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Abstract

Background: This study investigates the efficiency of the advanced oxidation process VUV/H,0- for removing the antibiotic
from tetracycline (TC) aqueous solutions.

Methods: The process uses a low-pressure vacuum ultraviolet (VUV) lamp emitting at 185 nm and 254 nm to degrade TC. The

addition of hydrogen peroxide (H202) enhances the generation of hydroxyl radicals (OH*), which are the main agents
responsible for the degradation. Various operational parameters were evaluated, including pH (5-7-9), initial TC concentrations
(5,10, and 20 mg(L), H20> concentrations (1-10 mg/L), as well as the presence of anions and organic compounds.

Results: Results showed that the highest removal efficiency of TC (100%) was achieved at pH 7 with 2 mg|/L of H»0 after 90
minutes of treatment. Increasing the H,O, concentration beyond the level of 10 mg/L reduced the efficiency slightly to around
90.55% due to scavenging effects. In the absence of H,02, the VUV process alone removed about 60% of TC. The presence of anions
such as phosphate, chloride, and sulfate led to decreases in removal efficiency by 29.4%, 13.4%, and 15.6%, respectively. Among the
tested organic compounds, phenol and humic acid exhibited the most pronounced inhibitory effects. The degradation kinetics
followed a pseudo-first-order model (R* = 0.9942), indicating a consistent and predictable reaction behavior. Under optimal
conditions, the removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 78% and 40%,
respectively.

Conclusions: In conclusion, the study demonstrated that the VUV/H20. process is an effective and tunable method for the
degradation and mineralization of TC in contaminated water.
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1. Background

A significant group of environmental contaminants
that may pose risks to human or ecological health are
emerging pollutants, which include pharmaceuticals,

personal care products (PPCPs), and endocrine-
disrupting chemicals (EDCs) (13). Sources of
pharmaceutical chemicals entering the aquatic

environment include pharmaceutical industrial waste,
human and animal excrement, and hospital wastewater.
In wastewater, groundwater, surface water, and drinking
water, various pharmaceuticals including antibiotics
have been detected at concentrations ranging from

mg/L to ng/L (3-8). Tetracycline (TC) antibiotics are
broad-spectrum  antibiotics  widely used in
pharmaceuticals. They are primarily used to treat
human illnesses but are also added to animal feed to
prevent disease and promote growth (9, 10). TC
consumption is estimated to reach 5,500 tons annually
in the USA and Europe, with up to 90% of ingested TC
excreted in urine (11, 12). Reported concentrations of TC
in surface and groundwater reached 0.15 pg|L (13, 14).
Therefore, the presence of TC in the environment may
contribute to the development of bacterial antibiotic
resistance and threaten ecological stability and human
health (15, 16).
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Various techniques have been applied to remove TC
from aquatic environments, including activated carbon,
membrane filtration, adsorption, and advanced
oxidation processes (AOPs) (17, 18). AOPs are oxidation
technologies used to degrade both organic and
inorganic pollutants in water, relying on the generation
of highly reactive radicals such as hydroxyl radicals

(OH®) (19, 20). The AOPs are classified into two main
groups: (1) Photochemical AOPs and (2) non-
photochemical AOPs (21, 22). Examples of AOPs applied
for antibiotic removal include UV/Os, UV/VUV, and
UV[H20. processes (23-25).

In the VUV process, vacuum ultraviolet (VUV)
radiation is emitted at wavelengths of 185 nm (~10%)
and 254 nm (~90%) (2). One advantage of the VUV
technique is that it does not require additional chemical
oxidants (26). In crude water, only 48% of the 254 nm
radiation is absorbed, compared to 99% of the 185 nm
radiation (27). Key reactions in the VUV|water process
include the photochemical ionization using Equation 1
and homolysis of water using Equation 2, which
generate reactive radicals responsible for contaminant
degradation (28).

H;O0 + hv185nm — HOe + H' + e )
()

In the VUV/|water process, the addition of hydrogen

peroxide (H202) as a strong oxidant not only generates

H>0 + hv185nm — 2HOe + He

highly oxidizing hydroxyl radicals (HO®) through the
photolysis of water at 185 nm, but also produces HO® via
the photolysis of H,0 induced by VUV radiation at 185
and 254 nm, using Equations 3 and 4 (2, 27).
H205 + hv 185 nm — 2HQe

H>02 + hv254nm — 2HOe

3)

(4)
In the VUV/H20; process, the photolysis of hydrogen
peroxide (H20) by 185 and 254 nm radiation generates

additional hydroxyl radicals (HO®), which accelerates
the degradation of pollutants (2, 27). Recently,
significant attention has been paid to the use of vacuum
ultraviolet (VUV) irradiation for the removal of various
organic pollutants from water. This process produces

HO°® radicals through the photoionization of H.02 and
water (H20), as well as the homolysis of water molecules
(Reactions 1 and 2) (2, 27, 28). The addition of H20: as a

strong oxidant enhances HO® generation, thereby
increasing the degradation rate of contaminants (29).

This study investigated the degradation of TC using
the VUV[H20 process with a 6 W low-pressure UV lamp
(OSRAM Co.). The objective was to evaluate the efficiency
of VUV radiation and the VUV/H;0, process for TC
degradation and mineralization under various
conditions, including solution pH, reaction kinetics,
presence of anions, H202 concentration, and initial TC
concentration. Additionally, the effects of several
organic compounds such as phenol, oxalic acid, humic
acid, and ethylenediaminetetraacetic acid (EDTA) as well
as other water contaminants on TC degradation were
examined over different reaction times, and the
formation of intermediate by-products was identified.

2. Materials and Methods

2.1. Reagents

The following analytical-grade chemicals
acquired from Merck Co.. 30% hydrogen peroxide,
sulfate, phosphate, TC, chloride, phenol, oxalic acid,
humic acid, para-chlorobenzoic acid, sulfuric acid, and

sodium hydroxide.

were

2.2. Experimental Setup and Procedure

A batch-type cylindrical quartz glass reactor was used
for all experiments (Figure 1). The reactor had a working
volume of 200 mlL, a height of 290 mm, an inner
diameter of 50 mm, and an outer quartz tube diameter
of 40 mm. The inner walls of the reactor were wrapped
with aluminum foil to prevent external UV penetration.
A 6-W low-pressure VUV lamp (OSRAM, Germany) was
placed at the center of the reactor. The lamp emitted
radiation at two wavelengths: 254 nm (approximately
90% of total output; intensity: 56 yW cm™2 at 1 cm) and
185 nm (approximately 10% of output; intensity: 5 uW
cm™ at 1 cm). During operation, the solution was
continuously mixed using a magnetic stirrer at 100 rpm.

The effects of various operating parameters were
investigated, including pH (5, 7, 9), TC concentrations (5,
10, 20 mg|L), and hydrogen peroxide concentrations (1,
2,3, 4, 5,10 mg(L). Radical scavenging experiments were
conducted using phosphate ions, EDTA (1 mM) as a hole
(h*) scavenger and chelating agent, benzoquinone (BQ; 3
mM) as a superoxide radical (¢O2") scavenger, and tert-

butyl alcohol (TBA; 10 mM) as a hydroxyl radical (HO*)
scavenger. A mixture of anions present in tap water was
also tested. Para-chlorobenzoic acid (pCBA) was used as

a chemical probe to quantify hydroxyl radical (HO*®)

Health Scope. 2026; 15(2): e166617
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Figure 1. The schematic of VUV/H,0, experimental setup

concentration. For HO® measurements, 200 mL of pCBA
solution containing 2 mg/L H,0, was irradiated, and 0.5
mL samples were withdrawn every 3 minutes for high-
performance liquid chromatography (HPLC) analysis.

The HO® concentration was calculated using Equation 5
(30).
In(pCBAt / pCBAO)

[HOe]= KOH ot ©)

[HOe] =is all concentration of hydroxide radical

PCBA; = pCBA concentration (mg/L) at the time t of
the reaction.

PCBAo = pCBA concentration (mgj/L) at the beginning
of the reaction.

KHOet = Constant reaction of hydroxyl radical with
parachlorobenzoic acid

(kHOe, pCBA=5.0 x109 M1 s7").

2.3. Analytical Methods

Because TC degradation may produce various
intermediate compounds that can interfere with UV-Vis
spectrophotometric measurements, HPLC was used to
ensure accurate and selective quantification of TC. All
samples collected from the reactor were immediately
filtered and analyzed using an Agilent 1260 Infinity
HPLC system equipped with a UV|Vis diode array
detector and a ZORBAX Eclipse Plus C18 column (4.6 x
100 mm, 3.5 um). For TC degradation experiments, 1 mL

Health Scope. 2026;15(2): 166617

aliquots were withdrawn at predetermined time
intervals (every 5 - 10 minutes), filtered through 0.22 pm
syringe filters, and injected directly without storage. TC
was quantified at 359 nm using an isocratic mobile
phase composed of 75% 0.01 mol L™ oxalic acid and 25%
acetonitrile at a flow rate of 1.0 mL min™, with an
injection volume of 20 yL. The degradation of pCBA was
monitored using the same HPLC system with UV
detection at 240 nm. An isocratic mobile phase
consisting of 50% acetonitrile (containing 0.5% formic
acid) and 50% ultrapure water (containing 0.5% formic
acid) was used at a flow rate of 1.0 mL min™ and an
injection volume of 100 pL. Calibration curves for TC
and pCBA were prepared using standard stock solutions
and serial dilutions covering the analytical
concentration range. Both analytes showed excellent
linearity (R? > 0.999). All samples were filtered before
analysis to prevent column blockage and ensure high
reproducibility. The solution pH was adjusted using
diluted H2SO4 or NaOH and measured with a Philips PW
9422 pH meter.

Chemical oxygen demand (COD) was determined as
an indicator of the oxygen required to oxidize organic
matter to CO2 and H20 under acidic conditions using
strong chemical oxidants. Measurements were
performed wusing COD low-range vials and a
spectrophotometer at 430 nm. Total organic carbon
(TOC) represents the amount of carbon present in an
organic compound and is used as an indirect indicator
of water quality. TOC analysis was performed before and
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Figure 2. Effect of solution pH on tetracycline (TC) degradation in VUV/H20; process (TC =10 mg/L; solution pH = 5, 7, and 9; reaction time = 90 min; concentration H20 = 10

mg|L)

after treatment under optimal operating conditions to
evaluate the mineralization of TC. Samples were
collected at 0, 5, 30, and 90 minutes, and the
degradation and mineralization efficiencies were
calculated using Equations 6 and 7 TOC measurements
were conducted using an ACQURAY TOC analyzer
(Elementar, Germany) following the hightemperature
combustion method (31, 32). Residual hydrogen
peroxide was measured spectrophotometrically at 410
nm using titanium (IV) oxysulfate according to DIN
38402 Hi5. All experiments were conducted in triplicate
(n=3).

(Ci_ Ce)

Tetracycline degradation = Ci x 100 (6)

Ci: Initial tetracycline concentration (mgj/L)
Ce: Final concentration of tetracycline (mgj/L)
(TOCE _ TOCe)

TOC removal percentage = x 100
(TOCY) )

TOCi: Initial TOC concentration (mgj/L)
TOCe: Final concentration of TOC (mgj/L)

4. Results and Discussions

3.1. Effect of pH

The effect of pH on the removal efficiency of TC (10
mg/L) was evaluated in VUV[HO, processes, with H20,
at 10 mg|L and a reaction time of 90 min (Figure 2). The

removal efficiencies in the VUV/H20; process were 88.6%,
91.3%, and 93.2% at pH 5, 7, and 9, respectively. Standard
deviations were below 3%.

The decrease in removal efficiency under alkaline
conditions is mainly due to the formation of
hydroperoxide anions (HO2") from H20» decomposition,

which react with residual H20, and OH® radicals,

thereby reducing the availability of OH®, using
Equations 8 - 10 (2, 33). Additionally, at high pH, H20:
photodecomposes to water and oxygen rather than

producing OH* radicals, using Equation 11 (34, 35):

H,0; <> HOy + H* (8)

(9)
(10)

(11)

TC is an amphoteric molecule, and its speciation
depends on pH: It is predominantly positively charged
at acidic pH (~4) and negatively charged at alkaline pH
(~9). At neutral pH (pH 7), TC exists mainly in a
zwitterionic form, which provides a balance between its

H;0; + HOz- — OHe + H30+ O,
OHe + HOy — H0 + O
2H>02 + hv — H20 + O2

interaction with OH* radicals and solubility, resulting in
optimal degradation (36-38). This explanation aligns
with previous studies, such as Elmolla and Chaudhuri,
who reported increased degradation of amoxicillin
(AMX) at neutral to slightly alkaline pH using UV/|TiO.
and UV[H20.[TiO2 processes (39). Therefore, pH 7 was
selected as the optimal condition because it provides a

Health Scope. 2026; 15(2): e166617
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Figure 3. Efficiency of VUV/H202, H202 consumption, and synergistic effect of VUV/H20. (TC =10 mg|L, pH =7, Time = 90 min)

favorable balance between TC speciation and OH°
availability, ensuring efficient degradation without
significant radical scavenging or photodecomposition
losses.

3.2. Effect of H,02 Concentration

Impact of concentration of H20, 10 mg/L TC
degradation was studied at pH = 7 and for a reaction
duration of 90 minutes. According to Figure 3, in order
to assess the effects of different hydrogen peroxide
concentrations (1, 2, 3, 4, 5, and 10 mg/L), the synergistic
effect of VUV/H20, and the optimal hydrogen peroxide
concentration. The TC removal rate in the VUV[/H20,
process, using only different concentrations of H20 (1,
2,3, 4, 5, and 10 mg|L), was found to be (2.48, 4.76, 5.95,
6.09, and 6.64%), respectively, and to be (83.54, 100,
93.48, 92.4, 91.35, and 90.55%).

Using Equations 1 and 2 according to the hydroxyl
radicals produced during water photolysis and water
molecules photoionization, TC removal rate of 60%
during the photolysis process (in the absence of H20)
can be attributed (33, 40). Because there were more
hydroxyl radicals produced, the removal effectiveness of
TC in the VUV[H20; process increased from 60% to 100%
as the hydrogen peroxide concentration, using
Equations 3, 4, and 12, increased from 0 to 2 mg/L. When
the concentration of H202 was increased from 3 to 10
mg|L, the efficiency of TC removal in the VUV/H.0,
process reduced from 100% to 90.55%. This results in the

Health Scope. 2026;15(2): €166617

creation of water and the scavenger HO,*, which are
weaker than hydroxyl radicals, as well as an
overreaction of hydrogen peroxide with hydroxyl
radicals, using Equations 13, 14, and 15. The

recombination of increased HO®% to create H20,, using
Equations 15 and 2 is another factor contributing to the
loss in TC removal efficiency in the VUV/H20, process
with an increase in H2O2 concentration from 3 to 10
mg[L. Another explanation for the decrease in TC
removal effectiveness in the VUV/H20; process when the
concentration of H»0; is increased from 3 to 10 mg|L is
the high dose of hydroxyl radicals combining to
generate H20», using Equation 15.
H;O, + e — OHe + OH™ (12)
Equation 13.

OHe + H30; — HOze + H20 (13)

(14)

(15)
The synergistic effect of adding H»0, to the VUV
process, from Equation 16 is used:

HO2e + OHe — H>0 + O2
OHe + OHe — H>0>

Synergisticeffect = RVUV | Hz0,
— RVUV + RH>0: (16)
At 120 minutes into the VUV process (photolysis), the

TC removal rate was 60%; however, when H,0; = 2 mg/L
is added to the VUV process (VUV/H202), the TC
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Table 1. Kinetic Equations for for the TC Degradation

Kinetic Models Values
Zero-order CoC=kit
First-order Ln(Cy/C,)=-k.t
Second-order 1/Ce-1/Cy =kt

degradation rate is 4.76 and 100%, respectively. Thus, a
35.44% synergistic impact of VUV/H,0, was obtained
according to Equation 16. As a result, the ideal surface
was determined to be 2 mg/L of hydrogen peroxide
concentration. Peng et al. looked into the ibuprofen
degradation process using UV/H20:. They discovered
that when H»O, concentration increased, ibuprofen
degradation increased from 0.1 to 0.6 mM. In their
investigation, 0.54 mM  hydrogen  peroxide
concentration was found to be the optimal surface, and
it was chosen (41). In the VUV/H,0. process, it took 315,
120, 140, 165, 180, and 210 minutes, respectively, to reach
the removal efficiency of 100% TC at various hydrogen
peroxide concentrations (1, 2, 3, 4, 5,and 10 mg|L).

3.3. Kinetics of VUV/H202 and VUV Processes

Kinetics plays an essential role in evaluating the rate
of pollutant degradation over time, as it provides
valuable insight into the oxidation mechanisms,
reaction pathways, and process optimization. In this
study, the kinetic behavior of degradation by the
VUV/H202, and VUV processes was investigated at
different reaction times (5, 15, 30, 45, and 60 min) under
the following conditions: Initial TC concentration of 10
mg/L, pH 7, and 2 mg/L of H;0,. To analyze the
degradation behavior, zero-order, pseudo-first-order,
and pseudo-second-order kinetic models were applied.
The corresponding kinetic equations are summarized in
Table 1 (42), where Co denotes the initial TC
concentration, Co is the concentration at time t, k is the
rate constant, and t represents the reaction time. The
goodness of fit between experimental data and the
kinetic models was assessed using the coefficient of
determination (R?). According to the results, TC removal
by both VUV/H20, and VUV processes followed a pseudo-
first-order kinetic model, as evidenced by the higher R?
values (0.9942-0.9948) compared with the other models
(Table 2). In pseudo-first-order reactions, the reaction
rate depends solely on the concentration of one
reactant, which is consistent with the linear
relationship observed between In(C/Co) and reaction

time. Similar findings were reported by Hoang et al.,
who studied dye degradation using UV/persulfate and
demonstrated that the removal kinetics in UV-based
AOPs also follow a pseudo-first-order model (43).

34. Effect of Anions on Degradation of Tetracycline in
VUV/H202 and VUV Process

The effects of various anions, including phosphate,
sulfate, chloride, tert-butanol, and municipal water,
each at a concentration of 1 mM in 200 mL of TC
solution, on the reduction of TC removal efficiency
under the optimized operating conditions (time = 90
min, H202 = 2 mg|L, pH =7, TC = 10 mg|L, wavelength =
359 nm) were investigated in both the VUV and
VUV[H20: processes (Figure 4A and 4B). As shown in
Figure 4A, the removal efficiency of TC in the VUV
photolysis process was approximately 60% in the
absence of anions. However, the presence of sulfate,
chloride, municipal water, tert-butanol, and phosphate
caused a substantial decrease in TC removal efficiency,
reducing it to 3.84%, 3.96%, 4.22%, 6.22%, 6.44%, and 24.4%,
respectively. According to Figure 4B, the VUV/H;0.
system achieved complete TC removal (100%) in the
absence of anions; nevertheless, its efficiency was also
notably inhibited by the same anions. In the presence of
phosphate, chloride, sulfate, municipal water, and tert-
butanol, the TC removal efficiency dropped to 2.74%,
13.4%,15.6%,20.6%, and 29.4%, respectively.

The observed inhibition in both processes aligns with
previous findings demonstrating that inorganic anions
and natural water constituents often act as scavengers

of hydroxyl radicals (HO®) or participate in competing
side reactions, thereby diminishing the efficiency of

AOPs. In the VUV and VUV[H20, systems, HO® radicals are
the dominant oxidizing species responsible for TC
degradation. Anions such as phosphate and sulfate
readily react with HO®, forming less reactive radical
species and consequently lowering the available

concentration of HO®. This behavior has been
extensively documented in earlier studies. For instance,

Health Scope. 2026; 15(2): e166617
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Table 2. Kinetic Parameters for TC Degradation Using VUV[H202 and VUV Process

Zero-Order

Pseudo-First-Order

Pseudo-Second-Order

Processes
K, R? K,

R K, R?

VUVH,0, 0.0083 0.9345

Vuv 0.0062 0.9892

sulfate ions convert HO® into sulfate radicals (SO4°”),
which possess lower oxidation potential and slower
reactivity toward organic contaminants. Similarly,

chloride reacts with HO*® to form chlorine-based radicals
(CI*, Clz* ), which exhibit weaker oxidizing capabilities,
as noted by Pignatello et al. and Serpone et al. (44, 45).
The strong inhibitory effect of tert-butanol, an

established selective scavenger of HO®, further confirms
that hydroxyl radicals are the principal oxidizing
species in both systems. Moreover, the reduced TC
degradation observed in municipal water highlights the
influence of real water matrices, which often contain
bicarbonate, natural organic matter (NOM), chloride,

phosphate, and other ions that compete for HO®
radicals. Similar matrix effects have been reported by
Sun et al. and Ribeiro et al., emphasizing that water
quality plays a crucial role in AOP performance (46, 47).
Overall, these findings demonstrate that non-target
anions significantly suppress TC degradation in both
VUV and VUV[H20. processes, although the inhibitory
effect is less pronounced in the VUV/H20 system due to

the continuous photolytic generation of HO® from
hydrogen peroxide. The reduction in removal efficiency
can be attributed to two primary mechanisms: (A)

Direct scavenging of HO® radicals by anions and (B)
absorption of UV radiation by the anions, which

decreases the formation of HO® available for TC
oxidation (27, 33, 48, 49). Representative reactions
include:
S04 + OHe — SOse™ + OH

(K =1/5 x 10°M7 s (17)

POy—2+ OHe — POe 4y + OH- (18)

3.5. Effect of Organic Compounds on Degradation of
Tetracycline in VUV/H20, and VUV Process

Under optimal conditions—reaction time of 90
minutes, H,0, concentration of 2 mg/L, pH 7, TC

Health Scope. 2026;15(2): €166617

0.0253

0.0098

0.9942 0.0885 0.9578

0.9948 0.016 0.9849

concentration of 10 mg/L, and irradiation wavelength of
359 nm—the effects of various organic compounds,
including phenol, EDTA, oxalic acid, and humic acid,
were investigated in the VUV/H20; process. Each organic
compound was added at a concentration of 1 mM to 200
mL of TC solution. As illustrated in Figure 5, complete
degradation of TC (100%) was achieved in the absence of
organic compounds. The presence of these organics,
however, decreased the TC removal efficiency as follows:
Oxalic acid (96.7%), EDTA (67.7%), phenol (25%), and
humic acid (10.7%). Among them, phenol and humic acid
exhibited the most pronounced inhibitory effects. This
reduction in efficiency is attributed to the competition
between the organic molecules and TC for hydroxyl

radicals (OH®) generated during the VUV/H20, process
(50).

3.6. Total Organic Carbon and Chemical Oxygen Demand
Removal

To further evaluate the effectiveness of the VUV/H20,
process, the removal efficiencies of COD and TOC were
examined. The findings demonstrated that both
parameters increased steadily with reaction time,
achieving maximum removal rates of 78% for COD and
40% for TOC under the optimized conditions.
Identifying the final degradation products in AOPs is
important because the ideal outcome is the complete
mineralization of organic pollutants to COz and HO. In
this study, the relatively lower COD and TOC reductions
compared with the disappearance of the antibiotic
suggest that a portion of TC was converted into
intermediate compounds rather than being fully
mineralized.

3.7. Classification of Different Advanced Oxidation Processes
for the Removal of Antibiotics

Table 3 summarizes previous studies that have
compared different AOPs for antibiotic degradation. The
table includes information on the target antibiotic
compounds, removal efficiencies, and key operational
parameters such as pH, catalyst dosage, reaction time,
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Figure 4. Effect of anions on tetracycline degradation: A, in the VUV/H202 process (TC =10 mg/L, pH =7, t = 90 min, H02 =2 mg/L); B, in the VUV process (TC=10 mg|L,pH=7,t=
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Figure 5. Effect of organic compounds on performance of the VUV/Hz0: process in tetracycline (TC) degradation (time = 90 min, H202 = 2 mg|L, pH =7, TC =10 mg|L, and organic

compound concentration =1mM)

and initial contaminant concentrations. As illustrated,
the performance of AOPs varies widely depending on
the conditions under which they are applied. In this
regard, the results of the present work—achieving
complete (100%) TC removal under optimized VUV/H20;
conditions—demonstrate the strong capability of this
process compared with other reported AOPs.

4. Conclusions

The results of this study show that the VUV/H;0,
process is highly efficient in removing tetracycline from
aqueous solutions. Under the optimized operating
conditions (pH 7 and 2 mg/L H,0.), complete removal
was achieved within 90 minutes. When the H20:

concentration was increased above 10 mg|L, the removal
efficiency decreased slightly to about 90.55%, likely due
to the scavenging effect associated with excess hydrogen
peroxide. In contrast, the VUV process used without
H:0- resulted in only about 60% removal, underscoring
the significant contribution of H;0. in enhancing
degradation. The presence of common anions such as
phosphate, chloride, and sulfate reduced the removal
efficiency by 29.4%, 13.4%, and 15.6%, respectively. The
degradation kinetics were well described by a pseudo-
first-order model (R? = 0.9942), suggesting a consistent
and predictable reaction pattern. Overall, these findings
confirm that the VUV/Hz0. system is an effective and
environmentally friendly approach for eliminating

Health Scope. 2026;15(2): 166617
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Table 3. Advanced Processes Applied by Different Authors for the Reduction of Antibiotics
Processes Target Antibiotics Conditions Removal (%) Reference
UV/H:0; Tetracycline (TC) UV 254 nm; H>02 =10 - 50 mg|L 80-95% (51)
TiO,/UV photocatalysis Ciprofloxacin (CIP)  TiO»(0.5-1g/L); UV365 nm 75-90% (52)
03/H202 process Amoxicillin (AMX) 03 flow: 16 mg.h-1; H202=10 uM; T=20 C ~100% in all cases  (53)
. Metronidazole . . . . < ~88% in max 30
TiO2/UV (MTR) TiO2 =15 g[L; UV light intensity = 6.5 mW cm™ i (54)
Photo-Fenton processes Amoxicillin (AMX) H202 = 0.08 mM; Fe3+ = 0.05 mM; Natural solar radiation (pilot-plant Scale CPC 90%in 9 min (55)
photoreactor); pH=7-8
Photo-fenton processes Ciprofloxacin (CPR) ;llio:z;_sg'zs Gz pressiigmerctiylampBeinm) E2alG Ee2iss0 25, 93%in 45 min (56)
Heterogeneous fenton-like . . . o
process Ciprofloxacin (CPR) H202=10-100 mM; Sludge Biochar Catalyst (SBC)=0.2g/L; pH=2-12 90%in4h (57)
VUV/H-0: Tetracycline (TC) H:0; =2 mg|L; Time= 90 min; pH 7 100% This study

persistent antibiotics and other pollutants from
industrial wastewater. Future studies should further
examine its performance in real wastewater conditions,
evaluate long-term operational stability, and identify
possible degradation intermediates.
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