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Abstract

Background: The COVID-19 pandemic not only had a long-term impact on healthcare but also changed the epidemic trends of

diseases. The impact of COVID-19 on hepatitis E is still unclear.

Objectives: The aims of the study were to assess the impact of the COVID-19 pandemic on hepatitis E incidence and establish a

prediction model to predict the trend of hepatitis E in China.

Methods: Monitored data on the incidence of hepatitis E in China from January 2012 to July 2022 were collected. The causal

impact of the COVID-19 pandemic on hepatitis E incidence in China was explored using intervention analysis under the Bayesian

structured time series (BSTS) model. The BSTS and autoregressive (AR) integrated moving average (ARIMA) models were

established using training and testing sets, respectively, and the predictive performance of the models was compared.

Results: It was found that there were seasonal fluctuations in the hepatitis E incidence in China. The number of monthly

average hepatitis E cases decreased by 32% (95% CI: -40% ~ -23%) from January to December 2020 owing to the COVID-19 pandemic

(probability of causal effect: 99.89%, P = 0.001). From January 2020 to July 2022, it decreased by 15% (95% CI: -21% ~ -9.4%). Because

the error indicators of mean absolute error (MAD), mean absolute percentage error (MAPE), root mean square error (RMSE), and

root mean square percentage error (RMSPE) under the BSTS model were smaller than those under the ARIMA model, the

prediction accuracy of the BSTS model was higher.

Conclusions: During the COVID-19 pandemic, the overall incidence rate of hepatitis E in China decreased as a result of COVID-

19. The BSTS model has strong application value to forecast the hepatitis E trend in China.
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1. Background

Hepatitis E is caused by the hepatitis E virus (HEV), an

increasingly serious global public health problem,

which can be transmitted through contaminated food

or water (1), blood transfusions, organ transplants,

placentas, etc. (2). The results of a previous study

showed that the number of hepatitis E cases has been on

the rise from 1990 to 2019, with a 19% increase since 1990

(3). According to WHO data, around 20 million people

globally contract the HEV each year, leading to about 3.4

million acute cases and 70,000 hepatitis E-related

fatalities (4). The incidence of hepatitis E in low-income

countries (such as East Asia, South Asia, and Africa) is

relatively higher than that in high-income countries (5).

Meanwhile, pregnant women are the main high-risk

group for hepatitis E, with up to a 30% mortality rate (6).

Hepatitis E has imposed a significant economic burden

on the Chinese people. Data from the Chinese Centre for

Disease Control and Prevention showed that the

proportion of hepatitis E was one in a thousand among

all infectious diseases (7). A health economics study

conducted in Jiangsu province showed that the
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economic burden caused by hepatitis E cases accounted

for 60.77% of the per capita disposable income (8).

At the end of 2019, COVID-19 broke out in Wuhan,

China, and was regarded as a public health emergency

in January 2020. COVID-19 causes serious damage to the

human body and disrupted health services in 90% of

countries around the world due to the reassignment of

healthcare personnel and supplies and some other

policy measures (9). A prior study showed that home

quarantine and mistrustfulness related to COVID-19

anxiety seriously affected people's mental health (10). At

the same time, the COVID-19 pandemic reduced the

responsiveness of the healthcare system (11). Similarly,

the screening and treatment of hepatitis E also faced

significant challenges during the COVID-19 pandemic.

Due to the COVID-19 outbreak, healthcare for other

clinical conditions was disrupted, and the incidence of

various infectious diseases such as hepatitis B,

tuberculosis, and dengue fever decreased (12, 13). A study

from Spain showed that hospitalizations for viral

hepatitis in Spain decreased by 18% during the COVID-19

pandemic (14). The COVID-19 pandemic also reduced the

dispensing of antivirals (such as HIV and HCV) through

retail pharmacies, mail order, and long-term care

pharmacies (15). However, there are few studies on the

impact of the COVID-19 pandemic on hepatitis E, and the

causal impact of COVID-19 on hepatitis E incidence is

unclear.

The autoregressive integrated moving average

(ARIMA) model is a common time series analysis and

prediction model, which has been widely applied in

fields such as economics and currently plays an

important role in medical research. The Bayesian

structured time series (BSTS) model is effectively used to

estimate dynamic systems. Compared with classical

time series models, the recently introduced BSTS model

has some attractive advantages and is used to study

intervention analysis of dynamic time series.

2. Objectives

Considering the changes in the epidemiology of

hepatitis E in China, this study attempts to use

intervention analysis under the BSTS model to explore

the impact of COVID-19 on hepatitis E and predict its

epidemic trend using ARIMA and BSTS models.

3. Methods

3.1. Data Collection

Data on the incidence of hepatitis E in China from

January 2012 to July 2022 were obtained from the China

Center for Disease Prevention and Control. Hepatitis E is

a reportable infectious disease in China. All confirmed

hepatitis E cases must be reported through the National

Notifiable Infectious Diseases Reporting Information

System offered by the Chinese Center for Disease Control

and Prevention. We employed ARIMA and BSTS models

to analyze the hepatitis E data from January 2012 to July

2021 as the training set and validated the prediction

accuracy using data from August 2021 to July 2022 as the

testing set.

3.2. Autoregressive Integrated Moving Average Model

When the data exhibits periodic and seasonal trends,

the ARIMA model can be expressed as seasonal ARIMA (p,

d, q) (P, D, Q)s, where p, d, q represent the order of the

non-seasonal autoregressive model (AR), differencing,

and moving average model (MA), while P, D, Q , s

represent the seasonal AR order, differencing, MA order,

and cycle. The parameter estimation of the ARIMA

model involves four processes (16).

3.2.1. Data Stationarity Test

The ARIMA model requires the time series data to be

stationary, which can be tested using the Augmented

Dickey-Fuller (ADF) test. If the time series data (P-value

of the ADF > 0.05) is non-stationary, non-seasonal and

seasonal differencing are required to transform the data

into a stationary state, which determines the values of d

and D.

3.2.2. Parameter Estimation

The values of p, q, P, and Q can be roughly

determined by examining the autocorrelation function

(ACF) plot and partial autocorrelation function (PACF)

plot. Then, the parameters for each of the candidate

models are estimated, and the model with the

minimum value of the Akaike information criterion

(AIC) or Bayesian information criterion (BIC) is selected

as the optimal model.

3.2.3. Model Diagnosis

The adequacy of the fitted optimal model is checked

using a white noise test (such as ACF and PACF plots of
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residual sequences, or the Ljung-Box Q test), aiming to

confirm that the residual sequence of the model is a

white noise sequence. Once the fitted optimal model

passes the white noise test, it indicates that the model is

adequate for data fitting.

3.2.4. Model Prediction

The identified optimal model is used to predict the

future trend of hepatitis E.

3.3. Bayesian Structured Time Series Model

In this study, a counterfactual framework was used to

construct the BSTS model, and the incidence trend of

hepatitis E was forecasted by comparing the monthly

counterfactual cases with observed cases. The BSTS

model consists of the Kalman filter, spike and slab

regression, and Bayesian model averaging. The monthly

hepatitis E cases were fitted in the BSTS model by the

local linear trend, seasonal variations, and regression

components. The Kalman filter was used to predict the

time series, and the Markov chain Monte Carlo (MCMC)

was used to simulate the posterior distribution to

obtain the final prediction result. The Bayesian model

averaging method is employed to smooth a large

number of potential models (17).

Intervention analysis under the BSTS model is used to

estimate the causal impact of the COVID-19 pandemic on

hepatitis E incidence. Data before the occurrence of

COVID-19 is used as the pre-processing period to predict

the value of hepatitis E in China without the

intervention measures during the COVID-19 pandemic

(counterfactual). In the period after the occurrence of

COVID-19, the difference between the predictive

sequence and the real sequence was calculated and used

to estimate the impact of COVID-19 on hepatitis E in

China. Contrary to traditional linear models, these

models measure the impact of evolution based on the

dynamic confidence interval of the difference between

intrinsic and counterfactual observations.

3.4. Statistical Analysis

The long-term trends and periodicities of the data on

hepatitis E incidence were decomposed by the Hodrick-

Prescott (HP) filter. The Seasonal Index method was used

to obtain the Seasonal Index of the time series data. The

'forecast' package and 'BSTS' package were used to create

the ARIMA model and BSTS model in R4.20 software. The

causal impacts of the COVID-19 pandemic on hepatitis E

have been analyzed using the 'CausalImpact' package

under the BSTS model. The prediction accuracy of the

two methods was judged by calculating the mean

absolute error (MAD), mean absolute percentage error

(MAPE), root mean square error (RMSE), and root mean

square percentage error (RMSPE). These measures can

effectively determine the validity and prediction

accuracy of the models. The smaller the error indicators,

the higher the predictive performance of the model.

4. Results

4.1. Descriptive Statistics

From January 2012 to July 2022, the total hepatitis E

cases in China were 294,006, and the average monthly

cases were 2,315 (the average monthly incidence rate was

0.017 per 100,000 people). The results of the cycle and

trend pattern of the hepatitis E incidence sequence

showed a certain cyclical pattern (Figure 1). The seasonal

indices from January to December were 1.02, 1.02, 1.37,

1.19, 1.05, 0.93, 0.96, 0.93, 0.88, 0.79, 0.89, and 0.95,

respectively, indicating that the incidence of hepatitis E

in China showed seasonal fluctuations, with the highest

incidence in March each year.

4.2. Impacts of COVID-19 Pandemic on the Decrease in
Hepatitis E Case Notifications

The monthly average hepatitis E cases decreased by

41% (95% CI: -51% ~ -31%) from January to June 2020

(probability of causal effect: 99.89%, P = 0.001) and by

32% (95% CI: -40% ~ -23%) from January to December 2020

as a consequence of the COVID-19 pandemic (probability

of causal effect: 99.89%, P = 0.001; Appendix 1 in

Supplementary File). The hepatitis E incidence showed a

downward trend during 2020, and the posterior

probabilities (as random events) that lead to these

effects can be rejected, while the probabilities of the

causal effects can be accepted (Appendix 1 in

Supplementary File). There was a decrease of 19% (95% CI:

-26% ~ -13%) from January 2020 to December 2021 and a

decrease of 15% (95% CI: -21% ~ -9.4%) from January 2020

to July 2022 (Figure 2), indicating the reduction impact

of the COVID-19 pandemic on hepatitis E incidence from

2020 to 2022.

4.3. Parameter Selection for Autoregressive Integrated
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Figure 1. Hepatitis E incidence sequence and trend pattern based on Hodrick-Prescott (HP) filter decomposition in China from January 2012 to July 2022; the solid line represents
the reported hepatitis E cases. The thin dotted line represents the trend of hepatitis E cases. The long dashed line represents the cycle of hepatitis E cases.

Figure 2. Time series plot displaying the causal impacts of COVID-19 on hepatitis E incidence from January 2020 - July 2022: A, the reported hepatitis E cases (solid line) and the
number of hepatitis E estimated by the model (dashed line); B, the difference between reported cases and the number of hepatitis E estimated by the model; C, cumulative effect
of COVID-19 on hepatitis E incidence.

Moving Average and Bayesian Structured Time Series Models

4.3.1. Autoregressive Integrated Moving Average Model

We fitted the incidence of hepatitis E in China from

January 2012 to July 2021 based on the ARIMA modeling

process. After seasonal and non-seasonal differences,

stationary data were obtained (P-value of ADF < 0.01).

Through simulation, the ARIMA (1,0,0) (0,1,1) 12 structure

with the smallest values of AIC (1454.03) and BIC

(1461.93) among all candidate models was selected as the

optimal model. Further tests of the model coefficients

showed: AR1 = 0.72 (t = 10.33, P < 0.001), SMA1 = -0.62 (t =
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Figure 3. A, autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of residual sequences in the autoregressive integrated moving average (ARIMA)
model; B, ACF and PACF plots of residual sequences in the Bayesian structured time series (BSTS) model.

-5.98, P < 0.001). The ACF and PACF plots of the residuals

showed that the different lag correlation coefficients

were basically within the 95% CI (Figure 3A); Ljung-Box Q

test results (χ2 = 78.01, P = 0.59) indicated that the model

residual sequence was white noise. Therefore, the ARIMA

(1,0,0) (0,1,1) 12 structure can fully fit the incidence trend

of hepatitis E.

4.3.2. Bayesian Structured Time Series Model

During the fitting of the BSTS model, we found that a

BSTS model with added local linear trend and seasonal

state components was best suited to predict our data. To

ensure the convergence of Bayesian inference, 1,000

MCMC iterations were performed. The model diagnosis

results showed that the correlation coefficients in the

residual ACF and PACF plots fell within the 95% CI (Figure

3B); Ljung-Box Q test results (χ2 = 2.51, P = 0.28) indicated

that the model residual sequence was white noise. The

diagnostic results indicated that using the BSTS model

to simulate hepatitis E data was sufficient and

appropriate.

4.3.3. Prediction and Accuracy of Autoregressive Integrated
Moving Average and Bayesian Structured Time Series Models

The prediction results of the optimal ARIMA and BSTS

methods for the incidence of hepatitis E from August

2021 to July 2022 are listed in Table 1. Generally, the

smaller the error indicators, the higher the prediction

performance of the model. The forecasting accuracy

results showed that the error indicators of MAD (214.42

vs. 274.25), MAPE (8.30 vs. 11.30), RMSE (189.98 vs. 318.86),

and RMSPE (0.38 vs. 0.45) under the BSTS model were

smaller than those under the ARIMA model, indicating

the predicting accuracy of the BSTS model was higher.

Then, the BSTS model was reconstructed using data from

January 2012 to July 2022 and used to predict the

number of hepatitis E cases in China from August 2022

to December 2023 (Table 2). The total number of new

cases in the next 17 months would be 37,704, and the

epidemic trend of hepatitis E would remain stable.
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Table 1. Predicted Values of Autoregressive Integrated Moving Average (1,0,0) (0,1,1) 12
and Bayesian Structured Time Series for Hepatitis E Incidence from August 2021 to
July 2022

Time Observed Values
ARIMA BSTS

Forecast 95%CI Forecast 95%CI

2021-08 2109 1935 1320 - 2460 2121 1597 - 2645

2021-09 2033 1752 1020 - 2669 1972 1327 - 2617

2021-10 1846 1991 932 - 3043 1750 1050 - 2450

2021-11 2055 2083 1249 - 3176 1947 1221 - 2673

2021-12 2369 2269 858 - 3552 2024 1284 - 2763

2022-01 2530 2199 761 - 3454 2071 1325 - 2817

2022-02 2443 3024 1545 - 4583 1865 1115 - 2615

2022-03 3131 2675 1209 - 4404 2789 2038 - 3541

2022-04 2525 2286 613 - 4188 2583 1831 - 3336

2022-05 2503 2012 294 - 4033 2325 1573 - 3078

2022-06 2411 2083 321 - 4151 2147 1394 - 2900

2022-07 2225 2085 334 - 4268 2150 1397 - 2903

Abbreviations: ARIMA, autoregressive integrated moving average; BSTS, Bayesian

structured time series.

Table 2. Prediction Value of Bayesian Structured Time Series for Hepatitis E Incidence
from August 2022 to December 2023

Time Forecast 95%CI

2022-08 2198 1699 - 2698

2022-09 2046 1429 - 2662

2022-10 1852 1183 - 2522

2022-11 2059 1364 - 2755

2022-12 2242 1534 - 2951

2023-01 2373 1658 - 3088

2023-02 2254 1536 - 2973

2023-03 3026 2306 - 3747

2023-04 2590 1869 - 3312

2023-05 2413 1691 - 3135

2023-06 2248 1525 - 2970

2023-07 2187 1465 - 2909

2023-08 2168 1412 - 2925

2023-09 2016 1242 - 2790

2023-10 1820 1037 - 2604

2023-11 2028 1240 - 2816

2023-12 2184 1394 - 2974

5. Discussion

In this study, the Seasonal Index results showed that

hepatitis E incidence had seasonal fluctuations. This

result is consistent with previous research findings (5).

The reason for this may be that people visit relatives and

friends during the Spring Festival in China, which

increases the opportunities to come into contact with

food contaminated with the HEV. Therefore, people

should monitor their food and exercise prudence

during the Spring Festival. Although some impacts have

been mitigated through policy measures, the COVID-19

pandemic may have medium and long-term effects on

the disease pattern.

In this study, we employed the intervention analysis

method under the BSTS model to explore the impact of

the COVID-19 pandemic on the hepatitis E epidemic in

China. The monthly average hepatitis E cases decreased

by 41% from January to June 2020 (probability of causal

effect: 99.89%, P = 0.001) and by 32% from January to

December 2020 as a consequence of the COVID-19

pandemic (probability of causal effect: 99.89%, P =

0.001), indicating that the decrease in hepatitis E

incidence was causally related to the COVID-19

pandemic. This decline translates to approximately 760

fewer cases monthly from January to December 2020,

reducing the healthcare burden. From 2021 to 2022, the

COVID-19 pandemic still reduced the incidence of

hepatitis E (Appendix 1 in Supplementary File and Figure

2), which is consistent with previous research

conducted in China, which found that hepatitis B

incidence (18) and gonorrhea (19) significantly declined

during COVID-19. In this study, the reduction in hepatitis

E (15%) was higher than that observed in previous

studies for gonorrhea and hepatitis B (12%) during the

COVID-19 pandemic. The reasons for these results may be

that their transmission routes are different. Hepatitis E

is mainly transmitted through the fecal-oral route. Due

to the COVID-19 pandemic, implementing strict home

quarantine policies, reducing unnecessary travel, and

paying more attention to personal hygiene all

contribute to cutting off the fecal-oral transmission

route of hepatitis E. Moreover, the COVID-19 pandemic

presented unprecedented challenges to healthcare,

such as medical staffing, resources, and space, etc. A

study showed that a substantial proportion of isolation

rooms do not meet the standard conditions, which can

pose significant risks during the COVID-19 pandemic

(20). As a result, unusual nosocomial infections of

hepatitis E have occurred (21). The COVID-19 pandemic

might make the hepatitis E control strategy less

effective.

Although the ARIMA model may accommodate a

variety of time series data sources, its fundamental

drawback is the model's presumed linearity (22), leading

to sufficient outcomes. At the same time, the ARIMA

model relies on large-scale uninterrupted data;

therefore, its accuracy may not be ideal when there are
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some outliers or data loss (23). However, the ARIMA

model still holds significant value in predicting the

epidemic trend of infectious diseases. In this study,

based on the incidence data of hepatitis E in China, the

optimal ARIMA (1,0,0) (0,1,1) 12 model was identified,

which passed all diagnoses and can effectively predict

the trend of hepatitis E in China. An ARIMA (0,0,0) (0,1,0)

12 was selected by Qin et al. (24), based on the incidence

data of hepatitis E from 2013 to 2019 in China, which was

different from our selected ARIMA model. This

difference mainly stems from the changes in factors

related to disease infection in different periods (such as

environmental and hygiene conditions). This indicates

that it is necessary to conduct horizontal or vertical

comparisons of models constructed in different regions

or at different times.

Given the limitations of ARIMA, we constructed the

BSTS model and compared the accuracy of ARIMA and

BSTS models in predicting hepatitis E in this study.

According to Ke et al. (25), it is generally believed that

the model performs highly accurate forecasts (MAPE

value ≤ 10%), good forecasts (10% < MAPE ≤ 20%),

reasonable forecasts (20% < MAPE < 50%), and inaccurate

forecasting (MAPE > 50%). Our research results showed

that the MAPE value under the BSTS model was 8.30,

lower than the MAPE value (11.30) under the ARIMA

(1,0,0) (0,1,1) 12 model, indicating the BSTS model had

higher prediction accuracy than the ARIMA model.

Moreover, the error indicators of MAD, MAPE, RMSE, and

RMSPE under the BSTS model were smaller than those

under the ARIMA model (Table 2), meaning that

prediction results using the BSTS model were closer to

the observed values, and the prediction results are

robust. The results of this research were consistent with

those of Feroze et al. (26). The higher accuracy

prediction of the BSTS model may be attributed to its

numerous advantages, such as its ability to handle

various potential covariates and automatically select the

most informative predictors. Meanwhile, the BSTS

model is capable of effectively showing the stochastic

behavior of the target sequence and producing a

forecast based on the Bayesian model averaging of the

preferred models. Moreover, it can be extended to the

dynamic regression framework, allowing the regression

coefficients to change dynamically over time (27). These

characteristics overcome the limitations of ARIMA,

which is why BSTS outperforms ARIMA in predicting

hepatitis E in China in this study. Finally, the established

BSTS model can be used to predict the future epidemic

trend of hepatitis E in China and thereby formulate

prevention and control measures.

5.1. Conclusions

During the COVID-19 pandemic, the overall incidence

rate of hepatitis E in China decreased as a result of

COVID-19. The BSTS model has strong application value

to forecast the hepatitis E trend in China.
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