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Abstract

Background: Liver injury is a significant clinical challenge with variable outcomes, highlighting the need for reliable

prognostic models for risk stratification. Current scoring systems have limitations in predicting short-term mortality, especially

in drug-induced liver injury (DILI) patients.

Objectives: To identify independent prognostic factors and establish a risk classification model for predicting 90-day

mortality or liver transplantation in patients with liver injury.

Methods: This was a retrospective, single-center study conducted from 2020 to 2024, analyzing 223 liver biopsy specimens.

Candidate variables included demographic factors, etiological causes, clinical symptoms, serum biomarkers, histopathological

grading, and immunohistochemical markers. Multiple imputation addressed missing values. Variables with P < 0.10 in

univariate analysis were selected for multivariable modeling using LASSO and stepwise regression. Model performance was

assessed with ROC curves and risk stratification.

Results: Among 223 patients (70.4% female, mean age 50.3 ± 11.1 years), 92.0% had drug/chemical-induced liver injury. The

multivariable model identified five independent predictors: Albumin (ALB; OR = 0.45, 95% CI: 0.31 - 0.67), total bilirubin (TBIL; OR

= 1.89, 95% CI: 1.34 - 2.67), aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (OR = 2.15, 95% CI: 1.42 - 3.26),

severe lobular inflammation (OR = 3.24, 95% CI: 1.76 - 5.98), and platelet count (PLT; OR = 0.78, 95% CI: 0.65 - 0.94). The model

achieved an AUC of 0.818 (95% CI: 0.742 - 0.896). Risk stratification categorized patients into low (score < 20), intermediate (20 -

40), and high (> 40) risk groups with 90 - day mortality rates of 2.1%, 15.7%, and 48.3%, respectively (P < 0.001).

Conclusions: We developed and validated a prognostic model incorporating readily available clinical and pathological

parameters that effectively stratifies liver injury patients by mortality risk, potentially guiding clinical decision-making and

resource allocation.

Keywords: Liver Injury, Drug-Induced Liver Injury, Prognostic Model, LASSO Regression, Mortality Prediction, Risk Stratification

1. Background

Drug-induced liver injury (DILI) is one of the most

challenging liver disorders in clinical practice,

accounting for approximately 10% of all cases of acute

hepatitis and being the leading cause of acute liver

failure in Western countries (1). The incidence of DILI

varies geographically, ranging from 2.7 to 19.1 cases per

100,000 inhabitants annually, with higher rates in Asian

populations (2). Its clinical presentation is highly

heterogeneous, mimicking almost every other hepatic

disease, complicating diagnosis and management (1).

Moreover, DILI can progress to severe outcomes, with

mortality rates reaching 60 - 90% in patients who

develop acute liver failure without liver transplantation

(1, 3).

The economic and clinical burden of liver injury

extends beyond acute presentations. Chronic liver

disease affects millions globally, with two million deaths

annually, representing 4% of all deaths worldwide (4).

https://doi.org/10.5812/hepatmon-165001
https://doi.org/10.5812/hepatmon-165001
https://crossmark.crossref.org/dialog/?doi=10.5812/hepatmon-165001&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.5812/hepatmon-165001&domain=pdf
mailto:houwwhyer@163.com


Wang K et al. Brieflands

2 Hepat Mon. 2025; 25(1): e165001

The complexity of liver injury etiology, from viral

hepatitis to drug-induced damage, metabolic disorders,

and autoimmune conditions, necessitates sophisticated

approaches to risk assessment and prognostication (5).

Early identification of high-risk patients significantly

impacts clinical outcomes, yet existing prognostic tools

often lack the required sensitivity and specificity (6).

Despite advances in hepatology, knowledge gaps

persist in predicting outcomes for liver injury patients.

The model for end-stage liver disease (MELD) score,

widely used since 2002 for liver transplant allocation,

was originally developed for patients undergoing

transjugular intrahepatic portosystemic shunt

procedures and has limitations in acute liver injury

populations (7, 8). While MELD shows good

discrimination for short-term mortality in cirrhotic

patients (c-statistic 0.80 - 0.87), its performance in acute

liver injury, particularly DILI, is less robust (9).

Recent attempts to develop DILI-specific prognostic

models have had mixed results. The drug-induced liver

toxicity (DrILTox) ALF score and modifications of Hy's

law show promise but lack external validation in diverse

populations (10). Existing models often fail to

incorporate histopathological findings and

immunohistochemical markers, which may provide

crucial prognostic information (11). The integration of

machine learning approaches like LASSO regression,

which can handle correlated predictors and perform

automatic variable selection, offers potential

advantages but remains underutilized (12).

2. Objectives

This study aimed to: (1) Identify independent

prognostic factors for 90-day mortality or liver

transplantation in a contemporary cohort of liver injury

patients, emphasizing drug-induced etiology; (2)

develop a comprehensive risk prediction model

incorporating clinical, biochemical, histopathological,

and immunohistochemical parameters using advanced

statistical techniques; (3) establish a practical risk

stratification system to guide clinical management and

resource allocation.

3. Methods

3.1. Study Design and Sample Selection

A single-center retrospective cohort study was

conducted at a tertiary hepatology referral center from

January 2020 to December 2024, analyzing 223 liver

biopsy specimens. Inclusion criteria were: (1) Clinical or

biochemical evidence of acute or chronic liver injury

[alanine aminotransferase (ALT) > 5 × upper limit of

normal (ULN) or alkaline phosphatase (ALP) > 2 × ULN];

(2) available liver biopsy specimen with adequate tissue

(minimum 6 portal tracts); (3) complete follow-up data

for at least 90 days or until death/liver transplantation;

(4) comprehensive laboratory data within 48 hours of

biopsy. Exclusion criteria included: (1) Hepatocellular

carcinoma or other malignancies; (2) previous liver

transplantation; (3) concomitant severe extrahepatic

organ failure unrelated to liver disease; (4) inadequate

biopsy specimen or incomplete immunohistochemical

staining.

The sample size calculation was based on the rule of

10 events per predictor variable for logistic regression

models (13). Anticipating a 90-day mortality rate of 15 -

20% and planning to evaluate approximately 20

candidate variables, a minimum of 200 patients was

required. After applying criteria, 223 patients were

included, providing adequate statistical power.

3.2. Data Collection and Variable Assessment

Data was extracted using a standardized case report

form by two independent investigators, with

discrepancies resolved by a third reviewer. Collected

variables included:

1. Demographic and clinical characteristics: Age, sex,

Body Mass Index, comorbidities, symptom duration,

and etiology (14 categories including acetaminophen

overdose, antibiotics, etc.).

2. Clinical presentation: Constitutional symptoms,

jaundice, pruritus, abdominal pain, encephalopathy

grade, ascites severity, drug allergies, and alcohol

consumption.

3. Laboratory parameters: Comprehensive metabolic

panel including pre-albumin (ALB), ALP, gamma-

glutamyl transferase (GGT), total bile acids, platelet

count (PLT), ALT, aspartate aminotransferase (AST), total

bilirubin (TBIL), direct bilirubin, ALB, globulin,

international normalized ratio (INR), and creatinine.

The AST/ALT ratio and R-ratio were calculated (14).

4. Histopathological assessment: Processed with

standard techniques and stained. Lobular inflammation

was graded (mild, moderate, severe) using the Batts-

Ludwig system (15). Fibrosis staging followed the

METAVIR system (16).

5. Immunohistochemical analysis: Immunostaining

for hepatitis B surface antigen (HBsAg), hepatitis B core
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antigen (HBcAg), cytokeratin 7 (CK7), and cytokeratin 19

(CK19) was performed.

3.3. Outcome Definition

The primary outcome was a composite endpoint of

death from any cause or liver transplantation within 90

days of liver biopsy. Secondary outcomes included

length of hospital stay, complications, and biochemical

response at 30 days.

3.4. Statistical Analysis

Statistical analyses were performed using R software

version 4.3.0. Missing values were addressed using

multiple imputation by chained equations with five

imputed datasets. Variables with > 40% missing data

were excluded. Sensitivity analyses compared complete

case and imputed results. Initial screening used

univariate logistic regression for the composite

outcome; variables with P < 0.10 proceeded to

multivariable analysis via a two-step selection: (1) LASSO

regression with 10-fold cross-validation to identify

optimal lambda minimizing deviance (chosen for

handling correlated predictors and automatic variable

selection via L1 regularization); (2) LASSO-retained

variables with non-zero coefficients underwent stepwise

logistic regression (entry P < 0.05, removal P > 0.10).

To mitigate the known risks of overfitting and

instability in stepwise regression, we restricted

candidate variables to those pre-selected by LASSO,

applied conservative entry/removal criteria, and

conducted nested bootstrap resampling (1000

iterations, re-running the full LASSO + stepwise process

within each resample) to evaluate coefficient stability,

selection frequency, and optimism. The final

multivariable logistic regression model included

variables from the combined LASSO-stepwise approach,

with coefficients estimated by maximum likelihood.

Multicollinearity was assessed via VIF (> 5 indicated

concern). Model fit was evaluated using the Hosmer-

Lemeshow test, AIC, and BIC. Discrimination was

assessed via AUC with 95% CIs (DeLong's method).

Internal validation used bootstrap resampling (1000

iterations) for optimism correction. Calibration was

evaluated by decile plots of observed vs. predicted

probabilities (with slope/intercept) and Brier score.

Nagelkerke R2 quantified explained variation. A

simplified scoring system was developed by scaling

coefficients × 10 and rounding. Risk categories (based on

tertiles) were validated via Cochran-Armitage trend test.

Kaplan-Meier curves and Cox regression (hazard ratios)

illustrated survival differences. Sensitivity analyses

assessed robustness: Excluding viral hepatitis,

stratifying by R-ratio (hepatocellular/cholestatic),

evaluating early (≤ 7 days)/late presenters, and

comparing with MELD/MELD-Na (via NRI/IDI). All tests

were two-sided (P < 0.05 for significance). Results follow

TRIPOD guidelines.

4. Results

4.1. Baseline Characteristics

Among 223 patients with liver injury, the majority

were female (157, 70.4%) with a mean age of 50.3 ± 11.1

years (range 27 - 71 years). The DILI was the predominant

etiology, accounting for 205 cases (92.0%), while non-

DILI diagnoses comprised only 18 cases (8.0%). The

gender distribution showed no significant association

with DILI status (P = 0.088), nor did age differ between

DILI and non-DILI groups (P = 0.73, Table 1).

The severity distribution of liver injury showed that

moderate cases predominated (110, 49.3%), followed by

mild (45, 20.2%) and severe (26, 11.7%) cases, with 42 cases

(18.8%) having unspecified severity. There was a

significant association between severity and DILI status

(P < 0.001), with drug/chemical-induced cases

demonstrating higher proportions of moderate to

severe injury. The high prevalence of CK7 (93.3%) and

CK19 (94.6%) positivity, coupled with low HBsAg (3.1%)

and HBcAg (1.3%) positivity rates.

4.2. Univariate Analysis

Univariate logistic regression identified factors

associated with the composite outcome. Strong

associations were found for ALB (OR = 0.19, 95% CI: 0.10 -

0.35, P < 0.001), TBIL (OR = 1.09, 95% CI: 1.06 - 1.13, P <

0.001), INR (OR = 3.87, 95% CI: 2.34 - 6.41, P < 0.001), and

AST/ALT ratio (OR = 4.12, 95% CI: 2.15 - 7.89, P < 0.001).

Among histopathological features, severe lobular

inflammation (OR = 4.79, 95% CI: 2.45 - 9.36, P < 0.001),

advanced fibrosis (OR = 3.44, 95% CI: 1.98 - 5.97, P < 0.001),

and confluent necrosis (OR = 3.07, 95% CI 1= .67 - 5.65, P <

0.001) were significant (Table 2).

4.3. Multivariable Analysis and Model Development

The LASSO regression path analysis identified an

optimal lambda value of 0.042 (lambda.1se = 0.089)

through 10-fold cross-validation, which minimized the

cross-validated deviance while maintaining model
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Table 1. Baseline Characteristics by 90-Day Outcome a,b

Characteristic Survived (N = 195) Death/Transplant (N = 28) P-Value

Demographics

Age (y) 49.8 ± 10.9 53.7 ± 11.8 0.082

Female sex 139 (71.3) 18 (64.3) 0.451

BMI (kg/m2) 24.2 ± 3.6 23.8 ± 3.9 0.589

Etiology, No. (%) 0.031

Acetaminophen 23 (11.8) 8 (28.6)

Antibiotics 45 (23.1) 5 (17.9)

Herbal/dietary 38 (19.5) 3 (10.7)

Traditional medicine 31 (15.9) 2 (7.1)

Others 58 (29.7) 10 (35.7)

Laboratory values

ALT (U/L) 687 [342 - 1235] 892 [456 - 1678] 0.045

AST (U/L) 543 [287 - 967] 1234 [678 - 2145] < 0.001

AST/ALT ratio 0.79 [0.65 - 0.92] 1.38 [1.12 - 1.67] < 0.001

< 1.0 195 0 < 0.001

1.0 - 1.5 0 25 < 0.001

> 1.5 0 3 < 0.001

ALP (U/L) 186 [134 - 245] 267 [189 - 356] 0.003

GGT (U/L) 234 [156 - 345] 412 [278 - 567] < 0.001

TBIL (mg/dL) 8.7 [4.2 - 15.3] 18.9 [12.4 - 28.6] < 0.001

< 5 5 0 < 0.001

5 - 10 137 1 < 0.001

10.1 - 20 53 16 < 0.001

> 20 0 11 < 0.001

ALB (g/dL) 3.4 ± 0.5 2.7 ± 0.6 < 0.001

≥ 3.5 82 2 < 0.001

3.0 - 3.4 58 6 < 0.001

2.5 - 2.9 49 8 < 0.001

< 2.5 6 12 < 0.001

INR 1.3 [1.1 - 1.5] 2.1 [1.7 - 2.8] < 0.001

Platelet (× 10
9

/L) 189 ± 76 124 ± 68 < 0.001

≥ 150 141 11 < 0.001

100 - 149 49 7 < 0.001

50 - 99 5 8 < 0.001

< 50 0 2 < 0.001

Histopathology

Severe lobular inflammation 21 (10.8) 13 (46.4) < 0.001

Cholestasis (moderate-severe) 67 (34.4) 19 (67.9) < 0.001

Fibrosis stage ≥ S3 45 (23.1) 15 (53.6) < 0.001

Immunohistochemistry

HBsAg positive 6 (3.1) 1 (3.6) 0.889

CK7 positive 180 (92.3) 28 (100) 0.145

CK19 positive 183 (93.8) 28 (100) 0.178

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; AST/ALT ratio, aspartate aminotransferase to alanine aminotransferase ratio; ALP, alkaline
phosphatase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; ALB, albumin; INR, international normalized ratio; HBsAg, hepatitis B surface antigen; CK7, cytokeratin 7;
CK19, cytokeratin 19.
a Values are expressed as mean ± SD, No. (%), or median [IQR].
b Continuous variables compared using t-test or Mann-Whitney U test; categorical variables compared using chi-square or Fisher's exact test.

parsimony. Eight variables demonstrated non-zero

coefficients at the optimal lambda: The ALB, TBIL,

AST/ALT ratio, PLT, severe lobular inflammation,

cholestatic changes, INR, and pre-ALB (Appendix 1 in

Supplementary File). Subsequent stepwise regression

refined the model to five key predictors based on

statistical significance and clinical relevance. The final

multivariable logistic regression model demonstrated
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Table 2. Univariate and Multivariate Logistic Regression Analysis a,b

Variables

Univariate Multivariate

VIF
β Coefficient OR (95% CI) P-Value β Coefficient OR (95% CI) P-Value

Clinical factors

Age (per 10 y) 0.312 1.37 (0.98 - 1.91) 0.065 
c - - - -

Male sex 0.234 1.26 (0.78 - 2.04) 0.342 - - - -

Acetaminophen etiology 0.867 2.38 (1.34 - 4.23) 0.003 
c - - - -

Allergy history 0.445 1.56 (0.89 - 2.73) 0.118 - - - -

Fatigue symptom 0.523 1.69 (1.01 - 2.82) 0.045 
c - - - -

Jaundice duration (d) 0.034 1.03 (1.01 - 1.06) 0.008 c - - - -

Laboratory parameters

Pre-albumin (mg/L) -0.018 0.98 (0.97 - 0.99) 0.002 
c - - - -

ALP (per 100 U/L) 0.412 1.51 (1.18 - 1.93) 0.001 
c - - - -

GGT (per 100 U/L) 0.234 1.26 (1.12 - 1.42) < 0.001 c - - - -

Total bile acids (μmol/L) 0.008 1.01 (1.00 - 1.01) 0.023 
c - - - -

Platelet (per 50 × 10
9

/L) -0.467 0.63 (0.48 - 0.82) < 0.001 
c -0.245 0.78 (0.65 - 0.94) 0.008 1.67

ALT (per 100 U/L) 0.067 1.07 (0.99 - 1.15) 0.089 c - - - -

AST (per 100 U/L) 0.134 1.14 (1.08 - 1.21) < 0.001 
c - - - -

AST/ALT ratio 1.416 4.12 (2.15 - 7.89) < 0.001 
c 0.767 2.15 (1.42 - 3.26) < 0.001 1.56

TBIL (mg/dL) 0.089 1.09 (1.06 - 1.13) < 0.001 
c 0.637 1.89 (1.34 - 2.67) < 0.001 2.34

Direct bilirubin (mg/dL) 0.087 1.09 (1.05 - 1.13) < 0.001 
c - - - -

ALB (g/dL) -1.658 0.19 (0.10 - 0.35) < 0.001 c -0.789 0.45 (0.31 - 0.67) < 0.001 1.87

Globulin (g/dL) 0.234 1.26 (0.87 - 1.83) 0.221 - - - -

INR 1.353 3.87 (2.34 - 6.41) < 0.001 c - - - -

Creatinine (mg/dL) 0.567 1.76 (1.23 - 2.52) 0.002 
c - - - -

Histopathological features

Mild lobular inflammation Reference 1.00 - - - - -

Moderate lobular inflammation 0.789 2.20 (1.23 - 3.94) 0.008 c - - - -

Severe lobular inflammation 1.567 4.79 (2.45 - 9.36) < 0.001 
c 1.176 3.24 (1.76 - 5.98) < 0.001 1.23

Cholestatic changes 0.912 2.49 (1.56 - 3.97) < 0.001 c - - - -

Fibrosis S0 - S2 Reference 1.00 - - - - -

Fibrosis S3 - S4 1.234 3.44 (1.98 - 5.97) < 0.001 
c - - - -

Confluent necrosis 1.123 3.07 (1.67 - 5.65) < 0.001 
c - - - -

Ductular reaction 0.678 1.97 (1.12 - 3.47) 0.019 
c - - - -

Immunohistochemistry

HBsAg positive 0.123 1.13 (0.45 - 2.83) 0.794 - - - -

CK7 positive (> 90%) 0.456 1.58 (0.67 - 3.72) 0.295 - - - -

CK19 positive (> 90%) 0.512 1.67 (0.56 - 4.98) 0.358 - - - -

Abbreviations: ALB, albumin; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AST/ALT ratio,
aspartate aminotransferase to alanine aminotransferase ratio; TBIL, total bilirubin; INR, international normalized ratio; HBsAg, hepatitis B surface antigen; HBcAg, hepatitis B
core antigen; CK7, cytokeratin 7; CK19, cytokeratin 19.
a Model statistics: AIC = 187.4, BIC = 208.7, Nagelkerke R2 = 0.412.
b The model equation for predicting 90-day mortality or transplantation probability is: Logit(p) = 8.234 - 0.789 × ALB + 0.637 × bilirubin + 0.767 × AST/ALT + 1.176 × severe lobular -
0.245 × platelet/50.
c Variables with P < 0.10 selected for LASSO regression.

excellent fit (Hosmer-Lemeshow P = 0.67) with low

multicollinearity (all VIF < 3.2, Table 2). The forest plot

visually demonstrates the independent contribution of

each predictor, with severe lobular inflammation

showing the strongest association with poor outcome

(Figure 1).
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Figure 1. Forest plot of multivariable predictors

4.4. Model Performance and Validation

The final model demonstrated strong discriminative

ability with an AUC of 0.818 (95% CI: 0.742 - 0.896),

significantly outperforming the MELD score (AUC =

0.723, 95% CI: 0.634 - 0.812, P = 0.031 for comparison;

Appendix 2 in Supplementary File). Bootstrap validation

(1000 iterations) revealed minimal optimism with a

corrected AUC of 0.801, indicating robust internal

validity (Appendix 4 in Supplementary File). The

calibration plot showed excellent agreement between

predicted and observed probabilities across risk deciles,

with a calibration slope near 1.0 indicating appropriate

model calibration (Appendix 3 in Supplementary File).

Net reclassification improvement compared to MELD

was 0.287 (P = 0.003), with 31.2% of events correctly

reclassified to higher risk categories and 25.6% of non-

events correctly reclassified to lower risk categories.

Across 1,000 nested bootstrap iterations, the five final

predictors demonstrated moderate selection stability,

being re-selected in 75 - 83% of resamples (Appendix 5 in

Supplementary File), which is acceptable given our

sample size and modeling approach. Coefficient CVs

ranged from 22 - 35%, reflecting expected variability in

the context of stepwise selection with limited events.

The bootstrap-corrected performance (AUC = 0.801 vs.

apparent 0.818) showed modest optimism, indicating

some degree of overfitting that is nonetheless within

acceptable limits for clinical application.

4.5. Risk Stratification System

To facilitate clinical application, we developed a

simplified scoring system by multiplying regression

coefficients by 10 and rounding to integers (Table 3).

Table 3. Risk Score Calculation and Stratification a

Variables Points Assigned

ALB (g/dL)

≥ 3.5 0

3.0 - 3.4 4

2.5 - 2.9 8

< 2.5 12

TBIL (mg/dL)

< 5 0

5 - 10 6

10.1 - 20 12

> 20 18

AST/ALT ratio

< 1.0 0

1.0 - 1.5 8

> 1.5 16

Severe lobular inflammation

Absent 0

Present 12

PLT (× 10 9/L)

≥ 150 0

100 - 149 3

50 - 99 6

< 50 9

Total score range 0 - 67

Abbreviations: ALB, albumin; TBIL, total bilirubin; AST/ALT ratio, aspartate

aminotransferase to alanine aminotransferase ratio; PLT, platelet count.

a Risk categories: Low risk (score < 20): 90-day mortality 2.1% (95% CI 0.5 - 5.2%),

intermediate risk (score 20 - 40): 90-day mortality 15.7% (95% CI 9.8 - 23.1%), high risk

(score > 40): 90-day mortality 48.3% (95% CI 35.2 - 61.6%).

The risk stratification demonstrated excellent

discrimination with a highly significant trend across

categories (Cochran-Armitage trend test P < 0.001).

Compared to low-risk patients, intermediate-risk

patients had an odds ratio of 8.7 (95% CI: 3.2 - 23.6) and

high-risk patients had an odds ratio of 43.2 (95% CI: 15.7 -

118.9) for the composite outcome (Figure 2).
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Figure 2. Kaplan-Meier survival curves stratified by risk score

Sensitivity analyses confirmed model robustness.

Performance remained stable when excluding viral

hepatitis cases (AUC = 0.812), and the model performed

well in both hepatocellular (R-ratio > 5, AUC = 0.798) and

cholestatic (R-ratio < 2, AUC = 0.831) patterns. Early

presenters (≤ 7 days from symptom onset) showed

similar discrimination (AUC = 0.809) compared to late

presenters (AUC = 0.824).

5. Discussion

This study developed and validated a novel

prognostic model for predicting 90-day mortality or

liver transplantation in patients with liver injury, with

particular emphasis on drug-induced etiology. Our

model, incorporating five readily available parameters —

ALB, TBIL, AST/ALT ratio, severe lobular inflammation,

and platelet count — demonstrated superior

discriminative ability (AUC = 0.818) compared to

existing scores. The integration of histopathological

findings, specifically severe lobular inflammation,

represents a significant advancement over purely

biochemical models and reflects the added prognostic

value of liver biopsy in acute liver injury assessment.

The CK7 and CK19 are biliary epithelial markers that

indicate cholestatic injury, while HBsAg and HBcAg help

exclude viral hepatitis (17-19). In our cohort, the

predominance of DILI (92.0%) and female patients

(70.4%) was consistent with recent registries (20). High

CK7/CK19 positivity (> 93%) with minimal HBsAg

positivity (< 4%) supported a cholestatic injury pattern,

characteristic of severe DILI (21). Although these markers

lacked independent prognostic value in multivariable

analysis, their inclusion helped characterize injury

patterns and rule out viral etiologies. Their prognostic

role in routine practice may therefore be considered

optional.

The prognostic significance of our selected variables

reflects distinct pathophysiological mechanisms

underlying liver injury severity and outcomes. The ALB's

inverse association (OR = 0.45) reflects synthetic

function and protective properties, with modifications

in liver injury impairing function (22, 23). An AST/ALT

ratio > 1.5 indicates mitochondrial injury and severe

damage, common in DILI with zone 3 necrosis (24, 25).

The mechanistic basis involves differential subcellular

localization, with ALT being purely cytoplasmic while

AST exists in both cytoplasmic and mitochondrial forms.

Severe lobular inflammation (OR = 3.24) involves

inflammatory amplification (26, 27). Thrombocytopenia

may impair recovery (28, 29).

Our model's performance compares favorably with

recently published prognostic scores for liver injury. The

DMP score (AUC = 0.842) was more complex and lacked

histology (7). The Spanish DILI Registry model (AUC =

0.78) used only biochemical parameters (30). Ours

enhances accuracy by integrating histopathology,

supporting biopsy in severe DILI (31). Superiority over

MELD (AUC = 0.818 vs. 0.723) in DILI aligns with MELD's

limitations in acute injury (32). The MELD 3.0 shows

promise but needs DILI validation (33). Machine

learning approaches with more variables are less

feasible (34), while our model balances accuracy and

simplicity (35).

The risk system aids clinical management: Low-risk

(2.1% mortality) in non-intensive settings, intermediate-

risk with close observation, high-risk requiring

intensive care and transplant evaluation. It supports

early biopsy in severe DILI (36). The high prevalence of

CK7/CK19 positivity in our cohort suggests ductular

reaction, a marker of severe cholestatic injury

associated with poor outcomes.

Several limitations merit consideration. First, the

single-center retrospective design may include potential

referral bias, the predominance of female patients in

our cohort, and the lack of external validation, which

may affect the generalizability of our findings. External

validation in diverse populations with varied liver

injury etiologies is essential. Second, the 90-day follow-

up, while capturing most acute outcomes, may miss late

complications or recovery patterns. Extended follow-up

studies could refine risk estimates for chronic DILI

development. The requirement for liver biopsy may

limit applicability in settings where biopsy is
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contraindicated or unavailable. However, emerging non-

invasive markers of liver inflammation and fibrosis

might serve as surrogates. A study on serum cytokeratin-

18 fragments as markers of hepatocyte apoptosis shows

promise for non-invasive assessment (37). Additionally,

our immunohistochemical panel was limited; expanded

markers including assessment of regeneration (Ki-67) or

specific injury patterns (MEGF10 for zone 3 injury) might

enhance prognostic accuracy. Missing data, addressed

through multiple imputation, could introduce bias

despite our rigorous approach. Sensitivity analyses

showed minimal impact, but prospective studies with

complete data collection would strengthen validity.

5.1. Conclusions

We developed and validated a prognostic model for

90-day mortality or liver transplantation in liver injury

patients, with five key predictors. It accurately stratifies

risk, guiding decision-making. Implementation of this

risk stratification system could optimize resource

allocation, guide the intensity of monitoring, and

improve outcomes through early identification of high-

risk patients requiring aggressive intervention. External

validation and prospective evaluation are warranted to

confirm generalizability and clinical impact.
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