease Control and Prevention showed that the
proportion of hepatitis E was one in a thousand among
all infectious diseases (7). A health economics study
conducted in Jiangsu province showed that the
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economic burden caused by hepatitis E cases accounted
for 60.77% of the per capita disposable income (8).

At the end of 2019, COVID-19 broke out in Wuhan,
China, and was regarded as a public health emergency
in January 2020. COVID-19 causes serious damage to the
human body and disrupted health services in 90% of
countries around the world due to the reassignment of
healthcare personnel and supplies and some other
policy measures (9). A prior study showed that home
quarantine and mistrustfulness related to COVID-19
anxiety seriously affected people's mental health (10). At
the same time, the COVID-19 pandemic reduced the
responsiveness of the healthcare system (11). Similarly,
the screening and treatment of hepatitis E also faced
significant challenges during the COVID-19 pandemic.
Due to the COVID-19 outbreak, healthcare for other
clinical conditions was disrupted, and the incidence of
various infectious diseases such as hepatitis B,
tuberculosis, and dengue fever decreased (12, 13). A study
from Spain showed that hospitalizations for viral
hepatitis in Spain decreased by 18% during the COVID-19
pandemic (14). The COVID-19 pandemic also reduced the
dispensing of antivirals (such as HIV and HCV) through
retail pharmacies, mail order, and long-term care
pharmacies (15). However, there are few studies on the
impact of the COVID-19 pandemic on hepatitis E, and the
causal impact of COVID-19 on hepatitis E incidence is
unclear.

The autoregressive integrated moving average
(ARIMA) model is a common time series analysis and
prediction model, which has been widely applied in
fields such as economics and currently plays an
important role in medical research. The Bayesian
structured time series (BSTS) model is effectively used to
estimate dynamic systems. Compared with classical
time series models, the recently introduced BSTS model
has some attractive advantages and is used to study
intervention analysis of dynamic time series.

2. Objectives

Considering the changes in the epidemiology of
hepatitis E in China, this study attempts to use
intervention analysis under the BSTS model to explore
the impact of COVID-19 on hepatitis E and predict its
epidemic trend using ARIMA and BSTS models.

3.Methods

3.1. Data Collection

Data on the incidence of hepatitis E in China from
January 2012 to July 2022 were obtained from the China
Center for Disease Prevention and Control. Hepatitis E is
a reportable infectious disease in China. All confirmed
hepatitis E cases must be reported through the National
Notifiable Infectious Diseases Reporting Information
System offered by the Chinese Center for Disease Control
and Prevention. We employed ARIMA and BSTS models
to analyze the hepatitis E data from January 2012 to July
2021 as the training set and validated the prediction
accuracy using data from August 2021 to July 2022 as the
testing set.

3.2. Autoregressive Integrated Moving Average Model

When the data exhibits periodic and seasonal trends,
the ARIMA model can be expressed as seasonal ARIMA (p,
d, q) (P, D, Q)s, where p, d, q represent the order of the
non-seasonal autoregressive model (AR), differencing,
and moving average model (MA), while P, D, Q, s
represent the seasonal AR order, differencing, MA order,
and cycle. The parameter estimation of the ARIMA
model involves four processes (16).

3.2.1. Data Stationarity Test

The ARIMA model requires the time series data to be
stationary, which can be tested using the Augmented
Dickey-Fuller (ADF) test. If the time series data (P-value
of the ADF > 0.05) is non-stationary, non-seasonal and
seasonal differencing are required to transform the data
into a stationary state, which determines the values of d
and D.

3.2.2. Parameter Estimation

The values of p, q, P, and Q can be roughly
determined by examining the autocorrelation function
(ACF) plot and partial autocorrelation function (PACF)
plot. Then, the parameters for each of the candidate
models are estimated, and the model with the
minimum value of the Akaike information criterion
(AIC) or Bayesian information criterion (BIC) is selected
as the optimal model.

3.2.3. Model Diagnosis

The adequacy of the fitted optimal model is checked
using a white noise test (such as ACF and PACF plots of
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residual sequences, or the Ljung-Box Q test), aiming to
confirm that the residual sequence of the model is a
white noise sequence. Once the fitted optimal model
passes the white noise test, it indicates that the model is
adequate for data fitting.

3.2.4. Model Prediction

The identified optimal model is used to predict the
future trend of hepatitis E.

3.3. Bayesian Structured Time Series Model

In this study, a counterfactual framework was used to
construct the BSTS model, and the incidence trend of
hepatitis E was forecasted by comparing the monthly
counterfactual cases with observed cases. The BSTS
model consists of the Kalman filter, spike and slab
regression, and Bayesian model averaging. The monthly
hepatitis E cases were fitted in the BSTS model by the
local linear trend, seasonal variations, and regression
components. The Kalman filter was used to predict the
time series, and the Markov chain Monte Carlo (MCMC)
was used to simulate the posterior distribution to
obtain the final prediction result. The Bayesian model
averaging method is employed to smooth a large
number of potential models (17).

Intervention analysis under the BSTS model is used to
estimate the causal impact of the COVID-19 pandemic on
hepatitis E incidence. Data before the occurrence of
COVID-19 is used as the pre-processing period to predict
the value of hepatitis E in China without the
intervention measures during the COVID-19 pandemic
(counterfactual). In the period after the occurrence of
COVID-19, the difference between the predictive
sequence and the real sequence was calculated and used
to estimate the impact of COVID-19 on hepatitis E in
China. Contrary to traditional linear models, these
models measure the impact of evolution based on the
dynamic confidence interval of the difference between
intrinsic and counterfactual observations.

3.4. Statistical Analysis

The long-term trends and periodicities of the data on
hepatitis E incidence were decomposed by the Hodrick-
Prescott (HP) filter. The Seasonal Index method was used
to obtain the Seasonal Index of the time series data. The
'forecast' package and 'BSTS' package were used to create
the ARIMA model and BSTS model in R4.20 software. The
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causal impacts of the COVID-19 pandemic on hepatitis E
have been analyzed using the 'Causallmpact' package
under the BSTS model. The prediction accuracy of the
two methods was judged by calculating the mean
absolute error (MAD), mean absolute percentage error
(MAPE), root mean square error (RMSE), and root mean
square percentage error (RMSPE). These measures can
effectively determine the validity and prediction
accuracy of the models. The smaller the error indicators,
the higher the predictive performance of the model.

4.Results

4.1. Descriptive Statistics

From January 2012 to July 2022, the total hepatitis E
cases in China were 294,006, and the average monthly
cases were 2,315 (the average monthly incidence rate was
0.017 per 100,000 people). The results of the cycle and
trend pattern of the hepatitis E incidence sequence
showed a certain cyclical pattern (Figure 1). The seasonal
indices from January to December were 1.02, 1.02, 137,
119, 1.05, 0.93, 0.96, 0.93, 0.88, 0.79, 0.89, and 0.95,
respectively, indicating that the incidence of hepatitis E
in China showed seasonal fluctuations, with the highest
incidence in March each year.

4.2. Impacts of COVID-19 Pandemic on the Decrease in
Hepatitis E Case Notifications

The monthly average hepatitis E cases decreased by
41% (95% CIL: -51% ~ -31%) from January to June 2020
(probability of causal effect: 99.89%, P = 0.001) and by
32% (95% CI: -40% ~ -23%) from January to December 2020
as a consequence of the COVID-19 pandemic (probability
of causal effect: 99.89%, P = 0.001; Appendix 1 in
Supplementary File). The hepatitis E incidence showed a
downward trend during 2020, and the posterior
probabilities (as random events) that lead to these
effects can be rejected, while the probabilities of the
causal effects can be accepted (Appendix 1 in
Supplementary File). There was a decrease of 19% (95% CI:
-26% ~ -13%) from January 2020 to December 2021 and a
decrease of 15% (95% CI: -21% ~ -9.4%) from January 2020
to July 2022 (Figure 2), indicating the reduction impact
of the COVID-19 pandemic on hepatitis E incidence from
2020 to 2022.

4.3. Parameter Selection for Autoregressive Integrated
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Figure 1. Hepatitis E incidence sequence and trend pattern based on Hodrick-Prescott (HP) filter decomposition in China from January 2012 to July 2022; the solid line represents
the reported hepatitis E cases. The thin dotted line represents the trend of hepatitis E cases. The long dashed line represents the cycle of hepatitis E cases.
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Figure 2. Time series plot displaying the causal impacts of COVID-19 on hepatitis E incidence from January 2020 - July 2022: A, the reported hepatitis E cases (solid line) and the
number of hepatitis E estimated by the model (dashed line); B, the difference between reported cases and the number of hepatitis E estimated by the model; C, cumulative effect

of COVID-19 on hepatitis E incidence.

Moving Average and Bayesian Structured Time Series Models

4.3.1. Autoregressive Integrated Moving Average Model

We fitted the incidence of hepatitis E in China from
January 2012 to July 2021 based on the ARIMA modeling
process. After seasonal and non-seasonal differences,

stationary data were obtained (P-value of ADF < 0.01).
Through simulation, the ARIMA (1,0,0) (0,1,1) 12 structure
with the smallest values of AIC (1454.03) and BIC
(1461.93) among all candidate models was selected as the
optimal model. Further tests of the model coefficients
showed: AR1=0.72 (t=10.33, P < 0.001), SMA1 =-0.62 (t =

Health Scope. 2026;15(1): 165213
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Figure 3. A, autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of residual sequences in the autoregressive integrated moving average (ARIMA)
model; B, ACF and PACF plots of residual sequences in the Bayesian structured time series (BSTS) model.

-5.98, P < 0.001). The ACF and PACF plots of the residuals
showed that the different lag correlation coefficients
were basically within the 95% CI (Figure 3A); Ljung-Box Q

test results (x*>=78.01, P= 0.59) indicated that the model
residual sequence was white noise. Therefore, the ARIMA
(1,0,0) (0,1,1) 12 structure can fully fit the incidence trend
of hepatitis E.

4.3.2. Bayesian Structured Time Series Model

During the fitting of the BSTS model, we found that a
BSTS model with added local linear trend and seasonal
state components was best suited to predict our data. To
ensure the convergence of Bayesian inference, 1,000
MCMC iterations were performed. The model diagnosis
results showed that the correlation coefficients in the
residual ACF and PACF plots fell within the 95% CI (Figure

3B); Ljung-Box Q test results (x* = 2.51, P = 0.28) indicated
that the model residual sequence was white noise. The
diagnostic results indicated that using the BSTS model

Health Scope. 2026;15(1): 165213

to simulate hepatitis E data was sufficient and
appropriate.

4.3.3. Prediction and Accuracy of Autoregressive Integrated
Moving Average and Bayesian Structured Time Series Models

The prediction results of the optimal ARIMA and BSTS
methods for the incidence of hepatitis E from August
2021 to July 2022 are listed in Table 1. Generally, the
smaller the error indicators, the higher the prediction
performance of the model. The forecasting accuracy
results showed that the error indicators of MAD (214.42
vs. 274.25), MAPE (8.30 vs. 11.30), RMSE (189.98 vs. 318.86),
and RMSPE (0.38 vs. 0.45) under the BSTS model were
smaller than those under the ARIMA model, indicating
the predicting accuracy of the BSTS model was higher.
Then, the BSTS model was reconstructed using data from
January 2012 to July 2022 and used to predict the
number of hepatitis E cases in China from August 2022
to December 2023 (Table 2). The total number of new
cases in the next 17 months would be 37,704, and the
epidemic trend of hepatitis E would remain stable.
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Table 1. Predicted Values of Autoregressive Integrated Moving Average (1,0,0) (0,1,1) 12
and Bayesian Structured Time Series for Hepatitis E Incidence from August 2021 to
July 2022

ARIMA BSTS
Time Observed Values
Forecast 95%Cl Forecast 95%CI

2021-08 2109 1935 1320 -2460 2121 1597 -2645
2021-09 2033 1752 1020-2669 1972 1327-2617
2021-10 1846 1991 932-3043 1750 1050 - 2450
202111 2055 2083 1249 -3176 1947 1221-2673
202112 2369 2269 858 -3552 2024 1284 -2763
2022-01 2530 2199 761-3454 2071 1325 -2817
2022-02 2443 3024 1545 - 4583 1865 1115 - 2615
2022-03 3131 2675 1209 - 4404 2789 2038-3541
2022-04 2525 2286 613 - 4188 2583 1831-3336
2022-05 2503 2012 294-4033 2325 1573-3078
2022-06 2411 2083 321-4151 2147 1394 -2900
2022-07 2225 2085 334-4268 2150 1397-2903

Abbreviations: ARIMA, autoregressive integrated moving average; BSTS, Bayesian
structured time series.

Table 2. Prediction Value of Bayesian Structured Time Series for Hepatitis E Incidence
from August 2022 to December 2023

Time Forecast 95%CI
2022-08 2198 1699 - 2698
2022-09 2046 1429 - 2662
202210 1852 1183 - 2522
202211 2059 1364 - 2755
202212 2242 1534 - 2951
2023-01 2373 1658 -3088
2023-02 2254 1536-2973
2023-03 3026 2306 -3747
2023-04 2590 1869 -3312
2023-05 2413 1691 - 3135
2023-06 2248 1525-2970
2023-07 2187 1465-2909
2023-08 2168 1412 -2925
2023-09 2016 1242-2790
202310 1820 1037-2604
202311 2028 1240 - 2816
202312 2184 1394 -2974
5. Discussion

In this study, the Seasonal Index results showed that
hepatitis E incidence had seasonal fluctuations. This
result is consistent with previous research findings (5).
The reason for this may be that people visit relatives and
friends during the Spring Festival in China, which
increases the opportunities to come into contact with
food contaminated with the HEV. Therefore, people
should monitor their food and exercise prudence

during the Spring Festival. Although some impacts have
been mitigated through policy measures, the COVID-19
pandemic may have medium and long-term effects on
the disease pattern.

In this study, we employed the intervention analysis
method under the BSTS model to explore the impact of
the COVID-19 pandemic on the hepatitis E epidemic in
China. The monthly average hepatitis E cases decreased
by 41% from January to June 2020 (probability of causal
effect: 99.89%, P = 0.001) and by 32% from January to
December 2020 as a consequence of the COVID-19
pandemic (probability of causal effect: 99.89%, P =
0.001), indicating that the decrease in hepatitis E
incidence was causally related to the COVID-19
pandemic. This decline translates to approximately 760
fewer cases monthly from January to December 2020,
reducing the healthcare burden. From 2021 to 2022, the
COVID-19 pandemic still reduced the incidence of
hepatitis E (Appendix 1in Supplementary File and Figure
2), which is consistent with previous research
conducted in China, which found that hepatitis B
incidence (18) and gonorrhea (19) significantly declined
during COVID-19. In this study, the reduction in hepatitis
E (15%) was higher than that observed in previous
studies for gonorrhea and hepatitis B (12%) during the
COVID-19 pandemic. The reasons for these results may be
that their transmission routes are different. Hepatitis E
is mainly transmitted through the fecal-oral route. Due
to the COVID-19 pandemic, implementing strict home
quarantine policies, reducing unnecessary travel, and
paying more attention to personal hygiene all
contribute to cutting off the fecal-oral transmission
route of hepatitis E. Moreover, the COVID-19 pandemic
presented unprecedented challenges to healthcare,
such as medical staffing, resources, and space, etc. A
study showed that a substantial proportion of isolation
rooms do not meet the standard conditions, which can
pose significant risks during the COVID-19 pandemic
(20). As a result, unusual nosocomial infections of
hepatitis E have occurred (21). The COVID-19 pandemic
might make the hepatitis E control strategy less
effective.

Although the ARIMA model may accommodate a
variety of time series data sources, its fundamental
drawback is the model's presumed linearity (22), leading
to sufficient outcomes. At the same time, the ARIMA
model relies on large-scale uninterrupted data;
therefore, its accuracy may not be ideal when there are
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some outliers or data loss (23). However, the ARIMA
model still holds significant value in predicting the
epidemic trend of infectious diseases. In this study,
based on the incidence data of hepatitis E in China, the
optimal ARIMA (1,0,0) (0,1,1) 12 model was identified,
which passed all diagnoses and can effectively predict
the trend of hepatitis E in China. An ARIMA (0,0,0) (0,1,0)
12 was selected by Qin et al. (24), based on the incidence
data of hepatitis E from 2013 to 2019 in China, which was
different from our selected ARIMA model. This
difference mainly stems from the changes in factors
related to disease infection in different periods (such as
environmental and hygiene conditions). This indicates
that it is necessary to conduct horizontal or vertical
comparisons of models constructed in different regions
or at different times.

Given the limitations of ARIMA, we constructed the
BSTS model and compared the accuracy of ARIMA and
BSTS models in predicting hepatitis E in this study.
According to Ke et al. (25), it is generally believed that
the model performs highly accurate forecasts (MAPE
value < 10%), good forecasts (10% < MAPE < 20%),
reasonable forecasts (20% < MAPE < 50%), and inaccurate
forecasting (MAPE > 50%). Our research results showed
that the MAPE value under the BSTS model was 8.30,
lower than the MAPE value (11.30) under the ARIMA
(1,0,0) (0,1,1) 12 model, indicating the BSTS model had
higher prediction accuracy than the ARIMA model.
Moreover, the error indicators of MAD, MAPE, RMSE, and
RMSPE under the BSTS model were smaller than those
under the ARIMA model (Table 2), meaning that
prediction results using the BSTS model were closer to
the observed values, and the prediction results are
robust. The results of this research were consistent with
those of Feroze et al. (26). The higher accuracy
prediction of the BSTS model may be attributed to its
numerous advantages, such as its ability to handle
various potential covariates and automatically select the
most informative predictors. Meanwhile, the BSTS
model is capable of effectively showing the stochastic
behavior of the target sequence and producing a
forecast based on the Bayesian model averaging of the
preferred models. Moreover, it can be extended to the
dynamic regression framework, allowing the regression
coefficients to change dynamically over time (27). These
characteristics overcome the limitations of ARIMA,
which is why BSTS outperforms ARIMA in predicting
hepatitis E in China in this study. Finally, the established
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BSTS model can be used to predict the future epidemic
trend of hepatitis E in China and thereby formulate
prevention and control measures.

5.1. Conclusions

During the COVID-19 pandemic, the overall incidence
rate of hepatitis E in China decreased as a result of
COVID-19. The BSTS model has strong application value
to forecast the hepatitis E trend in China.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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