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Abstract

Background: Multiple myeloma (MM) is a hematologic malignancy that leads to kidney failure, anemia, infection, and severe

bone pain due to the presence of bone lesions. Combining antagonists with immunomodulating drugs has resulted in higher

survival rates for patients. As a result, many patients receiving appropriate treatment can now achieve long-term survival or

even be considered cured. In such cases, it is essential to use cure models to achieve accurate and reliable results with minimal

bias.

Objectives: The study is focused on identifying the factors that predict the response to autologous hematopoietic stem cell

transplantation (ASCT) and estimating the cure fraction of MM patients from ASCT to death using cure models.

Methods: This cohort study involved 77 patients diagnosed with MM, who received ASCT and were followed for 12 years.

Patients’ overall survival and cure fraction were analyzed, using defective cure models. The patients’ age and clinical conditions,

including Thrombocytopenia, leukopenia, anemia, and blood creatinine levels, were considered predictive factors extracted

from the pre-transplantation blood tests.

Results: The 5-year survival rate of patients was 67.9% and long-term survival was 59.5% in this study. The Inverse Gaussian

model estimated the cure fraction at 54.4%, while the Kumaraswamy Inverse Gaussian model estimated it at 24%. The Inverse

Gaussian model indicated that the age of the patients and the pre-transplant platelet count were significant factors (P < 0.05).

Patients with less than average platelets had a cure fraction of 36%, indicating a lower chance of survival than patients with

normal platelets, who had a cure fraction of 54%.

Conclusions: The Kaplan-Meier curve has a horizontal portion that estimates the number of survived patients. After

approximately 6 years and 5 months, the Kaplan-Meier curve flattened, and the estimated cure fraction was 58.5%. The Inverse

Gaussian model demonstrates superior accuracy in estimating the cure fraction and identifying predictive factors that affect

pre-transplantation survival rates. In this model, the cure fraction was estimated at 54.4%. So, this model warrants more

attention. The study suggests low platelet count (thrombocytopenia) reduces patients’ long-term survival. Among patients with

Thrombocytopenia, younger patients have a higher long-term survival rate than older patients. As a result, it is recommended to

prioritize the care of patients over 60 with Thrombocytopenia to improve their survival rate and reduce mortality.
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1. Background

Multiple myeloma (MM) is a hematological

malignancy with the uncontrolled growth of plasma

cells due to mutagens (1). Multiple myeloma accounts

for about 10% of Hematologic Neoplasms (2). In 2020,

the World Health Organization (WHO) reported 176,404

new cases of MM globally, resulting in 117,077 deaths. In

Iran, there were 1,092 new cases of MM in the same year,

leading to 930 deaths (3). The incidence rate of MM is

6.63, its mortality rate is 3.04 per 100,000 people, and

the 5-year survival rate of this disease is estimated at 58.3
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(4). The incidence of MM is almost twice as high in black

people than in other races (5). The MM is more common

in men than women (6). According to the definition of

the National Comprehensive Cancer Network (NCCN),

MM is divided into MGUS, smoking myeloma (without

symptoms), or MM (with symptoms) (7). Cytogenetic

abnormalities and frequent intraconal heterogeneity

are present in almost all patients and are among the

influential factors in patients’ survival. Monoclonal

gammopathy of undetermined significance (MGUS) is a

precancerous stage that usually does not display any

symptoms; almost all MM patients have experienced it

before the onset of the disease. Several factors, including

genetic factors, cause MGUS to progress to active MM (8,

9). Bone pain is a common symptom of MM, which is

accompanied by other symptoms like weakness in arms

and legs, fatigue, unexplained weight loss, and fever

(10). Over time, symptoms of MM worsen, and common

complications of MM include hypercalcemia, kidney

failure, infection, skeletal lesions, and anemia (11, 12).

The type of treatment depends on various factors,

such as the patient’s condition, age, overall health, and

genetic factors. The treatment approach may vary for

newly diagnosed patients versus those with relapsed

disease. Treatments include immunomodulatory drugs

(IMiDs), proteasome inhibitors (PI), monoclonal

antibodies, chemotherapy, and stem cell

transplantation. Targeted therapeutics such as

thalidomide, lenalidomide, and bortezomib have

increased overall survival. Chemotherapy improves

clinical symptoms and increases overall survival but

does not completely cure the disease (13, 14). In recent

years, Hematopoietic stem cell transplantation (HSCT)

has been an effective therapy for hematological

neoplasms, leading to decreased mortality and

increased survival (15). Several randomized trials have

introduced HSCT as the standard treatment for MM due

to its high complete response, event-free survival, and

more prolonged (16, 17). However, some patients may

have complications, including graft recurrence, graft

failure, renal dysfunction, and antibody production (1,

16), explore the profound potential of Autologous

Hematopoietic Stem Cell Transplantation (ASCT), when

combined with high-dose melphalan, elevate remission

rates, and extend overall survival in MM (18).

The main objective of survival analysis is to develop

models that predict the time until an event occurs and

to create precise methods for identifying the factors that

influence this duration. This involves utilizing semi-

parametric and parametric approaches (19). With the

advancements in cancer treatment, some patients can

now survive cancer, and these individuals are referred to

as the cure fraction or the long-term survivor (20). Cox

or the log-rank test is inappropriate since it ignores the

cure fraction and leads to bias in the estimates (21). In

this paper, cure fraction modeling is of interest.

Due to the importance of cure fraction models,

different approaches have been proposed to estimate its

values (22). One of the ways to model the cure fraction is

to use defective distributions. Inverse Gaussian

distribution (23) is the distribution that can be

transformed into a defective distribution by changing

the domain of their parameters. Based on the valuable

properties of the family of Kumaraswamy distributions,

the defective Kumaraswamy inverse Gaussian

distribution is produced, which has more flexibility to

estimate the cure fraction (24). Different studies have

been conducted on the factors affecting the success of

transplantation and the survival of MM patients.

However, due to individual differences and other factors

related to patients, general and comprehensive results

have yet to be obtained (25, 26).

2. Objectives

The study aims at identifying predictive factors

affecting the overall survival of MM patients and

determining the cure fraction based on the pre-

transplantation blood test. In upcoming clinical studies,

it aims at utilizing cure models to estimate the cure

fraction and determine predictive factors for MM

patients. This study expands on our prior research,

which examined and compared new cure models based

on the Kumaraswamy family distribution.

3. Methods

3.1. Participants and Procedures

The present paper is continued research of the

previously published article (27) on a retrospective

cohort study that was conducted at Taleghani Hospital,

affiliated with Shahid Beheshti University of Medical

Sciences in Tehran. The study involved MM patients, who

were eligible for ASCT using targeted sampling. The

patients signed the consent forms after the study's
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purpose, design, and protocol were explained to them.

The study involved 86 patients diagnosed with MM, who

underwent ASCT between January 2011 and August 2016.

The diagnosis of MM was confirmed through blood tests

and biopsy. Patient information was recorded for follow-

up, and the survival status of patients was followed until

February 2022 through file review and phone calls. To

ensure accuracy, 9 patients with incomplete data or

those who died of causes unrelated to MM were

excluded, leaving 77 eligible patients in the study. For

patients who were still alive at the end of the research or

whose survival status was not available at the time of

follow-up, their records were considered censored.

Regarding survival analysis, the event of interest is

death from MM. Therefore, the overall survival time

from ASCT to death from MM (in years) was considered

the response variable. Risk factors affecting patient

survival were reported based on a significance level of

0.05 (P < 0.05).

Deficiencies in red and white blood cells and

platelets are common in individuals with MM, leading

to various symptoms. The most important of these are

anemia, leukopenia, and Thrombocytopenia. Anemia is

a medical condition characterized by a low red blood

cell count and can lead to symptoms such as weakness,

decreased stamina, shortness of breath, and dizziness.

Leukopenia occurs when the number of white blood

cells (WBC) in the body is low, which may weaken the

immune system. Thrombocytopenia is a medical

condition that occurs when the platelet count in the

blood is lower than usual, which can cause heavy

bleeding (26). Predictive factors affecting overall

survival with ASCT were investigated through blood

tests, including creatinine level, platelet count, WBC,

and hemoglobin (Hb) level; the age of patients is also

one of the effective factors.

3.2. Statistical Analysis

Cure models are survival analysis models, in which

the proportion of cured people is of interest. If there is a

cure, the survival function becomes horizontal before

the end of the study, which can be recognized by

drawing the Kaplan-Meier diagram. The horizontal part

of the graph shows that with the increase in study time

and proper treatment of patients, many of them have

survived, and these people are considered cured (20).

Using Inverse Gaussian and Kumaraswamy Inverse

Gaussian distributions, we analyzed the effect of

predictive factors on overall survival time. Survival

function for Inverse Gaussian distributions (28, 29) and

Kumaraswamy Inverse Gaussian distribution (23, 30, 31)

is defined in Equations 1 and 2.

Inverse Gaussian survival function (Equation 1):

Kumaraswamy inverse Gaussian survival function

(Equation 2):

t > 0, a < 0, b > 0, u > 0.

The appropriate model was selected based on the

criteria of AIC and BIC. The cure fraction for the model is

computed based on the Inverse Gaussian distribution in

(3) and the Kumaraswamy Inverse Gaussian distribution

in (4) (Equations 3 and 4) (24).

In this study, Inverse Gaussian and Kumaraswamy

Inverse Gaussian regression models were fitted to the

data. All reported confidence intervals (CI) are 95%. The

data analyses were conducted, using R software, version

4.2.3 (32). The P value was considered less than 0.05 (P <

0.05).

4. Results

Generally, 77 patients with MM, who received ASCT,

were analyzed, using defective cure models. The study

included 39 male patients (50.6%) and 38 female patients

(49.4%). The patients' median age at transplantation was

54 years, with an average age of 54.7 years (SD = 8.0)

(Table 1). The time between ASCT and death due to MM is

considered overall survival (OS).

The mean OS was 7.7 years [CI: 6.7 - 8.7]. The 5-year

survival rates are estimated at 6.7 years [CI: 7.5 - 10.0]. The

horizontal part of the Kaplan-Meier curve indicates the

patient who survived or the cure fraction (24). After

approximately 6 years and 5 months, the Kaplan-Meier

s(t)= 1 − [Φ( )+ exp{ }Φ( )]
−1 + at

√bt

2a

b
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√bt
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Table 1. Patient Characteristics

Variables Men Women Total

Age 8.32 ± 56.26 7.45 ± 53.19 8 ± 54.74

Overall survival (y) 0.63 ± 6.99 0.69 ± 8.22 0.51 ± 7.75

Leukopenia 3 (3.9) 8 (10.4) 11 (14.3)

Thrombocytopenia 3 (3.9) 3 (3.9) 6 (7.8)

Anemia 15 (19.5) 21 (27.3) 36 (46.8)

Age ≤ 54 12 (15.6) 20 (26) 32 (41.5)

Age > 54 27 (35.1) 18 (23.4) 45 (58.5)

Total 39 (50.6) 38 (49.4) 77

a Values are expressed as mean ± SD or No. (%).

Figure 1. Kaplan-Meier of overall survival

curve became horizontal, and the cure fraction was

estimated at 58.5% [CI: 45.2 - 78.5] (Figure 1).

Table 2 reports the maximum likelihood estimation

of the proposed regression models on data from MM

patients. The AIC and BIC in the Inverse Gaussian

distribution were 66.00 and 49.32, respectively. The

fitted survival curves are presented in (Figure 2).

The cure fraction in the Inverse Gaussian distribution

was 54.4%, while this value was 24% obtained in the

Kumaraswamy Inverse Gaussian distribution. The

results show that the Inverse Gaussian distribution

better fits this dataset. This result was also confirmed in

the study of melanoma patients by Rocha et al. (24).

The results of the univariate analysis related to the

survival of MM patients using the inverse Gaussian,

Kumaraswamy Inverse Gaussian model are shown in

Table 3, which shows that the age of patients had a

significant relationship with the overall survival (P <

0.05), which confirms the results of the previous studies

(15, 33).

We applied the Inverse Gaussian model to the data

and analyzed the age variable in two groups: Those

younger than the mean age of 54 and those older than

54. The cure fraction for the group aged less than 54 was

approximately 0.66, while the cure fraction for those

aged 54 was 0.49. Additionally, we found a significant

relationship between platelet count pre-transplant and

patient survival (P < 0.05). In the Inverse Gaussian

model, patients with Thrombocytopenia had a cure

fraction of 0.36, indicating lower survival than those

https://brieflands.com/articles/ijcm-143873
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Table 2. Maximum Likelihood Estimates of the Fitted Models a

Models AIC BIC

Inverse gaussian -0.5540 1.488 1 1 0.544 72.014 59.32

Kumaraswamy inverse gaussian -0.97 15.63 8.32 0.2 0.24 66.006 49.32

a  = Cure fraction.

Figure 2. The fitted Kumaraswamy Inverse Gaussian model (left), the fitted inverse Gaussian model (right)

without Thrombocytopenia, which had a cure fraction

of 0.54 (Figure 3).

5. Discussion

This study compared the Inverse Gaussian model

with Kumaraswamy Inverse Gaussian model to

accurately estimate the cure fraction and determine

predictive factors in MM patients. According to

goodness of fit (GOF) criteria, the Inverse Gaussian

defective model was chosen as a better model to

determine the predictive factors influential on the

overall survival rate of MM patients and to estimate the

proportion of recovered individuals (cure fraction). The

results obtained in the Inverse Gaussian model were

more accurate than the inverse Gaussian model of

Kumaraswamy, which had a lower confidence interval

for the parameters. The cure fraction in the inverse

Gaussian model was 54.4%, indicating patients’ recovery

rate. According to the selected model, age and

Thrombocytopenia affect the survival of MM patients

undergoing ASCT in this study.

Monitoring patients’ survival trends is crucial to

evaluate MM treatment progress. Survival studies in

various cancer types have been studied extensively (34).

Appropriate models should be utilized to ensure

objective and unbiased results in cancer survival

studies. These models form the basis for analyzing new

issues in long-term cancer survival (35). Some research

studies have utilized mixture models to estimate long-

term survival and the proportion of survivors (24, 36,

37). Some studies have used defective cure models to

estimate the cure fraction and determine the factors

affecting long-term survival time (18, 34). Defective

models can estimate the cure fraction without requiring

additional parameters, an advantage over previous

methods. Only a few studies have utilized these models

to analyze cure data. However, machine learning and

artificial intelligence have been employed to identify

risk factors in cancer patients, but these methods are

less accurate because they do not account for treatment

characteristics (38, 39). One advantage of defective

models over other survival models is the inclusion of

improved individuals, leading to more accurate and

reliable estimates (40). In this study, we used defective

cure models to identify the factors that affect overall

survival in MM patients and to estimate the cure

fraction. This approach offers greater flexibility,

efficiency, and accuracy. According to the chosen model,

pre-transplant platelet count can be used to predict the

timing of transplantation and long-term survival after

ASCT. A low platelet count increases the risk of death for

patients, which is consistent with previous studies (41).

â b̂ r̂ û p̂

p
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Table 3. The Results of Univariate Analysis

Variables
Inverse Gaussian

P-Value
Kumaraswamy Inverse Gaussian

P-Value
AIC BIC AIC BIC

Age 68.56 53.87 0.017 a 68.006 49.31 0.025 a

Sex 73.66 58.99 0.56 72.4 53.71 0.5

Anemia 74.016 59.32 0.074 69.66 50.97 0.07

Leukopenia 72.86 58.17 0.29 72.06 53.37 0.39

Thrombocytopenia 64.48 45.8 0.011 a 63.12 48.44 0.043 a

β2-microglobulin level 75.96 59.27 0.49 72.8 54.11 0.27

Creatinine level 74.78 58.09 0.41 71.76 53.08 0.43

a P-value < 0.05.

Figure 3. The fitted Kumaraswamy inverse Gaussian model

We found that Thrombocytopenia significantly impacts

the survival time of MM patients, who undergo the

transplant procedure (P < 0.05). The results of a study

conducted on 1,027 MM patients at the Mayo Clinic

between 1985 and 1998 showed that age, plasma cell

labeling index, low platelet count, serum albumin, and

log creatinine values were the most important

prognostic factors in MM patient survival (6). In the

current study, patients who have Thrombocytopenia

and experience a cure fraction of 36% tend to survive

shorter than those without Thrombocytopenia, who

have a cure fraction of 54%. Therefore,

Thrombocytopenia can be considered one of the most

influential risk factors that can influence the success of

ASCT. These results are consistent with previous studies

(18, 41). The study found that patients’ age significantly

impacts the overall survival rate of MM patients (P <

0.05). Patients over 60 years of age have a lower chance

of survival. The younger groups have a higher overall

survival percentage, with a cure fraction of 66%,

compared to the older groups, with a cure fraction of

49%. The study was conducted on 127 477 MM patients in

Japan, and age and gender were considered risk factors

in the overall survival of patients (42). Other studies

have also confirmed these findings (15, 41). Although

women have a higher cure fraction than men in the

current study, this difference is not statistically

significant. Therefore, it can be concluded that gender

does not significantly affect overall survival and cure

fraction. Some studies did not confirm gender

significance (22), while others did (23, 43).

The article examines defective cure models that can

analyze the impact of independent variables over time

and offer better insights to researchers in predictive

studies of long-term survival and survivor rates in

various clinical fields. This paper uses the

Kumaraswamy family-based cure models to analyze
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overall survival time and its predictive factors that build

on previously published articles about the effectiveness

of cure models in predicting long-term survival times

(27). Although the new models used in this study did not

produce results as accurate as those of the Inverse

Gaussian model, this discrepancy may be due to the

characteristics of the data itself. However, some studies

suggest that Kumaraswamy family-based cure models

provide reliable results regarding the proportion of

cured individuals, their survival times, and various

predictive factors in survival data (24).

The sensitivity analysis results suggest that a shorter

follow-up period leads to slight inflation of the

estimated cure rates based on the defective Inverse

Gaussian model. These results are in tandem with

previous studies on flexible cure models. Models with

greater flexibility have a more significant potential for

variation in estimates. Nevertheless, the model used in

this study did not show great sensitivity to cohort

length (26).

5.1. Limitation

The study had some limitations. Firstly, the data

collection process was time-consuming because a

statistical group carried it out. Secondly, the data were

gathered from only one medical center; so, the findings

cannot be generalized to all patients with MM. The

results should be obtained through larger, multicenter

studies. Furthermore, acquiring more patient

information, such as their socioeconomic status and

family history, would benefit the study.

5.2. Conclusions

The results show that patient age and platelet count

in pre-transplant blood tests are influential factors

affecting the overall survival of MM patients. Diagnosing

this disease early and at a younger age can significantly

increase patients’ life expectancy. The cure model

application helps obtain precise estimates of cure

fractions and important predictive factors impacting

MM patients’ survival time. Although the models

discussed in this article center on MM data, they can be

valuable tools for evaluating overall survival in

numerous neoplasms. Increasing the sample size and

extending the follow-up time can improve the accuracy

and efficiency of survival analysis, helping to identify

critical predictive factors.
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