

Investigating the Efficiency of the VUV/H₂O₂ Process in Removing Tetracycline from Aqueous Solutions

Daryoush Valipour¹, Seyd Javad Jafari¹, Farshad Bahrami Asleep¹, Heydar Ahadi^{1,*}

¹ Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran

*Corresponding Author: Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran. Email: ali.ahadii280@yahoo.com

Received: 3 November, 2025; Revised: 8 December, 2025; Accepted: 8 December, 2025

Abstract

Background: This study investigates the efficiency of the advanced oxidation process VUV/H₂O₂ for removing the antibiotic from tetracycline (TC) aqueous solutions.

Methods: The process uses a low-pressure vacuum ultraviolet (VUV) lamp emitting at 185 nm and 254 nm to degrade TC. The addition of hydrogen peroxide (H₂O₂) enhances the generation of hydroxyl radicals (OH[•]), which are the main agents responsible for the degradation. Various operational parameters were evaluated, including pH (5-7-9), initial TC concentrations (5, 10, and 20 mg/L), H₂O₂ concentrations (1-10 mg/L), as well as the presence of anions and organic compounds.

Results: Results showed that the highest removal efficiency of TC (100%) was achieved at pH 7 with 2 mg/L of H₂O₂ after 90 minutes of treatment. Increasing the H₂O₂ concentration beyond the level of 10 mg/L reduced the efficiency slightly to around 90.55% due to scavenging effects. In the absence of H₂O₂, the VUV process alone removed about 60% of TC. The presence of anions such as phosphate, chloride, and sulfate led to decreases in removal efficiency by 29.4%, 13.4%, and 15.6%, respectively. Among the tested organic compounds, phenol and humic acid exhibited the most pronounced inhibitory effects. The degradation kinetics followed a pseudo-first-order model ($R^2 = 0.9942$), indicating a consistent and predictable reaction behavior. Under optimal conditions, the removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 78% and 40%, respectively.

Conclusions: In conclusion, the study demonstrated that the VUV/H₂O₂ process is an effective and tunable method for the degradation and mineralization of TC in contaminated water.

Keywords: Tetracycline, Wastewater, AOP, H₂O₂, Antibiotic, VUV


1. Background

A significant group of environmental contaminants that may pose risks to human or ecological health are emerging pollutants, which include pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting chemicals (EDCs) (1-3). Sources of pharmaceutical chemicals entering the aquatic environment include pharmaceutical industrial waste, human and animal excrement, and hospital wastewater. In wastewater, groundwater, surface water, and drinking water, various pharmaceuticals including antibiotics have been detected at concentrations ranging from

mg/L to ng/L (3-8). Tetracycline (TC) antibiotics are broad-spectrum antibiotics widely used in pharmaceuticals. They are primarily used to treat human illnesses but are also added to animal feed to prevent disease and promote growth (9, 10). TC consumption is estimated to reach 5,500 tons annually in the USA and Europe, with up to 90% of ingested TC excreted in urine (11, 12). Reported concentrations of TC in surface and groundwater reached 0.15 µg/L (13, 14). Therefore, the presence of TC in the environment may contribute to the development of bacterial antibiotic resistance and threaten ecological stability and human health (15, 16).

Various techniques have been applied to remove TC from aquatic environments, including activated carbon, membrane filtration, adsorption, and advanced oxidation processes (AOPs) (17, 18). AOPs are oxidation technologies used to degrade both organic and inorganic pollutants in water, relying on the generation of highly reactive radicals such as hydroxyl radicals (OH^\bullet) (19, 20). The AOPs are classified into two main groups: (1) Photochemical AOPs and (2) non-photochemical AOPs (21, 22). Examples of AOPs applied for antibiotic removal include UV/O_3 , UV/VUV , and $\text{UV}/\text{H}_2\text{O}_2$ processes (23-25).

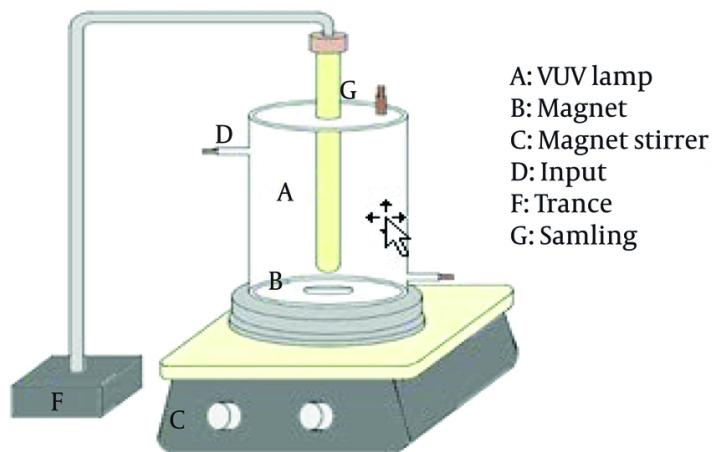
In the VUV process, vacuum ultraviolet (VUV) radiation is emitted at wavelengths of 185 nm (~10%) and 254 nm (~90%) (2). One advantage of the VUV technique is that it does not require additional chemical oxidants (26). In crude water, only 48% of the 254 nm radiation is absorbed, compared to 99% of the 185 nm radiation (27). Key reactions in the VUV/water process include the photochemical ionization using Equation 1 and homolysis of water using Equation 2, which generate reactive radicals responsible for contaminant degradation (28).

In the VUV/water process, the addition of hydrogen peroxide (H_2O_2) as a strong oxidant not only generates highly oxidizing hydroxyl radicals (HO^\bullet) through the photolysis of water at 185 nm, but also produces HO^\bullet via the photolysis of H_2O_2 induced by VUV radiation at 185 and 254 nm, using Equations 3 and 4 (2, 27).

In the $\text{VUV}/\text{H}_2\text{O}_2$ process, the photolysis of hydrogen peroxide (H_2O_2) by 185 and 254 nm radiation generates additional hydroxyl radicals (HO^\bullet), which accelerates the degradation of pollutants (2, 27). Recently, significant attention has been paid to the use of vacuum ultraviolet (VUV) irradiation for the removal of various organic pollutants from water. This process produces HO^\bullet radicals through the photoionization of H_2O_2 and water (H_2O), as well as the homolysis of water molecules (Reactions 1 and 2) (2, 27, 28). The addition of H_2O_2 as a strong oxidant enhances HO^\bullet generation, thereby increasing the degradation rate of contaminants (29).

This study investigated the degradation of TC using the $\text{VUV}/\text{H}_2\text{O}_2$ process with a 6 W low-pressure UV lamp (OSRAM Co.). The objective was to evaluate the efficiency of VUV radiation and the $\text{VUV}/\text{H}_2\text{O}_2$ process for TC degradation and mineralization under various conditions, including solution pH, reaction kinetics, presence of anions, H_2O_2 concentration, and initial TC concentration. Additionally, the effects of several organic compounds such as phenol, oxalic acid, humic acid, and ethylenediaminetetraacetic acid (EDTA) as well as other water contaminants on TC degradation were examined over different reaction times, and the formation of intermediate by-products was identified.

2. Materials and Methods


2.1. Reagents

The following analytical-grade chemicals were acquired from Merck Co.: 30% hydrogen peroxide, sulfate, phosphate, TC, chloride, phenol, oxalic acid, humic acid, para-chlorobenzoic acid, sulfuric acid, and sodium hydroxide.

2.2. Experimental Setup and Procedure

A batch-type cylindrical quartz glass reactor was used for all experiments (Figure 1). The reactor had a working volume of 200 mL, a height of 290 mm, an inner diameter of 50 mm, and an outer quartz tube diameter of 40 mm. The inner walls of the reactor were wrapped with aluminum foil to prevent external UV penetration. A 6-W low-pressure VUV lamp (OSRAM, Germany) was placed at the center of the reactor. The lamp emitted radiation at two wavelengths: 254 nm (approximately 90% of total output; intensity: 56 $\mu\text{W cm}^{-2}$ at 1 cm) and 185 nm (approximately 10% of output; intensity: 5 $\mu\text{W cm}^{-2}$ at 1 cm). During operation, the solution was continuously mixed using a magnetic stirrer at 100 rpm.

The effects of various operating parameters were investigated, including pH (5, 7, 9), TC concentrations (5, 10, 20 mg/L), and hydrogen peroxide concentrations (1, 2, 3, 4, 5, 10 mg/L). Radical scavenging experiments were conducted using phosphate ions, EDTA (1 mM) as a hole (H^+) scavenger and chelating agent, benzoquinone (BQ; 3 mM) as a superoxide radical ($\bullet\text{O}_2^-$) scavenger, and tert-butyl alcohol (TBA; 10 mM) as a hydroxyl radical (HO^\bullet) scavenger. A mixture of anions present in tap water was also tested. Para-chlorobenzoic acid (pCBA) was used as a chemical probe to quantify hydroxyl radical (HO^\bullet)

Figure 1. The schematic of VUV/H₂O₂ experimental setup

concentration. For HO[•] measurements, 200 mL of pCBA solution containing 2 mg/L H₂O₂ was irradiated, and 0.5 mL samples were withdrawn every 3 minutes for high-performance liquid chromatography (HPLC) analysis. The HO[•] concentration was calculated using Equation 5 (30).

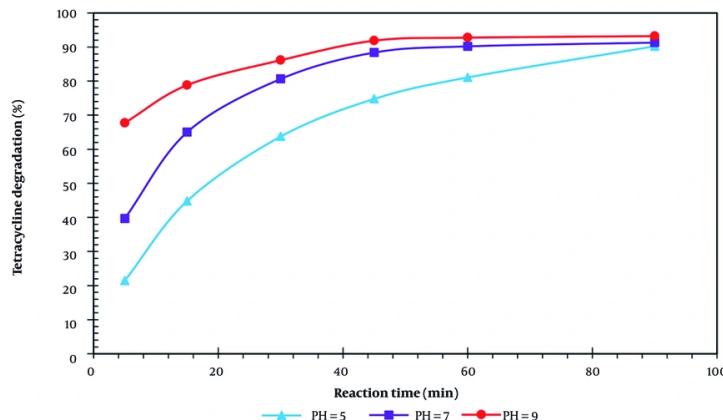
$$[\text{HO}^{\bullet}] = \frac{\ln(p\text{CBA}_t / p\text{CBA}_0)}{K\text{HO}^{\bullet} \cdot t} \quad (5)$$

[HO[•]] = all concentration of hydroxide radical

pCBA_t = pCBA concentration (mg/L) at the time t of the reaction.

pCBA₀ = pCBA concentration (mg/L) at the beginning of the reaction.

KHO[•] = Constant reaction of hydroxyl radical with parachlorobenzoic acid


(kHO[•], pCBA = 5.0 × 10⁹ M⁻¹ s⁻¹).

2.3. Analytical Methods

Because TC degradation may produce various intermediate compounds that can interfere with UV-Vis spectrophotometric measurements, HPLC was used to ensure accurate and selective quantification of TC. All samples collected from the reactor were immediately filtered and analyzed using an Agilent 1260 Infinity HPLC system equipped with a UV/Vis diode array detector and a ZORBAX Eclipse Plus C18 column (4.6 × 100 mm, 3.5 μm). For TC degradation experiments, 1 mL

aliquots were withdrawn at predetermined time intervals (every 5 - 10 minutes), filtered through 0.22 μm syringe filters, and injected directly without storage. TC was quantified at 359 nm using an isocratic mobile phase composed of 75% 0.01 mol L⁻¹ oxalic acid and 25% acetonitrile at a flow rate of 1.0 mL min⁻¹, with an injection volume of 20 μL. The degradation of pCBA was monitored using the same HPLC system with UV detection at 240 nm. An isocratic mobile phase consisting of 50% acetonitrile (containing 0.5% formic acid) and 50% ultrapure water (containing 0.5% formic acid) was used at a flow rate of 1.0 mL min⁻¹ and an injection volume of 100 μL. Calibration curves for TC and pCBA were prepared using standard stock solutions and serial dilutions covering the analytical concentration range. Both analytes showed excellent linearity ($R^2 \geq 0.999$). All samples were filtered before analysis to prevent column blockage and ensure high reproducibility. The solution pH was adjusted using diluted H₂SO₄ or NaOH and measured with a Philips PW 9422 pH meter.

Chemical oxygen demand (COD) was determined as an indicator of the oxygen required to oxidize organic matter to CO₂ and H₂O under acidic conditions using strong chemical oxidants. Measurements were performed using COD low-range vials and a spectrophotometer at 430 nm. Total organic carbon (TOC) represents the amount of carbon present in an organic compound and is used as an indirect indicator of water quality. TOC analysis was performed before and

Figure 2. Effect of solution pH on tetracycline (TC) degradation in VUV/H₂O₂ process (TC = 10 mg/L; solution pH = 5, 7, and 9; reaction time = 90 min; concentration H₂O₂ = 10 mg/L)

after treatment under optimal operating conditions to evaluate the mineralization of TC. Samples were collected at 0, 5, 30, and 90 minutes, and the degradation and mineralization efficiencies were calculated using Equations 6 and 7 TOC measurements were conducted using an ACQURAY TOC analyzer (Elementar, Germany) following the hightemperature combustion method (31, 32). Residual hydrogen peroxide was measured spectrophotometrically at 410 nm using titanium (IV) oxysulfate according to DIN 38402 H15. All experiments were conducted in triplicate (n=3).

$$\text{Tetracycline degradation} = \frac{(C_i - C_e)}{C_i} \times 100 \quad (6)$$

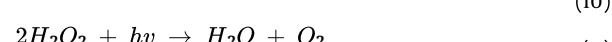
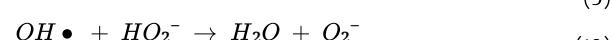
C_i: Initial tetracycline concentration (mg/L)

C_e: Final concentration of tetracycline (mg/L)

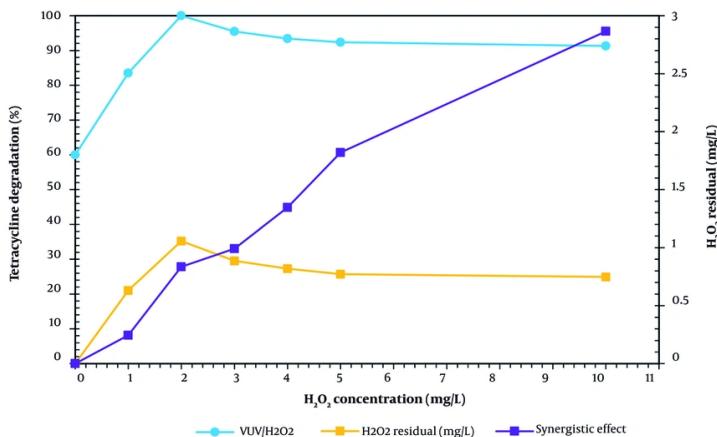
$$\text{TOC removal percentage} = \frac{(TOC_i - TOC_e)}{(TOC_i)} \times 100 \quad (7)$$

TOC_i: Initial TOC concentration (mg/L)

TOC_e: Final concentration of TOC (mg/L)



4. Results and Discussions

3.1. Effect of pH

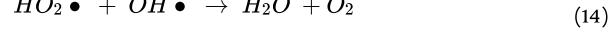
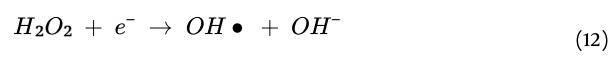

The effect of pH on the removal efficiency of TC (10 mg/L) was evaluated in VUV/H₂O₂ processes, with H₂O₂ at 10 mg/L and a reaction time of 90 min (Figure 2). The

removal efficiencies in the VUV/H₂O₂ process were 88.6%, 91.3%, and 93.2% at pH 5, 7, and 9, respectively. Standard deviations were below 3%.

The decrease in removal efficiency under alkaline conditions is mainly due to the formation of hydroperoxide anions (HO₂⁻) from H₂O₂ decomposition, which react with residual H₂O₂ and OH[•] radicals, thereby reducing the availability of OH[•], using Equations 8 - 10 (2, 33). Additionally, at high pH, H₂O₂ photodecomposes to water and oxygen rather than producing OH[•] radicals, using Equation 11 (34, 35):

TC is an amphoteric molecule, and its speciation depends on pH: It is predominantly positively charged at acidic pH (~4) and negatively charged at alkaline pH (~9). At neutral pH (pH 7), TC exists mainly in a zwitterionic form, which provides a balance between its interaction with OH[•] radicals and solubility, resulting in optimal degradation (36-38). This explanation aligns with previous studies, such as Elmolla and Chaudhuri, who reported increased degradation of amoxicillin (AMX) at neutral to slightly alkaline pH using UV/TiO₂ and UV/H₂O₂/TiO₂ processes (39). Therefore, pH 7 was selected as the optimal condition because it provides a

Figure 3. Efficiency of VUV/H₂O₂, H₂O₂ consumption, and synergistic effect of VUV/H₂O₂ (TC = 10 mg/L, pH = 7, Time = 90 min)



favorable balance between TC speciation and OH[•] availability, ensuring efficient degradation without significant radical scavenging or photodecomposition losses.

3.2. Effect of H₂O₂ Concentration

Impact of concentration of H₂O₂ 10 mg/L TC degradation was studied at pH = 7 and for a reaction duration of 90 minutes. According to Figure 3, in order to assess the effects of different hydrogen peroxide concentrations (1, 2, 3, 4, 5, and 10 mg/L), the synergistic effect of VUV/H₂O₂, and the optimal hydrogen peroxide concentration. The TC removal rate in the VUV/H₂O₂ process, using only different concentrations of H₂O₂ (1, 2, 3, 4, 5, and 10 mg/L), was found to be (2.48, 4.76, 5.95, 6.09, and 6.64%), respectively, and to be (83.54, 100, 93.48, 92.4, 91.35, and 90.55%).

Using Equations 1 and 2 according to the hydroxyl radicals produced during water photolysis and water molecules photoionization, TC removal rate of 60% during the photolysis process (in the absence of H₂O₂) can be attributed (33, 40). Because there were more hydroxyl radicals produced, the removal effectiveness of TC in the VUV/H₂O₂ process increased from 60% to 100% as the hydrogen peroxide concentration, using Equations 3, 4, and 12, increased from 0 to 2 mg/L. When the concentration of H₂O₂ was increased from 3 to 10 mg/L, the efficiency of TC removal in the VUV/H₂O₂ process reduced from 100% to 90.55%. This results in the

creation of water and the scavenger HO₂[•], which are weaker than hydroxyl radicals, as well as an overreaction of hydrogen peroxide with hydroxyl radicals, using Equations 13, 14, and 15. The recombination of increased HO[•] to create H₂O₂, using Equations 15 and 2 is another factor contributing to the loss in TC removal efficiency in the VUV/H₂O₂ process with an increase in H₂O₂ concentration from 3 to 10 mg/L. Another explanation for the decrease in TC removal effectiveness in the VUV/H₂O₂ process when the concentration of H₂O₂ is increased from 3 to 10 mg/L is the high dose of hydroxyl radicals combining to generate H₂O₂, using Equation 15.

The synergistic effect of adding H₂O₂ to the VUV process, from Equation 16 is used:

$$Synergistic\ effect = R\ VUV / H_2O_2 - R\ VUV + RH_2O_2 \quad (16)$$

At 120 minutes into the VUV process (photolysis), the TC removal rate was 60%; however, when H₂O₂ = 2 mg/L is added to the VUV process (VUV/H₂O₂), the TC

Table 1. Kinetic Equations for the TC Degradation

Kinetic Models	Values
Zero-order	$C_0 - C_t = k \cdot t$
First-order	$\ln(C_0/C_t) = -k \cdot t$
Second-order	$1/C_t - 1/C_0 = k \cdot t$

degradation rate is 4.76 and 100%, respectively. Thus, a 35.44% synergistic impact of VUV/H₂O₂ was obtained according to Equation 16. As a result, the ideal surface was determined to be 2 mg/L of hydrogen peroxide concentration. Peng et al. looked into the ibuprofen degradation process using UV/H₂O₂. They discovered that when H₂O₂ concentration increased, ibuprofen degradation increased from 0.1 to 0.6 mM. In their investigation, 0.54 mM hydrogen peroxide concentration was found to be the optimal surface, and it was chosen (41). In the VUV/H₂O₂ process, it took 315, 120, 140, 165, 180, and 210 minutes, respectively, to reach the removal efficiency of 100% TC at various hydrogen peroxide concentrations (1, 2, 3, 4, 5, and 10 mg/L).

3.3. Kinetics of VUV/H₂O₂ and VUV Processes

Kinetics plays an essential role in evaluating the rate of pollutant degradation over time, as it provides valuable insight into the oxidation mechanisms, reaction pathways, and process optimization. In this study, the kinetic behavior of degradation by the VUV/H₂O₂ and VUV processes was investigated at different reaction times (5, 15, 30, 45, and 60 min) under the following conditions: Initial TC concentration of 10 mg/L, pH 7, and 2 mg/L of H₂O₂. To analyze the degradation behavior, zero-order, pseudo-first-order, and pseudo-second-order kinetic models were applied. The corresponding kinetic equations are summarized in **Table 1** (42), where C₀ denotes the initial TC concentration, C_t is the concentration at time t, k is the rate constant, and t represents the reaction time. The goodness of fit between experimental data and the kinetic models was assessed using the coefficient of determination (R²). According to the results, TC removal by both VUV/H₂O₂ and VUV processes followed a pseudo-first-order kinetic model, as evidenced by the higher R² values (0.9942–0.9948) compared with the other models (**Table 2**). In pseudo-first-order reactions, the reaction rate depends solely on the concentration of one reactant, which is consistent with the linear relationship observed between ln(C/C₀) and reaction

time. Similar findings were reported by Hoang et al., who studied dye degradation using UV/persulfate and demonstrated that the removal kinetics in UV-based AOPs also follow a pseudo-first-order model (43).

3.4. Effect of Anions on Degradation of Tetracycline in VUV/H₂O₂ and VUV Process

The effects of various anions, including phosphate, sulfate, chloride, tert-butanol, and municipal water, each at a concentration of 1 mM in 200 mL of TC solution, on the reduction of TC removal efficiency under the optimized operating conditions (time = 90 min, H₂O₂ = 2 mg/L, pH = 7, TC = 10 mg/L, wavelength = 359 nm) were investigated in both the VUV and VUV/H₂O₂ processes (**Figure 4A** and **4B**). As shown in **Figure 4A**, the removal efficiency of TC in the VUV photolysis process was approximately 60% in the absence of anions. However, the presence of sulfate, chloride, municipal water, tert-butanol, and phosphate caused a substantial decrease in TC removal efficiency, reducing it to 3.84%, 3.96%, 4.22%, 6.22%, 6.44%, and 24.4%, respectively. According to **Figure 4B**, the VUV/H₂O₂ system achieved complete TC removal (100%) in the absence of anions; nevertheless, its efficiency was also notably inhibited by the same anions. In the presence of phosphate, chloride, sulfate, municipal water, and tert-butanol, the TC removal efficiency dropped to 2.74%, 13.4%, 15.6%, 20.6%, and 29.4%, respectively.

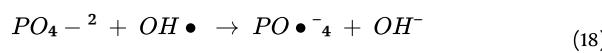
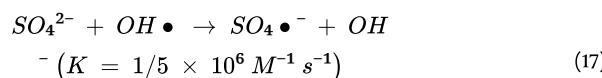


The observed inhibition in both processes aligns with previous findings demonstrating that inorganic anions and natural water constituents often act as scavengers of hydroxyl radicals (HO[•]) or participate in competing side reactions, thereby diminishing the efficiency of AOPs. In the VUV and VUV/H₂O₂ systems, HO[•] radicals are the dominant oxidizing species responsible for TC degradation. Anions such as phosphate and sulfate readily react with HO[•], forming less reactive radical species and consequently lowering the available concentration of HO[•]. This behavior has been extensively documented in earlier studies. For instance,

Table 2. Kinetic Parameters for TC Degradation Using VUV/H₂O₂ and VUV Process

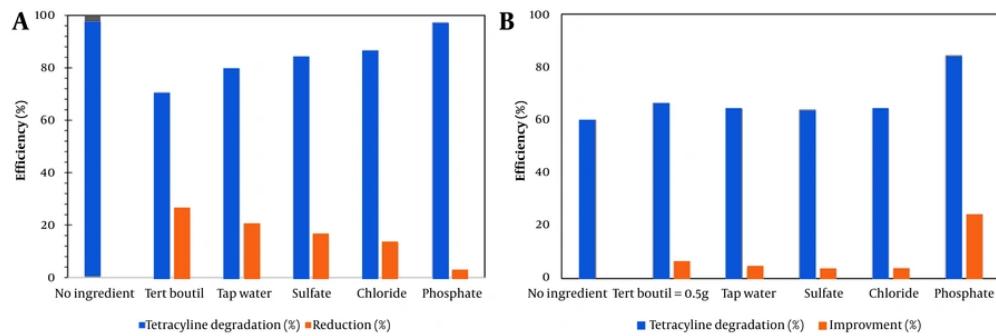
Processes	Zero-Order		Pseudo-First-Order		Pseudo-Second-Order	
	K ₀	R ²	K ₁	R ²	K ₂	R ²
VUV/H ₂ O ₂	0.0083	0.9345	0.0253	0.9942	0.0885	0.9578
VUV	0.0062	0.9892	0.0098	0.9948	0.016	0.9849

sulfate ions convert HO[•] into sulfate radicals (SO₄^{•-}), which possess lower oxidation potential and slower reactivity toward organic contaminants. Similarly, chloride reacts with HO[•] to form chlorine-based radicals (Cl[•], Cl₂^{•-}), which exhibit weaker oxidizing capabilities, as noted by Pignatello et al. and Serpone et al. (44, 45). The strong inhibitory effect of tert-butanol, an established selective scavenger of HO[•], further confirms that hydroxyl radicals are the principal oxidizing species in both systems. Moreover, the reduced TC degradation observed in municipal water highlights the influence of real water matrices, which often contain bicarbonate, natural organic matter (NOM), chloride, phosphate, and other ions that compete for HO[•] radicals. Similar matrix effects have been reported by Sun et al. and Ribeiro et al., emphasizing that water quality plays a crucial role in AOP performance (46, 47).

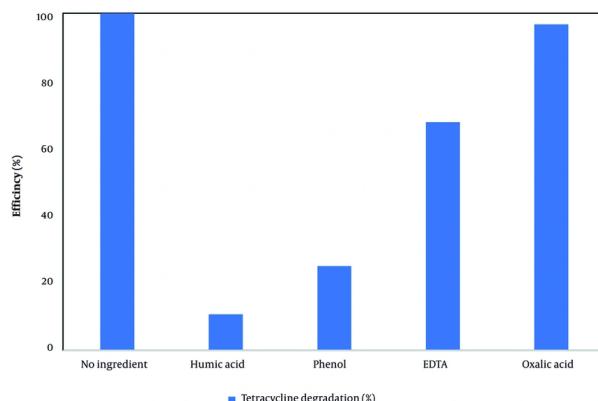
Overall, these findings demonstrate that non-target anions significantly suppress TC degradation in both VUV and VUV/H₂O₂ processes, although the inhibitory effect is less pronounced in the VUV/H₂O₂ system due to the continuous photolytic generation of HO[•] from hydrogen peroxide. The reduction in removal efficiency can be attributed to two primary mechanisms: (A) Direct scavenging of HO[•] radicals by anions and (B) absorption of UV radiation by the anions, which decreases the formation of HO[•] available for TC oxidation (27, 33, 48, 49). Representative reactions include:

3.5. Effect of Organic Compounds on Degradation of Tetracycline in VUV/H₂O₂ and VUV Process

Under optimal conditions—reaction time of 90 minutes, H₂O₂ concentration of 2 mg/L, pH 7, TC


concentration of 10 mg/L, and irradiation wavelength of 359 nm—the effects of various organic compounds, including phenol, EDTA, oxalic acid, and humic acid, were investigated in the VUV/H₂O₂ process. Each organic compound was added at a concentration of 1 mM to 200 mL of TC solution. As illustrated in Figure 5, complete degradation of TC (100%) was achieved in the absence of organic compounds. The presence of these organics, however, decreased the TC removal efficiency as follows: Oxalic acid (96.7%), EDTA (67.7%), phenol (25%), and humic acid (10.7%). Among them, phenol and humic acid exhibited the most pronounced inhibitory effects. This reduction in efficiency is attributed to the competition between the organic molecules and TC for hydroxyl radicals (OH[•]) generated during the VUV/H₂O₂ process (50).

3.6. Total Organic Carbon and Chemical Oxygen Demand Removal


To further evaluate the effectiveness of the VUV/H₂O₂ process, the removal efficiencies of COD and TOC were examined. The findings demonstrated that both parameters increased steadily with reaction time, achieving maximum removal rates of 78% for COD and 40% for TOC under the optimized conditions. Identifying the final degradation products in AOPs is important because the ideal outcome is the complete mineralization of organic pollutants to CO₂ and H₂O. In this study, the relatively lower COD and TOC reductions compared with the disappearance of the antibiotic suggest that a portion of TC was converted into intermediate compounds rather than being fully mineralized.

3.7. Classification of Different Advanced Oxidation Processes for the Removal of Antibiotics

Table 3 summarizes previous studies that have compared different AOPs for antibiotic degradation. The table includes information on the target antibiotic compounds, removal efficiencies, and key operational parameters such as pH, catalyst dosage, reaction time,

Figure 4. Effect of anions on tetracycline degradation: A, in the VUV/H₂O₂ process (TC = 10 mg/L, pH = 7, t = 90 min, H₂O₂ = 2 mg/L); B, in the VUV process (TC = 10 mg/L, pH = 7, t = 90 min)

Figure 5. Effect of organic compounds on performance of the VUV/H₂O₂ process in tetracycline (TC) degradation (time = 90 min, H₂O₂ = 2 mg/L, pH = 7, TC = 10 mg/L, and organic compound concentration = 1 mM)

and initial contaminant concentrations. As illustrated, the performance of AOPs varies widely depending on the conditions under which they are applied. In this regard, the results of the present work—achieving complete (100%) TC removal under optimized VUV/H₂O₂ conditions—demonstrate the strong capability of this process compared with other reported AOPs.

4. Conclusions

The results of this study show that the VUV/H₂O₂ process is highly efficient in removing tetracycline from aqueous solutions. Under the optimized operating conditions (pH 7 and 2 mg/L H₂O₂), complete removal was achieved within 90 minutes. When the H₂O₂

concentration was increased above 10 mg/L, the removal efficiency decreased slightly to about 90.55%, likely due to the scavenging effect associated with excess hydrogen peroxide. In contrast, the VUV process used without H₂O₂ resulted in only about 60% removal, underscoring the significant contribution of H₂O₂ in enhancing degradation. The presence of common anions such as phosphate, chloride, and sulfate reduced the removal efficiency by 29.4%, 13.4%, and 15.6%, respectively. The degradation kinetics were well described by a pseudo-first-order model ($R^2 = 0.9942$), suggesting a consistent and predictable reaction pattern. Overall, these findings confirm that the VUV/H₂O₂ system is an effective and environmentally friendly approach for eliminating

Table 3. Advanced Processes Applied by Different Authors for the Reduction of Antibiotics

Processes	Target Antibiotics	Conditions	Removal (%)	Reference
UV/H ₂ O ₂	Tetracycline (TC)	UV 254 nm; H ₂ O ₂ = 10 - 50 mg/L	80 - 95%	(51)
TiO ₂ /UV photocatalysis	Ciprofloxacin (CIP)	TiO ₂ (0.5 - 1 g/L); UV 365 nm	75 - 90%	(52)
O ₃ /H ₂ O ₂ process	Amoxicillin (AMX)	O ₃ flow: 16 mg.h ⁻¹ ; H ₂ O ₂ = 10 μM; T = 20 C	~100% in all cases	(53)
TiO ₂ /UV	Metronidazole (MTZ)	TiO ₂ = 1.5 g/L; UV light intensity = 6.5 mW cm ⁻²	~88% in max 30 min	(54)
Photo-Fenton processes	Amoxicillin (AMX)	H ₂ O ₂ = 0.08 mM; Fe ³⁺ = 0.05 mM; Natural solar radiation (pilot-plant Scale CPC photoreactor); pH = 7 - 8	90% in 9 min	(55)
Photo-fenton processes	Ciprofloxacin (CPR)	H ₂ O ₂ = 5 - 25 mM; High-pressure mercury lamp 362 nm); T = 25 C; Fe ²⁺ = 0.25 - 2 mM; pH = 2 - 9	93% in 45 min	(56)
Heterogeneous fenton-like process	Ciprofloxacin (CPR)	H ₂ O ₂ = 10 - 100 mM; Sludge Biochar Catalyst (SBC) = 0.2 g/L; pH = 2 - 12	90% in 4 h	(57)
VUV/H ₂ O ₂	Tetracycline (TC)	H ₂ O ₂ = 2 mg/L; Time = 90 min; pH 7	100%	This study

persistent antibiotics and other pollutants from industrial wastewater. Future studies should further examine its performance in real wastewater conditions, evaluate long-term operational stability, and identify possible degradation intermediates.

Footnotes

AI Use Disclosure: The authors declare that no generative AI tools were used in the creation of this article.

Authors' Contribution: Study concept and design: Heydar Ahadi and Seyed Javad Jafari; Acquisition of data: Farshad Bahrami and Heydar Ahadi; Analysis and interpretation of data: Farshad Bahrami and Daryoush Valipour; Drafting of the manuscript: Seyed Javad Jafari and Heydar Ahadi; Critical revision of the manuscript for important intellectual content: Farshad Bahrami and Daryoush Valipour; Statistical analysis: Heydar Ahadi and Seyed Javad Jafari; Administrative, technical, and material support: Daryoush Valipour and Heydar Ahadi; Study supervision: Seyed Javad Jafari.

Conflict of Interests Statement: The authors declare no conflict of interest.

Data Availability: The data presented in this study are uploaded during submission as a supplementary file and are openly available for readers upon request

Ethical Approval: IR.UMSU.REC.1398.168 .

Funding/Support: The budget of this project has been provided by Research Committee of Ardabil University of Medical Sciences.

References

- Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. *Water Res.* 2015;72:3-27. [PubMed ID: 25267363]. <https://doi.org/10.1016/j.watres.2014.08.053>.
- Moussavi G, Pourakbar M, Shekoohiyan S, Satari M. The photochemical decomposition and detoxification of bisphenol A in the VUV/H₂O₂ process: Degradation, mineralization, and cytotoxicity assessment. *Chem Engin J.* 2018;331:755-64. <https://doi.org/10.1016/j.cej.2017.09.009>.
- Dianati tilaki RA, Eslamifar M, Zabih Zadeh K. Removal of Petroleum Hydrocarbon from Water by Combined Cultivation of *Azolla* and Bacteria. *Health Scope.* 2025;14(3). <https://doi.org/10.5812/healthscope-159258>.
- Yang L, Yu LE, Ray MB. Degradation of paracetamol in aqueous solutions by TiO₂ photocatalysis. *Water Res.* 2008;42(13):3480-8. [PubMed ID: 18519147]. <https://doi.org/10.1016/j.watres.2008.04.023>.
- Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. *Ozone Sci Engin.* 2006;28(6):353-414. <https://doi.org/10.1080/01919510600985937>.
- Alder AC, Schaffner C, Majewsky M, Klasmeier J, Fenner K. Fate of beta-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. *Water Res.* 2010;44(3):936-48. [PubMed ID: 19889439]. <https://doi.org/10.1016/j.watres.2009.10.002>.
- Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. *Sci Total Environ.* 2018;627:1253-63. [PubMed ID: 30857090]. <https://doi.org/10.1016/j.scitotenv.2018.02.006>.
- Sharifi H, Movahedian Attar H, Mohammadi F. Qualitative and Quantitative Analyses of Microplastics in Tap Water Supply Network in Iran. *Health Scope.* 2024;13(4). <https://doi.org/10.5812/healthscope-148134>.
- Ahmadi M, Ramezani Motlagh H, Jaafarzadeh N, Mostoufi A, Saeedi R, Barzegar G, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO₂(2) nano-composite. *J Environ Manage.* 2017;186(Pt 1):55-

63. [PubMed ID: 27852522]. <https://doi.org/10.1016/j.jenvman.2016.09.088>.

10. Nezamzadeh-Ejhieh A, Shirzadi A. Enhancement of the photocatalytic activity of Ferrous Oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. *Chemosphere*. 2014;107:136-44. [PubMed ID: 24875881]. <https://doi.org/10.1016/j.chemosphere.2014.02.015>.

11. Marzbali MH, Esmaili M, Abolghasemi H, Marzbali MH. Tetracycline adsorption by H₃PO₄-activated carbon produced from apricot nut shells: A batch study. *Process Safe Environ Protect*. 2016;102:700-9. <https://doi.org/10.1016/j.psep.2016.05.025>.

12. Zhang D, Yin J, Zhao J, Zhu H, Wang C. Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. *J Environ Chem Engin*. 2015;3(3):1504-12. <https://doi.org/10.1016/j.jece.2015.05.014>.

13. Chen WR. *Interactions of tetracycline antibiotics with dissolved metal ions and metal oxides* [Dissertation]. Atlanta, USA: Georgia Institute of Technology; 2008.

14. Lindsey ME, Meyer TM, Thurman EM. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. *Anal Chem*. 2001;73(19):4640-6. [PubMed ID: 11605842]. <https://doi.org/10.1021/ac010514w>.

15. Martins AC, Cazetta AL, Pezoti O, Souza JR, Zhang T, Pilau Ej, et al. Sol-gel synthesis of new TiO₂ /activated carbon photocatalyst and its application for degradation of tetracycline. *Ceramics Int*. 2017;43(5):4411-8. <https://doi.org/10.1016/j.ceramint.2016.12.088>.

16. Maroga Mboula V, Hequet V, Gru Y, Colin R, Andres Y. Assessment of the efficiency of photocatalysis on tetracycline biodegradation. *J Hazard Mater*. 2012;209-210:355-64. [PubMed ID: 22316687]. <https://doi.org/10.1016/j.jhazmat.2012.01.032>.

17. Ai C, Zhou D, Wang Q, Shao X, Lei Y. Optimization of operating parameters for photocatalytic degradation of tetracycline using In₂S₃ under natural solar radiation. *Solar Energy*. 2015;113:34-42. <https://doi.org/10.1016/j.solener.2014.12.022>.

18. Zhu XD, Wang YJ, Sun RJ, Zhou DM. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO₂. *Chemosphere*. 2013;92(8):925-32. [PubMed ID: 23541148]. <https://doi.org/10.1016/j.chemosphere.2013.02.066>.

19. Gimeno O, Carballo M, Beltran FJ, Rivas FJ. Phenol and substituted phenols AOPs remediation. *J Hazard Mater*. 2005;119(1-3):99-108. [PubMed ID: 15752854]. <https://doi.org/10.1016/j.jhazmat.2004.11.024>.

20. Belver C, Bedia J, Rodriguez JJ. Zr-doped TiO(2) supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. *J Hazard Mater*. 2017;322(Pt A):233-42. [PubMed ID: 26948509]. <https://doi.org/10.1016/j.jhazmat.2016.02.028>.

21. Ahadi M, Saber Tehrani M, Aberoomand Azar P, Waqif Husain S. Novel preparation of sensitized ZnS nanoparticles and its use in photocatalytic degradation of tetracycline. *Int J Environ Sci Technol*. 2016;13(12):2797-804. <https://doi.org/10.1007/s13762-016-1106-0>.

22. Adewuyi YG. Sonochemistry: Environmental Science and Engineering Applications. *Indust Engin Chem Res*. 2001;40(22):4681-715. <https://doi.org/10.1021/ie0100961>.

23. Lee H, Lee E, Lee C, Lee K. Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. *J Indust Engin Chem*. 2011;17(3):468-73. <https://doi.org/10.1016/j.jiec.2011.05.006>.

24. Yao H, Pei J, Wang H, Fu J. Effect of Fe(II/III) on tetracycline degradation under UV/VUV irradiation. *Chem Engin J*. 2017;308:193-201. <https://doi.org/10.1016/j.cej.2016.09.074>.

25. López-Peña JJ, Sánchez-Polo M, Gómez-Pacheco CV, Rivera-Utrilla J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H₂O₂ oxidation processes. *J Chem Technol Biotechnol*. 2010;85(10):1325-33. <https://doi.org/10.1002/jctb.2435>.

26. Moussavi G, Rezaei M, Pourakbar M. Comparing VUV and VUV/Fe²⁺ processes for decomposition of cloxacillin antibiotic: Degradation rate and pathways, mineralization and by-product analysis. *Chem Engin J*. 2018;332:140-9. <https://doi.org/10.1016/j.cej.2017.09.057>.

27. Imoberdorf G, Mohseni M. Degradation of natural organic matter in surface water using vacuum-UV irradiation. *J Hazard Mater*. 2011;186(1):240-6. [PubMed ID: 2122985]. <https://doi.org/10.1016/j.jhazmat.2010.10.118>.

28. Gonzalez MG, Oliveros E, Wörner M, Braun AM. Vacuum-ultraviolet photolysis of aqueous reaction systems. *J Photochem Photobiol Photochem Rev*. 2004;5(3):225-46. <https://doi.org/10.1016/j.jphotochemrev.2004.10.002>.

29. Sharma J, Mishra IM, Kumar V. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H₂O₂ and UV/S₂O₈(2-) oxidation systems. *J Environ Manage*. 2015;156:266-75. [PubMed ID: 25889275]. <https://doi.org/10.1016/j.jenvman.2015.03.048>.

30. Velo-Gala I, Pirán-Montaño JA, Rivera-Utrilla J, Sánchez-Polo M, Mota AJ. Advanced Oxidation Processes based on the use of UVC and simulated solar radiation to remove the antibiotic tinidazole from water. *Chem Engin J*. 2017;323:605-17. <https://doi.org/10.1016/j.cej.2017.04.102>.

31. Giannakis S, Hendaoui I, Jovic M, Grandjean D, De Alencastro LF, Girault H, et al. Solar photo-Fenton and UV/H₂O₂ processes against the antidepressant Venlafaxine in urban wastewaters and human urine. Intermediates formation and biodegradability assessment. *Chem Engin J*. 2017;308:492-504. <https://doi.org/10.1016/j.cej.2016.09.084>.

32. Kamarehie B, Jafari A, Azimi F, Rashidipour M, Sepahvand A. Removal of Pyrocatechol from Aqueous Solution Using Activated Carbon Coated with Aluminum Nanoparticles by a Green Method. *Health Scope*. 2024;13(2). <https://doi.org/10.5812/healthscope-144472>.

33. Khorsandi H, Teymori M, Aghapour AA, Jafari SJ, Taghipour S, Bargeshadi R. Photodegradation of ceftriaxone in aqueous solution by using UVC and UVC/H₂O₂ oxidation processes. *Appl Water Sci*. 2019;9(4). <https://doi.org/10.1007/s13201-019-0964-2>.

34. Muruganandham M. Photochemical oxidation of reactive azo dye with UV-H₂O₂ process. *Dyes Pigments*. 2004;62(3):269-75. <https://doi.org/10.1016/j.dyepig.2003.12.006>.

35. Galindo C, Kalt A. UV-H₂O₂ oxidation of monoazo dyes in aqueous media: a kinetic study. *Dyes Pigments*. 1999;40(1):27-35. [https://doi.org/10.1016/s0143-7208\(98\)00027-8](https://doi.org/10.1016/s0143-7208(98)00027-8).

36. Jiao S, Zheng S, Yin D, Wang L, Chen L. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. *Chemosphere*. 2008;73(3):377-82. [PubMed ID: 18617218]. <https://doi.org/10.1016/j.chemosphere.2008.05.042>.

37. Zertal A, Sehili T, Boule P. Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid. *J Photochem Photobiol Photochem Rev*. 2001;146(1-2):37-48. [https://doi.org/10.1016/s1010-6030\(01\)00534-2](https://doi.org/10.1016/s1010-6030(01)00534-2).

38. Niu J, Li Y, Wang W. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetics and mechanism. *Chemosphere*. 2013;92(11):1423-9. [PubMed ID: 23618345]. <https://doi.org/10.1016/j.chemosphere.2013.03.049>.

39. Elmolla ES, Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO₂ and UV/H₂O₂/TiO₂ photocatalysis. *Desalination*. 2010;252(1-3):46-52. <https://doi.org/10.1016/j.desal.2009.11.003>.

40. Moussavi G, Fathi E, Moradi M. Advanced disinfecting and post-treating the biologically treated hospital wastewater in the UVC/H₂O₂ and VUV/H₂O₂ processes: Performance comparison and detoxification efficiency. *Process Safe Environ Protect*. 2019;126:259-68. <https://doi.org/10.1016/j.psep.2019.04.016>.

41. Peng M, Li H, Kang X, Du E, Li D. Photo-degradation ibuprofen by UV/H(2)O(2) process: response surface analysis and degradation mechanism. *Water Sci Technol*. 2017;75(12):2935-51. [PubMed ID: 28659534]. <https://doi.org/10.2166/wst.2017.149>.

42. Kumar R, Barakat MA, Al-Mur BA, Alseroury FA, Eniola JO. Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl₂O₄ composite. *J Clean Product*. 2020;246. <https://doi.org/10.1016/j.jclepro.2019.119076>.

43. Hoang NT, Nguyen VT, Minh Tuan ND, Manh TD, Le PC, Van Tac D, et al. Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals. *Chemosphere*. 2022;298:134197. [PubMed ID: 35276111]. <https://doi.org/10.1016/j.chemosphere.2022.134197>.

44. Pignatello JJ, Oliveros E, MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. *Crit Rev Environ Sci Technol*. 2006;36(1):1-84. <https://doi.org/10.1080/10643380500326564>.

45. Serpone N, Horikoshi S, Emeline AV. Microwaves in advanced oxidation processes for environmental applications. A brief review. *J Photochem. Photobiol. C: Photochem. Rev.* 2010;11(2-3):114-31. <https://doi.org/10.1016/j.jphotochemrev.2010.07.003>.

46. Sun Y CH&XS1,HD. Matrix effects on the photodegradation of antibiotics in natural waters: A review. *Environmental Science Processes Impacts*. 2017;19:1044-58.

47. Ribeiro ARL, Moreira NFF, Puma GL, Silva AMT. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. *Chem Eng J*. 2020;199:155-73. <https://doi.org/10.1016/j.cej.2019.01.080>.

48. Moussavi G, Hossaini H, Jafari SJ, Farokhi M. Comparing the efficacy of UVC, UVC/ZnO and VUV processes for oxidation of organophosphate pesticides in water. *J Photochem Photobiol Rev*. 2014;290:86-93. <https://doi.org/10.1016/j.jphotochem.2014.06.010>.

49. Imoberdorf G, Mohseni M. Kinetic study and modeling of the vacuum-UV photoinduced degradation of 2,4-D. *Chem Engin J*. 2012;187:114-22. <https://doi.org/10.1016/j.cej.2012.01.107>.

50. Barrera M. *Photochemical treatment of organic constituents and bacterial pathogens from synthetic slaughterhouse wastewater by combining vacuum-UV and UV-C* [thesis]. Toronto, Canada: Toronto Metropolitan University; 2011.

51. Benitez FJA, Real F, J, Roldán G. Kinetics of the transformation of phenolic compounds by UV/H₂O₂. *Water Res*. 2002;36(4):1034-42.

52. Ma J, Lv W, Chen P, Lu Y, Wang F, Li F, et al. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways. *Environ Sci Pollut Res Int*. 2016;23(14):14294-306. [PubMed ID: 27055889]. <https://doi.org/10.1007/s11356-016-6451-5>.

53. Benitez F, Acero JL, Real FJ, Roldan G, Casas F. Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices. *Chem Engin J*. 2011;168(3):1149-56. <https://doi.org/10.1016/j.cej.2011.02.001>.

54. Tran ML, Fu C, Jiang R. Effects of water matrix components on degradation efficiency and pathways of antibiotic metronidazole by UV/TiO₂ photocatalysis. *J Molecul Liquids*. 2019;276:32-8. <https://doi.org/10.1016/j.molliq.2018.11.155>.

55. Hinojosa Guerra MM, Oller Alberola I, Malato Rodriguez S, Aguera Lopez A, Acevedo Merino A, Quiroga Alonso JM. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. *Water Res*. 2019;156:232-40. [PubMed ID: 30921539]. <https://doi.org/10.1016/j.watres.2019.02.055>.

56. Giri AS, Golder AK. Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: Degradation mechanisms and iron chelation. *J Environ Sci*. 2019;80:82-92. [PubMed ID: 30952355]. <https://doi.org/10.1016/j.jes.2018.09.016>.

57. Li J, Pan L, Yu G, Xie S, Li C, Lai D, et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation. *Sci Total Environ*. 2019;654:1284-92. [PubMed ID: 30841401]. <https://doi.org/10.1016/j.scitotenv.2018.11.013>.