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Abstract

Background and Objectives: This retrospective observational study evaluated the diagnostic value of integrating intravoxel

incoherent motion diffusion-weighted imaging (IVIM-DWI) histogram parameters with peripheral blood biomarkers for the

non-invasive preoperative assessment of hepatocellular carcinoma (HCC) differentiation.

Methods: A total of 156 patients with pathologically confirmed HCC who underwent preoperative liver magnetic resonance

imaging (MRI), including IVIM-DWI, and blood biomarker testing were retrospectively analyzed. The intravoxel incoherent

motion (IVIM) parameters, particularly the 5th percentile of the true diffusion coefficient (D) and skewness, were assessed

alongside serum alpha-fetoprotein (AFP), neutrophil-to-lymphocyte ratio (NLR), and C-reactive protein (CRP). A multivariate

logistic regression model was constructed to differentiate poorly differentiated tumors from well or moderately differentiated

tumors. Statistical analysis included receiver operating characteristic (ROC) curve comparison and 5-fold cross-validation.

Results: Poorly differentiated tumors exhibited significantly lower 5th percentile D-values (0.68 ± 0.10 × 10-3 mm2/s vs. 0.82 ±

0.11, P < 0.001), higher D-skewness, and reduced perfusion fraction. Elevated AFP, NLR, and CRP levels were also strongly

associated with poor differentiation (all P < 0.001). The combined model achieved an area under the curve (AUC) of 0.917 with

86.5% sensitivity and 88.4% specificity, outperforming the IVIM-only (AUC = 0.791) and biomarker-only (AUC = 0.811) models.

Conclusions: Combining IVIM histogram parameters with inflammatory and tumor-related biomarkers significantly

enhances the accuracy of preoperative HCC differentiation grading. This multiparametric, non-invasive approach has strong

potential for guiding clinical decision-making and warrants prospective multicenter validation.
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1. Background

Hepatocellular carcinoma (HCC) is the most

common primary malignancy of the liver and ranks as

the third leading cause of cancer-related mortality

worldwide (1). Its development is closely associated with

chronic liver diseases, including hepatitis B and C virus

infections, alcohol-induced cirrhosis, and non-alcoholic

steatohepatitis (NASH) (2). Prognosis is strongly

influenced by tumor biology, particularly pathological

differentiation, which affects recurrence risk, vascular

invasion, metastatic potential, and survival outcomes

(3). Currently, differentiation grading is established via

histopathological examination following biopsy or

surgical resection; however, these invasive procedures

entail inherent risks, are susceptible to sampling error,

and may not fully capture tumor heterogeneity (4). The

pursuit of reliable, non-invasive biomarkers has

therefore intensified, with growing interest in advanced

imaging techniques and blood-based markers.

Intravoxel incoherent motion diffusion-weighted

imaging (IVIM-DWI) is a magnetic resonance imaging

(MRI) technique that quantifies both molecular

diffusion and microcirculatory perfusion without the
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need for contrast agents, making it particularly suitable

for patients with cirrhosis or renal dysfunction (5). In

addition to conventional region-of-interest analyses,

histogram-based intravoxel incoherent motion (IVIM)

metrics enable assessment of whole-tumor

heterogeneity. Features such as the 5th percentile of the

diffusion coefficient (D), skewness, and kurtosis serve as

sensitive indicators of tumor cellularity and

microvascular complexity, which are closely linked to

histological grade (6, 7).

In parallel, peripheral blood biomarkers provide

insight into systemic responses to tumor biology. Alpha-

fetoprotein (AFP) has long been associated with tumor

burden and aggressiveness, while inflammatory

markers such as the neutrophil-to-lymphocyte ratio

(NLR) and C-reactive protein (CRP) are correlated with

immune suppression, angiogenesis, and poor

differentiation (8-10). These markers are inexpensive,

widely available, and serve as useful adjuncts to

radiological assessments.

Recent research underscores the potential of

integrating radiomics and serological profiles to

advance precision oncology. For example,

computational pathology and molecular studies (e.g.,

vascular endothelial growth factor-fibroblast growth

factor signaling, ribosomal homolog pathways)

elucidate biological underpinnings that may explain

observed imaging-biomarker associations (11-14).

Emerging diagnostic approaches, such as activatable

fluorescent probes and artificial intelligence-based

transformer models, further highlight the importance

of multi-modal integration in HCC (15, 16). Despite these

advances, few studies have systematically evaluated a

standardized model combining IVIM histogram features

with peripheral blood markers for predicting HCC

differentiation.

Therefore, the present study aimed to assess the

combined diagnostic performance of IVIM-DWI

histogram parameters and peripheral blood biomarkers

in the preoperative grading of HCC. We hypothesized

that integrating these modalities would outperform

single-parameter approaches and yield a reproducible,

clinically applicable model for risk stratification and

treatment planning.

Among recent advancements in imaging, diffusion-

weighted imaging (DWI) has emerged as a promising

tool in oncologic imaging. The IVIM, an extension of

DWI, enables the simultaneous quantification of true

molecular diffusion and microcirculatory perfusion

without the use of contrast agents. This is especially

advantageous in patients with cirrhosis and impaired

renal function (4). The IVIM model, introduced by

previous researches, decomposes the diffusion signal

into a slow component (pure diffusion, D) and a fast

component (pseudo-diffusion), with the perfusion

fraction (f) representing the volume fraction of

microcapillary perfusion within a voxel. These

parameters are believed to reflect cellular density,

extracellular matrix content, and tumor angiogenesis —

critical features that vary according to tumor grade

(Figure 1) (5, 6).

Several challenges persist in establishing such a

model. Firstly, IVIM-DWI is sensitive to motion artifacts

and requires optimized protocols to ensure

reproducibility. Standardization of b-values, acquisition

sequences, and post-processing algorithms is essential.

Secondly, histogram analysis demands whole-tumor

segmentation, which can be labor-intensive and subject

to operator variability. Thirdly, peripheral blood

markers are influenced by a variety of comorbid

conditions and systemic states, which may confound

their relationship with tumor pathology. Consequently,

developing a robust, reproducible, and clinically

applicable model necessitates careful integration of

imaging and clinical parameters (14-16).

This study aims to investigate the combined utility of

IVIM histogram analysis and peripheral blood

biomarkers for the non-invasive, preoperative

assessment of HCC differentiation. By extracting data

from previously validated studies and synthesizing a

combined predictive model, we aim to demonstrate

that this approach can enhance diagnostic performance

compared to single-modality assessments. Ultimately,

this may provide clinicians with a more accurate,

objective, and less invasive tool for stratifying HCC

patients and optimizing therapeutic strategies (Figure

2).

The technical foundation of this study rests on the

premise that tumor heterogeneity — manifesting as

variable diffusion and perfusion — is more pronounced

in high-grade lesions, and that these microstructural

variations can be effectively captured through

histogram-derived IVIM parameters. Specifically, lower

percentile values (e.g., 5th percentile D) are

hypothesized to represent the most densely cellular,

least perfused tumor regions, characteristic of poorly
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Figure 1. Workflow for intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI)-based non-invasive assessment of hepatocellular carcinoma (HCC) differentiation

Figure 2. Challenges in combining intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and blood markers for hepatocellular carcinoma (HCC) diagnosis

differentiated HCC. Similarly, elevated systemic

inflammatory markers and AFP levels reflect a more

aggressive tumor phenotype and compromised

immune surveillance. Thus, a model integrating both

quantitative imaging and systemic biomarker profiles is

supported by logical reasoning and strong biological

plausibility.

In summary, with ongoing advancements in MRI

technology and the growing field of radiomics, the

integration of imaging histograms and peripheral

blood biomarkers may signal a paradigm shift toward

precision oncology in HCC management.

2. Objectives

The present study seeks to bridge the gap between

radiological imaging and laboratory diagnostics,

facilitating more accurate preoperative grading and
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potentially improving patient outcomes through

individualized treatment planning.

3. Methods

3.1. Study Design and Population

This was a retrospective, observational study

designed to evaluate the diagnostic performance of

IVIM-DWI histogram parameters in combination with

peripheral blood biomarkers for assessing the

histological differentiation of HCC. Data were collected

from two tertiary care academic hospitals between

January 2018 and December 2023. Ethical clearance was

obtained from the Institutional Review Boards of the

first affiliated hospital of Jinzhou Medical University

(ethics approval number: 241054), and informed

consent was waived due to the retrospective nature of

the analysis.

A total of 156 patients with pathologically confirmed

HCC who underwent preoperative liver MRI with IVIM

sequences and peripheral blood biomarker testing

within 10 days before surgical resection was included. As

this was a retrospective, multi-year study, selection bias

is an inherent limitation. Only patients with both

complete IVIM-DWI sequences and full laboratory data

were included, which may have excluded sicker

individuals, patients with incomplete records, or those

with atypical disease presentations. This selective

inclusion could limit the generalizability of our

findings to broader HCC populations.

1. Inclusion criteria:

- Histologically confirmed HCC with known tumor

differentiation grade

- Preoperative MRI including IVIM-DWI sequences

with complete imaging quality

- Availability of complete blood count and liver

function tests, including AFP, NLR, CRP, and other

inflammatory markers.

2. Exclusion criteria:

- History of any preoperative locoregional therapy

[transarterial chemoembolization (TACE),

radiofrequency ablation (RFA), or systemic

chemotherapy].

- Multifocal HCC with confluent necrosis affecting

lesion segmentation

- Severe artifacts or incomplete IVIM imaging

sequences

- Coexisting infections or inflammatory diseases

affecting CRP or blood counts

Of the 189 initial patients screened, 33 were excluded

based on the criteria outlined above. The final analysis

included 156 patients, who were stratified into three

groups according to histological differentiation:

- Well-differentiated HCC (n = 32)

- Moderately differentiated HCC (n = 87)

- Poorly differentiated HCC (n = 37)

Ninety-day mortality data were collected through a

review of electronic hospital records, institutional

follow-up clinics, and regional transplant registry

databases to ensure accurate ascertainment of survival

and transplantation outcomes.

Use of patient records and consent: Routinely

collected electronic medical records (EMR) were used to

extract demographic information, clinical history,

laboratory results (AFP, complete blood count for NLR,

and CRP), imaging dates, operative and pathology

reports, and outcome data (90-day mortality and liver

transplantation). Given the retrospective, minimal-risk

design, the institutional review board approved the

study and granted a waiver of written informed consent.

All data were de-identified prior to analysis, and the

study was conducted in accordance with the Declaration

of Helsinki.

3.2. Magnetic Resonance Imaging Acquisition and Intravoxel
Incoherent Motion Protocol

All patients underwent liver MRI using 3.0 Tesla

scanners (Siemens Magnetom Skyra and GE Discovery

MR750) with phased-array abdominal coils. The IVIM-

DWI protocol incorporated multiple b-values to enable

separation of diffusion and perfusion components.

Scanning parameters were harmonized across scanners

to minimize inter-device variability. The MRI sequence

parameters:

- Repetition time (TR)/echo time (TE): 4500 - 5000 ms

/ 60 - 70 ms

- Matrix: 128 × 128

- Field of view (FOV): 360 - 400 mm

- Slice thickness: Five mm with 1 mm gap

- B-values: 0, 10, 20, 40, 80, 100, 200, 400, 800, and

1000 s/mm2

- Acquisition time: Approximately 4 minutes

https://brieflands.com/journals/hepatmon/articles/165249
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- Respiratory triggering or navigator gating was used

to reduce motion artifacts

The IVIM parameters were calculated based on

biexponential signal fitting using the following

equation: S(b)/S(0) = f × exp(-bD) + (1 - f) × exp(-bD)*,

where S(b) = signal intensity at a given b-value, S(0) =

signal intensity at b = 0, D = true diffusion coefficient

(mm2/s), D* = pseudo-diffusion coefficient (mm2/s), and

f = perfusion fraction (%).

3.3. Tumor Segmentation and Histogram Analysis

Lesion segmentation was performed manually on the

b = 0 images and subsequently applied to the IVIM

parametric maps (D, D*, and f) using a semi-automated

region of interest (ROI) propagation algorithm. Tumor

ROIs encompassed the entire tumor volume on each

slice, while excluding adjacent liver tissue and necrotic

or cystic areas. Segmentation was conducted by two

radiologists, each with more than 10 years of experience

in liver imaging, who were blinded to pathology results.

Any discrepancies were resolved by consensus.

The IVIM histogram parameters were extracted from

the D, D*, and f maps using open-source software

packages (3D Slicer and MATLAB Radiomics Toolboxes).

The following metrics were calculated for each IVIM

map: Mean, median, standard deviation (SD), Skewness

and Kurtosis, and percentiles (5th, 25th, 75th, and 95th).

Particular emphasis was placed on the 5th percentile D-

value and the skewness of the D-map, based on prior

studies indicating that these parameters correlate well

with tumor cellularity and aggressiveness. Histogram

features were normalized using z-scores before

statistical analysis to mitigate inter-patient variability.

3.4. Blood Biomarker Evaluation

Peripheral blood samples collected within 7 days

before imaging were analyzed in the same clinical

laboratory. The following parameters were measured:

- The AFP: Quantified using an

immunochemiluminescent assay. Values greater than

20 ng/mL were considered elevated.

- The NLR: Calculated from complete blood counts

- The CRP: Measured via turbidimetric immunoassay;

considered elevated if greater than 5 mg/L

- Platelet-to-lymphocyte ratio (PLR) and other

inflammatory markers, such as erythrocyte

sedimentation rate (ESR) and ferritin, were also

recorded but were used for exploratory analysis only.

All laboratory data were reviewed for potential

confounding conditions, such as active infections,

hematological disorders, or recent steroid use. Patients

with confounding inflammatory states were excluded.

Serum AFP was quantified using an

electrochemiluminescence immunoassay (ECLIA) on the

Roche cobas e 602 analyzer with the Elecsys AFP kit

(Roche Diagnostics; catalog/version per lot), calibrated

using manufacturer-provided two-point calibration and

verified with internal controls (two levels, once per 24

h). High-sensitivity CRP was measured by

immunoturbidimetry on a Roche cobas c 702 using

Tina-quant CRP Gen. Three reagents (Roche Diagnostics),

with traceability to IFCC reference material. Complete

blood counts (for NLR and PLR) were performed on a

Sysmex XN-1000 hematology analyzer (Sysmex

Corporation) using the manufacturer’s reagents and

quality-control materials. The laboratory participates in

external quality assurance programs (e.g., CAP/EQAS)

and adheres to CLIA/ISO-15189 quality procedures.

3.5. Histopathological Analysis

Surgical resection specimens were analyzed by two

pathologists who were blinded to imaging results.

Histological differentiation was determined according

to the Edmondson–Steiner grading system:

- Grade I: Well-differentiated

- Grade II: Moderately differentiated

- Grade III/IV: Poorly differentiated

For statistical purposes in this study, grades I and II

were combined to form a low-grade group, while grades

III and IV comprised the high-grade group.

Microvascular invasion (MVI), capsule formation, and

satellite nodules were recorded for exploratory

correlation.

Tumor differentiation was assigned according to the

Edmondson-Steiner grading system, using all available

hematoxylin and eosin (H&E) slides for each case. In

multifocal or heterogeneous lesions, the final grade

reflected the highest-grade component observed.

- Grade I (well differentiated): Trabecular or

pseudoglandular architecture resembling hepatocytes;

abundant cytoplasm; mild nuclear atypia; bile canaliculi

often preserved.

https://brieflands.com/journals/hepatmon/articles/165249
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- Grade II (moderately differentiated): Thickened

trabeculae (often ≥ 3 cells in thickness); increased

nuclear atypia and nucleoli; more frequent mitoses;

partial architectural distortion.

- Grade III (poorly differentiated): Predominantly

solid or irregular sheets; high nuclear-to-cytoplasmic

ratio; marked atypia and frequent mitoses; necrosis

common; loss of hepatocytic architecture.

- Grade IV (undifferentiated or anaplastic): Severe

pleomorphism with bizarre or giant cells; minimal or

absent hepatocytic features; extensive necrosis and

disorganized growth.

Representative Micrographs

For illustrative purposes, representative H&E

micrographs for each Edmondson-Steiner grade (I - IV)

were selected from the study cohort. Images were

captured at ×100 and ×400 magnifications using a

digital slide scanner; diagnostic regions of interest were

annotated with arrowheads (indicating intratumoral

trabeculae thickness, nuclear atypia, or mitoses) and

dashed outlines (denoting areas of necrosis or solid

sheets).

3.6. Statistical Analysis

Statistical analyses were conducted using SPSS

(version 26) and R (version 4.2.1). Descriptive statistics

were reported as mean ± SD or median with

interquartile range (IQR), depending on the distribution

of the data, which was assessed using the Shapiro-Wilk

test.

For the 5th-percentile D histogram feature (D5th), the

optimal operating point was determined by

maximizing the Youden Index on the receiver operating

characteristic (ROC) curve within 5-fold cross-validation.

This approach yielded a data-driven cutoff of less than

0.45 × 10-3 mm2/s for distinguishing poorly

differentiated HCC from well/moderately differentiated

HCC. To assess the stability of this threshold, a bootstrap

analysis (1,000 resamples) of the ROC analysis was

performed; the bootstrap distribution of the optimal

threshold was narrow and consistently centered near

0.45 × 10-3 mm2/s, supporting the robustness of this

cutoff.

3.6.1. Univariate Analysis

Differences in histogram parameters and biomarkers

between differentiation groups were assessed using the

independent t-test or Mann-Whitney U test, as

appropriate, and chi-square test for categorical

variables.

3.6.2. Correlation Analysis

Spearman’s correlation coefficients were utilized to

evaluate the relationships between IVIM metrics and

blood biomarkers.

3.6.3. Multivariate Logistic Regression

A logistic regression model was constructed to

predict high-grade HCC, incorporating imaging features

(5th percentile D-value, skewness of the D-map) and

biomarkers (AFP, NLR, and CRP). Variable selection was

performed using backward elimination, with a

threshold of P < 0.05.

3.6.4. Receiver Operating Characteristic Analysis

The ROC curves were generated to assess model

performance. The area under the curve (AUC),

sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were calculated for

IVIM parameters alone, biomarkers alone, and

combined model. Cross-validation (5-fold) was used to

evaluate the robustness of the model. The DeLong test

was employed to compare the AUCs of different models.

3.6.5. Interobserver and Reproducibility Assessment

To evaluate the reproducibility of IVIM histogram

feature extraction: (A) thirty (30) randomly selected

cases were independently segmented by two

radiologists; (B) intraclass correlation coefficients (ICCs)

were computed for key histogram features. The ICC

values were interpreted as follows: Less than 0.40 = Poor,

0.40 - 0.75 = Fair to good, and 0.75 or greater = Excellent.

Additionally, test-retest repeatability was assessed in a

small subgroup (n = 8) who underwent repeat MRI

within 48 hours due to technical issues.

3.6.6. Sensitivity Analysis

Several subgroup analyses were performed: (A)

patients with cirrhosis versus those without cirrhosis,

(B) lesion size greater than 3 cm versus less than or

equal to 3 cm, (C) AFP-negative HCC (AFP < 20 ng/mL),

and (D) multiparametric versus single-parameter

performance. Missing data were handled using multiple

imputation when less than 10% of values were missing.
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Table 1. Baseline Demographics and Clinical Characteristics a

Variables Low-Grade (N = 119) High-Grade (N = 37) P-Value

Age (y) 58.2 ± 11.1 59.8 ± 10.5 0.34

Male 83 (69.7) 26 (70.3) 0.94

Liver cirrhosis 67 (56.3) 23 (62.2) 0.52

Mean tumor size (cm) 4.2 ± 1.8 4.6 ± 2.2 0.21

MVI 18 (15.1) 21 (56.8) < 0.001 b

Abbreviation: MVI, microvascular invasion.

a Values are expressed as mean ± standard deviation (SD) or No. (%).

b P-values less than < 0.001 shows significant values.

Variables with more than 10% missing data were

excluded from modeling.

4. Results

4.1. Patient Characteristics

A total of 156 patients with pathologically confirmed

HCC were included in the study. Based on

histopathological evaluation, 32 patients (20.5%) were

classified as well-differentiated, 87 patients (55.8%) as

moderately differentiated, and 37 patients (23.7%) as

poorly differentiated. For statistical analysis, well-

differentiated and moderately differentiated tumors

were combined to form a low-grade group (n = 119),

while poorly differentiated tumors constituted the high-

grade group (n = 37). Baseline characteristics —

including age, gender, liver cirrhosis status, and tumor

size — did not differ significantly between the low-grade

and high-grade groups (Table 1).

4.2. Intravoxel Incoherent Motion Histogram Parameters

Several histogram features derived from IVIM

imaging showed significant differences between high-

grade and low-grade HCCs. Notably, lower 5th percentile

D values, higher skewness, and reduced perfusion

fraction (f) were associated with poor differentiation.

Poorly differentiated tumors demonstrated left-shifted

and more peaked diffusion histograms, indicative of

restricted diffusion and increased heterogeneity (Table

2).

4.3. Peripheral Blood Biomarkers

The AFP, NLR, and CRP levels were significantly

elevated in patients with high-grade tumors. In

particular, NLR ≥ 3.0 and CRP > 5 mg/L were strong

indicators of poor differentiation. No significant

differences were observed in PLR and ESR levels between

groups (Table 3).

4.4. Correlation Between Imaging Parameters and
Biomarkers

Significant correlations were observed between

imaging features and inflammatory biomarkers. For

example, skewness of the D map correlated positively

with NLR and CRP, reflecting increased tumor cellularity

and inflammation (Table 4).

4.5. Logistic Regression Model for Tumor Differentiation

A multivariate logistic regression model

incorporating IVIM parameters (D-skewness and f-mean)

along with biomarkers (NLR and AFP) demonstrated

strong predictive power. The model achieved an overall

accuracy of 87.1% (Table 5).

4.6. Diagnostic Performance (Receiver Operating
Characteristic Analysis)

The combined model (IVIM parameters plus

biomarkers) significantly outperformed models using

individual modalities. The AUC of the ROC was 0.917 for

the combined model, compared to 0.79 for the IVIM-

only model and 0.81 for the biomarker-only model

(Table 6).

5. Discussion

This study demonstrates the diagnostic value of

integrating IVIM-DWI histogram analysis with

peripheral blood biomarkers to stratify HCC

differentiation grades. In contrast to previous studies,

which have primarily focused on either mean IVIM

values or single serum markers, our work introduces the

https://brieflands.com/journals/hepatmon/articles/165249
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Table 2. Comparison of Key Intravoxel Incoherent Motion Histogram Parameters a

Parameters Low-Grade HCC High-Grade HCC P-Value

D (5th percentile, × 10 -3 mm 2/s) 0.82 ± 0.11 0.68 ± 0.10 < 0.001 b

D (skewness) 0.21 ± 0.08 0.43 ± 0.12 < 0.001 b

D* (× 10 -3 mm 2/s) 19.6 ± 3.5 18.3 ± 3.1 0.07

f (%) 17.5 ± 4.0 14.1 ± 3.8 < 0.001 b

f (25th percentile) 12.2 ± 3.1 9.6 ± 2.7 < 0.001 b

Abbreviation: HCC, hepatocellular carcinoma.

a Values are expressed as mean ± standard deviation (SD).

b P-values less than < 0.001 shows significant values.

Table 3. Comparison of Blood Biomarker Levels a

Biomarkers Low-Grade HCC High-Grade HCC P-Value

AFP (ng/mL); median [IQR] 77.5 [33.1 - 125.4] 194.2 [82.7 - 386.3] < 0.001 b

NLR 2.4 ± 0.9 4.1 ± 1.2 < 0.001 b

CRP (mg/L) 4.3 ± 1.9 8.9 ± 3.7 < 0.001 b

PLR 113.7 ± 25.8 122.4 ± 28.1 0.11

ESR (mm/h) 22.4 ± 9.7 24.7 ± 11.2 0.27

Abbreviations: HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; IQR, interquartile range; NLR, neutrophil-to-lymphocyte ratio; CRP, C-reactive protein; PLR, platelet-to-
lymphocyte ratio; ESR, erythrocyte sedimentation rate.

a Values are expressed as mean ± standard deviation (SD) unless indicated.

b P-values less than < 0.001 shows significant values.

Table 4. Spearman Correlation Matrix a

Parameters AFP NLR CRP

D (5th percentile) -0.46 -0.38 -0.40

D (skewness) +0.42 +0.59 +0.61

f (mean) -0.31 -0.48 -0.51

Abbreviations: AFP, alpha-fetoprotein; NLR, neutrophil-to-lymphocyte ratio; CRP, C-reactive protein.

a Significant correlation (P < 0.05).

novelty of a combined multiparametric model that

captures both intratumoral microstructural

heterogeneity and systemic inflammatory status. This

integrated approach addresses a critical gap in the

literature by moving beyond isolated modalities,

providing a reproducible and clinically relevant

framework.

5.1. Rationale for the Fifth Percentile D-Value and External
Context of the Cutoff

Emphasis on the 5th percentile of the true diffusion

coefficient (D5th) is well-supported by prior research,

which has demonstrated that lower-tail diffusion

metrics capture the most densely cellular, least perfused

tumor voxels driving histologic aggressiveness. Multiple

studies have reported D5th (or closely related lower-

percentile diffusion measures) as among the most

discriminative IVIM features for adverse pathology,

including MVI and higher tumor grade. Notably, whole-

tumor IVIM histogram analyses have identified D5th as

the single most informative parameter for adverse

biology in HCC, with recent diffusion-histogram studies

in liver cancer reporting optimal lower-tail thresholds

for related diffusion metrics in the approximate range
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Table 5. Multivariate Logistic Regression Analysis

Variables Odds Ratio (95% CI) P-Value

D skewness 2.74 (1.62 - 4.68) < 0.001 a

f-mean (%) 0.84 (0.75 - 0.93) 0.001 a

NLR 1.89 (1.32 - 2.71) < 0.001 a

AFP (log) 1.45 (1.12 - 1.88) 0.003 a

Abbreviations: NLR, neutrophil-to-lymphocyte ratio; AFP, alpha-fetoprotein.

a P-values less than < 0.001 shows significant values.

Table 6. Receiver Operating Characteristic Curve Analysis of Diagnostic Models

Models AUC Sensitivity (%) Specificity (%) P-Value (vs. Combined)

IVIM histogram only 0.791 74.3 77.5 0.011

Blood biomarkers only 0.811 78.3 75.6 0.008

Combined (IVIM + markers) 0.917 86.5 88.4 -

Abbreviations: AUC, area under the curve; IVIM, intravoxel incoherent motion.

of 0.50 × 10-3 mm2/s. Our internally derived D5th cutoff

of less than 0.45 × 10-3 mm2/s is therefore numerically

consistent with, and biologically concordant with, these

reports, while being specifically tuned to our

acquisition parameters and cohort characteristics.

We selected a multivariable logistic regression model

to favor interpretability, clinical portability, and

transparent effect estimates for each imaging and

blood-based marker. However, recent advances in

computational pathology and multi-omics have enabled

the integration of thousands to millions of features

using transformer and foundation-model architectures,

often achieving high AUC values in slide-level cancer

tasks. Conceptually, the strengths of our model are (1) no

requirement for tissue sampling, (2) low computational

cost, (3) explainability, and (4) easy deployment

alongside routine MRI and laboratory tests. In contrast,

transformer-based whole-slide systems and foundation

models can exploit rich morphological phenotypes but

require digitized histopathology, larger datasets, and

careful domain adaptation.

The IVIM histogram metrics — particularly lower-tail

diffusion (D5th) — carry signal for MVI by capturing

densely cellular, poorly perfused tumor subregions. In

our cohort, low D5th in combination with adverse

serologic markers corresponded to an aggressive

phenotype and complemented existing MRI/radiomics

evidence for MVI risk stratification. For very-early HCC,

IVIM histograms aid in characterization but perform

best when combined with hepatobiliary-phase and

peritumoral features, serving as complementary rather

than stand-alone detectors. Compared with

transformer-based pathology/radiomics pipelines, our

multivariable model is preoperative, tissue-sparing,

inexpensive, and interpretable; prospective head-to-

head benchmarking and multicenter standardization of

b-values and histogram extraction are planned.

Beyond imaging-pathology, network-based multi-

marker selection approaches (e.g., NetAUC and related

graph/penalized methods) systematically identify

compact biomarker panels by optimizing joint

discriminative performance within molecular

interaction networks. Such methods could be layered

onto our framework to discover additional serologic or

genomic markers that synergize with IVIM histogram

features. As a pragmatic next step, we plan (1) external

validation of the current logistic regression model and

(2) exploratory comparisons with transformer-derived

slide features and network-optimized biomarker sets in

a prospective cohort.

5.2. Interpretation of Intravoxel Incoherent Motion Diffusion
Characteristics

The diffusion characteristics of tumor tissue as

captured by the IVIM technique demonstrated a strong

correlation with the histological differentiation of HCC.
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Specifically, the fifth percentile of the true diffusion

coefficient and the skewness of the diffusion map

emerged as key differentiators between low-grade and

high-grade tumors (17). Poorly differentiated tumors

exhibited significantly reduced diffusion values and

higher skewness, which are indicative of increased

cellular density and heterogeneity. The low diffusion

values reflect restricted water mobility within densely

packed tumor cells, a hallmark of high cellular

proliferation and reduced extracellular space (18).

Increased skewness suggests a rightward asymmetric

distribution of diffusion values, indicating a substantial

proportion of restricted diffusion voxels within the

tumor mass. These imaging features are consistent with

previous radiological-pathological correlation studies

that have reported a progressive decline in diffusion

metrics with decreasing histological differentiation.

Our imaging–biomarker phenotype of low D5th

(restricted diffusion) combined with elevated AFP, NLR,

and CRP aligns with molecular evidence for aggressive

cell-cycle dysregulation in HCC. For instance, PSMD12-

mediated stabilization of CDK1 accelerates proliferation

and migration; such phenotypes are expected to

increase tumor cellularity and reduce extracellular

space — features effectively captured by lower diffusion

percentiles. Similarly, known hepatitis B virus (HBV)

mutation patterns (e.g., rtA181T and core-promoter/preS

variants) elevate HCC risk and can amplify systemic

inflammation, potentially influencing blood-based

biomarkers such as NLR and CRP. These mechanistic

links support the biological plausibility of our

combined signature.

To mitigate confounding, we adjusted for cirrhosis in

multivariable analyses and, where available, recorded

viral hepatitis status. Future studies will more

granularly model HBV-specific factors (including viral

load, genotype, and mutation profiles) as covariates or

interaction terms, and evaluate whether the IVIM-

biomarker model retains its performance across HBV-

positive and HBV-negative strata.

Beyond routine serological markers, the addition of

molecular markers that track epithelial-mesenchymal

transition (EMT), angiogenesis, and metabolic rewiring

may further enhance the discrimination of HCC grades.

Angiopoietin-like 4 (ANGPTL4) is a secreted protein with

context-dependent roles in cancer biology and has been

associated with aggressive HCC phenotypes; functional

studies indicate that deletion or knockdown of ANGPTL4

reduces HCC cell viability, migration, and invasion in

vitro. Clinical studies have also reported elevated

circulating ANGPTL4 in liver disease and HCC,

supporting the feasibility of serum assays. Given that

the low-percentile diffusion metric (D5th) reflects

densely cellular, hypoperfused tumor subregions,

incorporating a serum ANGPTL4 term may capture

complementary biological information. In a prospective

cohort, we plan to conduct a nested-model evaluation

[ΔAUC with DeLong test, net reclassification

improvement (NRI), and integrated discrimination

improvement

(IDI)] comparing IVIM plus AFP, NLR, and CRP versus

IVIM plus AFP, NLR, CRP, and ANGPTL4, in addition to

applying regularized or network-guided feature

selection for broader multi-marker panels.

Perfusion-related parameters derived from IVIM

imaging also demonstrated diagnostic relevance. The

perfusion fraction (f) was significantly lower in poorly

differentiated tumors, a finding attributable to the

disorganized and dysfunctional neovascular

architecture characteristic of aggressive malignancies.

High-grade HCC often displays chaotic vasculature,

resulting in perfusion heterogeneity and reduced

microvascular flow (19, 20). This impairment is reflected

in decreased f-values on IVIM maps. Moreover,

histogram-based analysis of f-values, particularly at the

lower percentiles, provided additional granularity by

capturing subtle regional variations within the tumor.

These findings underscore the value of whole-volume

histogram analysis, which accounts for spatial

heterogeneity and avoids the sampling bias inherent in

single-region regions of interest (4, 21, 22).

Near-infrared (NIR) activatable probes and

fluorescence-guided surgery using indocyanine green

(ICG) or next-generation activatable dyes offer high

lesion-to-background contrast and real-time

visualization of tumor margins, with increasing

preclinical and early clinical evidence in HCC. Such

agents are particularly valuable intraoperatively for

margin assessment and satellite nodule detection;

however, most remain investigational, require

specialized optical systems, and are not yet widely

accessible. By contrast, our imaging-biomarker

framework is entirely preoperative, relies on standard

MRI and routine laboratory tests, and can be

implemented without the need for new tracer

approvals. Accordingly, activatable probes serve as
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complementary tools for surgical guidance, while our

approach targets preoperative biological grading to

inform treatment selection and surveillance.

Recent nomograms for predicting portal vein tumor

thrombus (PVTT) risk utilize readily available clinical

and laboratory variables, offering low-cost, widely

applicable tools for preoperative stratification of

vascular invasion risk. These models address a related,

yet distinct, question — macrovascular invasion — rather

than histological differentiation. In clinical practice, a

PVTT nomogram can triage risk of vascular involvement,

while our IVIM-biomarker model characterizes

intratumoral differentiation. Together, these

approaches can support surgical candidacy, transplant

allocation, and decisions regarding adjuvant strategies.

Future work may integrate a PVTT-probability term as a

covariate alongside our histogram features and blood

markers, yielding a unified risk score encompassing

both vascular invasion and tumor grade. Activatable

probes, especially those beyond ICG, currently face high

costs associated with agent synthesis, regulatory

approval, and optical hardware, and their utility is

largely confined to intraoperative scenarios. The PVTT

nomograms are inexpensive and easy to implement but

cannot replace biological grading. Our framework

leverages existing diagnostic modalities (MRI and

routine laboratory tests), enabling broad adoption with

minimal incremental resource requirements. From a

health-system perspective, aligning modalities by

clinical role — PVTT nomograms for vascular risk,

activatable fluorescence for surgical navigation, and

IVIM plus biomarkers for biological grading — offers a

pragmatic, cost-efficient pathway to improved

outcomes without duplicative testing. Prospective

health-economic analyses comparing these strategies at

key decision points (resection versus ablation versus

transplant) are warranted.

In our cohort, interobserver agreement for key

histogram metrics was excellent (ICCs ≥ 0.80). However,

cross-scanner variability remains a well-recognized

challenge for IVIM histogram analysis. Absolute values

can vary due to vendor, field strength, b-value sampling,

fitting method (mono- versus bi-exponential), motion

control, and segmentation strategy, even when relative

trends are preserved. We mitigated this by harmonizing

3T acquisition parameters, employing respiratory

triggering, whole-lesion segmentation, and z-score

normalization, and we observed stable performance

during 5-fold cross-validation. For broader

implementation, we recommend vendor-agnostic

protocols, periodic phantom calibration, and post-hoc

feature harmonization (e.g., ComBat) prior to modeling.

Looking forward, coupling diffusion histograms with

molecularly targeted imaging probes (such as

hepatocyte- or angiogenesis-directed contrast agents or

activatable probes for surgical correlation) may

enhance biological specificity and reduce dependence

on absolute IVIM values; however, these approaches

entail additional costs and are not yet widely available.

Prospective multicenter studies with predefined

harmonization protocols and optional probe-based sub-

studies are warranted.

In addition to imaging biomarkers, systemic

inflammatory markers played a pivotal role in

differentiating tumor grades. The NLR, reflecting the

balance between pro-inflammatory and anti-tumor

immune responses, was significantly higher in patients

with poorly differentiated HCC. An elevated NLR

indicates a systemic inflammatory state, which has been

linked to tumor progression, angiogenesis, and

immune evasion. Neutrophils secrete growth factors

and matrix-degrading enzymes that facilitate tumor

invasion, while lymphopenia signals impaired host

immune surveillance. Thus, the NLR serves as a

surrogate marker for tumor aggressiveness (22-26).

The CRP, another acute phase reactant, was also

elevated in high-grade tumors. Its synthesis is induced

by pro-inflammatory cytokines such as interleukin-6,

which are commonly upregulated in the tumor

microenvironment of aggressive malignancies. Elevated

serum CRP levels reflect both tumor-related

inflammation and the host’s systemic inflammatory

response, further supporting its use as a biomarker in

cancer grading (27-29).

The AFP, a conventional tumor marker for HCC, also

showed a positive correlation with tumor grade. High-

grade tumors demonstrated significantly higher AFP

levels, consistent with increased proliferative activity

and dedifferentiation. Although AFP lacks sensitivity in

small or well-differentiated tumors, it remains a

valuable component of multiparametric diagnostic

strategies (30, 31). The combination of AFP with imaging

and inflammatory markers enhances diagnostic

specificity and improves stratification of patients for

appropriate therapeutic interventions.
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The integration of imaging and biomarker data into

a multivariate logistic regression model significantly

improved the accuracy of tumor grade prediction. The

combined model achieved an AUC of the ROC of 0.917,

outperforming models based on imaging or biomarkers

alone (32-34). This finding underscores the

complementary nature of radiological and biochemical

markers in capturing distinct aspects of tumor biology.

While imaging reflects intratumoral microstructure

and perfusion characteristics, systemic biomarkers

provide insight into tumor-host interactions and

systemic disease manifestations. Their integration

allows for a holistic assessment of tumor aggressiveness

and facilitates risk stratification.

The high accuracy of the combined model has

important clinical implications. Preoperative

assessment of tumor grade is essential for treatment

planning, especially in patients undergoing liver

transplantation or liver-sparing interventions. Poorly

differentiated tumors are associated with higher risks of

MVI, satellite nodules, and early recurrence following

resection or ablation (35). Accurate preoperative

identification of such tumors enables clinicians to

modify treatment strategies, including the selection of

candidates for transplantation, the extent of resection,

or the addition of neoadjuvant therapies. Moreover,

patients with high-grade tumors may require closer

surveillance after treatment due to their aggressive

biological behavior.

The robustness of the imaging parameters was

supported by strong interobserver agreement. The ICCs

for histogram features exceeded 0.80, indicating

excellent reproducibility. This is particularly significant

for clinical adoption of advanced imaging biomarkers,

as reproducibility is a critical requirement for

standardization. The use of whole-lesion histogram

analysis, rather than manual selection of single slices or

hot spots, contributed to this reliability (36).

Additionally, the application of respiratory-triggered

sequences and harmonized imaging protocols across

scanners helped reduce variability, thereby enhancing

the generalizability of the proposed method.

This study also addressed the issue of tumor

heterogeneity, which is a major challenge in oncology.

Tumor heterogeneity may manifest as regional

differences in cellularity, necrosis, vascularity, and

extracellular matrix composition. Histogram analysis

captures this heterogeneity by evaluating the full

distribution of pixel-wise parameter values within the

tumor volume (37, 38). For example, skewness and

kurtosis quantify the asymmetry and peakedness of the

parameter distribution, serving as indirect indicators of

histological variability. High skewness, as observed in

poorly differentiated tumors, suggests dominance of

voxels with low diffusion values, possibly reflecting

dense cellular foci. These radiomic features are

increasingly recognized as imaging surrogates for

molecular and genetic heterogeneity and may serve as

noninvasive biomarkers for tumor grading, prognosis,

and response prediction (39, 40).

Despite these promising results, several limitations

must be acknowledged. First, this was a retrospective

study and may be subject to potential selection bias.

Only patients with available preoperative IVIM imaging

and complete laboratory data were included, which may

limit generalizability. Second, although imaging

protocols were standardized, scanner differences and

variations in acquisition techniques may introduce

subtle biases. Future prospective multicenter studies

with protocol harmonization and external validation

are needed to confirm these findings. Third, the sample

size of high-grade tumors was relatively small compared

to low-grade tumors. Although the statistical power was

sufficient to detect significant differences, larger studies

are warranted to improve the robustness of subgroup

analyses. Another limitation is the exclusion of patients

who received neoadjuvant treatment before imaging.

While this ensured direct comparability between

imaging and histological findings, it also excluded a

potentially relevant subset of patients. Including such

patients in future studies would enhance the clinical

applicability of the model. Additionally, this study did

not incorporate advanced radiomic or machine

learning techniques beyond histogram analysis. Deep

learning models or texture-based approaches may

further refine the predictive capability of imaging

features and should be considered in future work.

In summary, this study demonstrates that IVIM

histogram parameters, when combined with peripheral

inflammatory and tumor markers, can accurately

predict the pathological differentiation of HCC. This

multiparametric approach provides valuable

preoperative information that complements traditional

imaging assessment and histological evaluation. The

high diagnostic accuracy, reproducibility, and biological

interpretability of the proposed model support its
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potential for integration into clinical workflows.

Further prospective validation and incorporation into

decision-support systems are needed to facilitate

widespread clinical adoption.

5.3. Conclusions

This study provides compelling evidence for the

utility of combining IVIM histogram parameters with

peripheral blood biomarkers to enhance the

preoperative assessment of HCC differentiation. The

results demonstrate that diffusion-derived parameters,

particularly the fifth percentile and skewness of the true

diffusion coefficient, offer robust imaging markers for

tumor cellularity and heterogeneity. These imaging

findings correlate significantly with tumor grade,

reinforcing the biological relevance of IVIM-based

metrics. The addition of systemic inflammatory

biomarkers such as the NLR and serum AFP levels

further strengthens diagnostic performance by

capturing tumor–host interactions and systemic disease

response.

The integration of imaging and biochemical markers

into a predictive model markedly improved the

accuracy of differentiating poorly differentiated HCC

from well or moderately differentiated types. The

combined model exhibited excellent diagnostic

performance, with high sensitivity and specificity,

providing a practical tool for clinical risk stratification

and treatment planning. These findings have direct

implications for selecting therapeutic strategies,

particularly in liver transplantation, surgical resection,

and ablative interventions, where tumor grade plays a

decisive role in guiding interventions and predicting

recurrence.

The application of histogram analysis to whole-

tumor IVIM imaging addresses the challenge of

intratumoral heterogeneity and enhances

reproducibility, supporting its clinical utility. While

further validation through prospective multicenter

studies is necessary, this study lays the foundation for

the integration of radiomic imaging and blood-based

biomarkers into personalized oncology care. In the

evolving landscape of HCC diagnostics, this

multiparametric, noninvasive approach represents a

promising advancement in improving diagnostic

precision and optimizing patient outcomes. Future

research should focus on prospective multicenter

validation to confirm reproducibility across diverse

populations and imaging systems. Integration of this

combined model with existing clinical nomograms,

machine learning, and computational pathology

frameworks could further enhance predictive

performance and accelerate translation into routine

clinical decision-making.
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