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Abstract

Background: Accurate detection of recurrent chromosomal translocations is essential for risk stratification and therapeutic decision-making in acute
myeloid leukemia (AML). Although innovative techniques are becoming increasingly accessible, further improvements in conventional assays remain valuable.
Although numerous translocations have been identified, the most frequent ones with prognostic value are limited.

Objectives: In the present study, we developed a screening assay applicable in multiplex formats, using the same reagents, instruments, and conditions for
screening the three most frequent translocations: RUNX1-RUNXITI, PML-RARA, and CBFB-MYH11.

Methods: A SYBR-Green real-time multiplex PCR was developed to simultaneously screen four frequent translocation variants in AML, including RUNXI-
RUNXIT1, PML-RARa, berl, PML-RARa, ber3, and CBFB-MYHII type A. The ABL gene served as a reference and was amplified in separate reactions. Fifty newly diagnosed
AML patients were chosen based on the availability of sufficient RNA quantity and quality, along with confirmed cytogenetic or molecular diagnosis according
to the World Health Organization (WHO) 2022 classification criteria. The assay was validated by comparing the results with those obtained from singleplex real-
time PCR in AML patients.

Results: All four targets could successfully amplify in the master mix, containing seven primers, with no interference in their respective melting curves.
Specificity was 100% for all targets. The intra-assay and inter-assay coefficient of variation (CV) for cycle threshold (Ct) values ranged from 0.68% to 1.12% and 0.22%
to 1.02%, respectively. The validation assessments reported excellent consistency between singleplex and multiplex real-time PCR. However, the assay does not
detect all CBFB-MYH11 variants or the bcr2 isoform of PML-RARa because of overlapping melting temperature (T, ). Despite these limitations, this multiplex assay

could be considered a valuable first-line screening tool.

Conclusions: This method provides a simple, accurate, cost-effective, and informative tool for screening these translocations in AML. Since the primers were
previously validated in the singleplex method, this assay is simple and does not require particular materials or instruments. This novel assay may improve
patient stratification, support more precise therapeutic planning, and represent an important advancement in molecular diagnostics.

Keywords: Acute Myeloid Leukemia, Multiplex Real-time Polymerase Chain Reaction, Molecular Diagnostic Techniques, Genetic
Testing
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1. Background

Acute myeloid leukemia (AML) is a heterogeneous
hematopoietic malignancy with various subtypes
defined by the genetic and molecular characteristics of
the leukemia cells, characterized by the rapid expansion

of undifferentiated myeloid precursors, resulting in

disturbed normal hematopoiesis (1, 2). Accordingly,
leukemic cells exhibit various manifestations, including
morphological, immunophenotypes, genetic, and
cellular metabolomic profiles (3-5). The significance of
identifying genetic abnormalities in the diagnosis,
prognosis, and treatment of hematological
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malignancies, such as AML, is now well-documented (6).
In this regard, the World Health Organization (WHO)
and European LeukemiaNet (ELN) guidelines rely on
cytomorphology, immunophenotyping, cytogenetics,
and molecular genetics (7). The patient’s genetic profile
has a significant role in the diagnosis of hematological
malignancies. The RUNXI-RUNXIT! translocation is
among the most prevalent, detected in approximately
15% of AML cases, and is associated with a favorable
prognosis (8, 9). Three to five percent of AML patients
who are positive for RUNXI-RUNXITI exhibit three-way
breakpoints involving several chromosomes, including
2q,17p, and 18p (10, 11).

The PML-RARa transcript is detected in 8 - 10% of AML
patients, specifically in those with acute promyelocytic
leukemia (APL). Among the three main breakpoints
producing different variants of t(15;17), bcr1 and bcr3 are
detected in 90 - 95% of APL patients (12, 13).
Approximately 8 - 10% of AML cases are characterized by
inv(16)(p13.1q22) [t(16;16) (p13.1;,q22)]/CBFB-MYH11. Among
the different variants of CBFB-MYH]I], type A is detected in
more than 85% of patients with a positive result (13, 14).

Over time, several diagnostic methods have emerged
and improved to detect clinically significant genetic
alterations. These methods differ from one another in
terms of time, cost, availability, sensitivity, specificity,
and the minimum required sample size (15). The
accessibility and rapid reporting, alongside favorable
sensitivity and specificity, have introduced molecular
methods as the main tool in AML diagnostic practices
(16, 17). Although karyotyping is one of the most
pioneering methods for cytogenetic analysis, it is no
longer popular due to its time-consuming and
challenging process (18). Similarly, the fluorescence in
situ hybridization (FISH) method is not widely used
because it requires unique probes and has a high
workload burden (19, 20). Innovative techniques like
next-generation sequencing and single-cell assays are
emerging and offering detailed insights in the context
of leukemia. Single-cell RNA sequencing (scRNA-seq) can
be used for AML patients with recurrent translocations,
profiling subpopulations, tracking clonal evolution, and
detecting prognostic biomarkers (21). Due to
amplification-induced noise, the necessity of joint cell
analysis, and the substantial data volume, fusion
detection in scRNA-seq remains a major challenge. A

statistical and deep-learning model called scFusion
showed acceptable performance for T cell receptor (TCR)
gene recombination and multiple myeloma subclones
with IgH-WHSC1 fusions (22). Digital PCR (dPCR) assays
now enable precise, absolute quantification of fusion
transcripts for measurable residual disease (MRD)
monitoring, with excellent reported limits of detection,
especially for deep molecular response quantification in
chronic myeloid leukemia (23).

Although new methods are emerging, real-time PCR
remains a leading, widely accessible diagnostic tool for
identifying leukemic translocations. Its advantages
include quick results, the ability to quantify genetic
abnormalities, and the detection of cryptic
translocations (14, 24). Additionally, its DNA
amplification improves sensitivity by up to 6 - 10 times,
making it applicable for detecting MRD (7, 24).

While developing novel diagnostic techniques is
beneficial, upgrading the known ones is also valuable
(25). Simultaneous amplification and detection of
multiple target DNA sequences within one PCR reaction
is a variant of real-time PCR known as multiplex real-
time PCR (26). The SYBR Green real-time PCR assay is a
time-consuming and cost-effective screening method
that detects a translocation in approximately 4 hours
via the melting temperature (T,,). Besides saving time

and lab
contamination risks and inter-assay variability (27).

resources, multiplexing minimizes the

2. Objectives

In the present study, we developed a screening assay
applicable in multiplex formats, using the same
materials, instruments, and conditions for screening
the three most frequent translocations: RUNXI-RUNXITI,
PML-RARa, and CBFB-MYHII.

3.Methods

3.1. Study Design and Sample Collection

The EDTA samples were obtained from bone marrow
or peripheral blood aspirates of 50 newly diagnosed and
de novo AML patients. The cohort consisted of 29 males
and 21 females, with a median age of 48 years, ranging
from 20 to 65 years. Diagnoses were determined based
on a combination of pathology and immunotyping
results. al approval was waived by the Ethics Committee
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of Shahid Beheshti University of Medical Sciences
(IR.SBMU.RETECH.REC.1402.486).

3.2. Primers

The primer sets recommended by the Europe Against
Cancer (EAC) program were used in the present study
(28) (Appendix 4 in Supplementary File). The assay
included a total of seven primers, consisting of forward
and reverse primers for RUNXI-RUNXITI, forward and
reverse primers for CBFB-MYHI11, type A, and forward and
reverse primers for PML-RARa, bcrl. For PML-RARa, bcr3, a
forward primer was used in combination with the
reverse primer shared with PML-RARa, bcrl. NCBI-Blast
was employed to assess the specificity of the primers.
Various multiplexing tools were tested to evaluate the
primer pooling. Additionally, the risk of primer dimer
and secondary structure formation was inspected. The
product sizes of the SYBR Green real-time PCR reaction
ranged from 97 to 147 bp, and the primer lengths were
between 17 and 22 bp, with T, of 57 to 63°C and GC

contents between 45.5% and 64.7%. The primers were
ordered in standard desalting quality.

3.3. RNA Extraction and Complementary DNA Synthesis

Total RNA was extracted using Trizol reagent
(Pishgam Biotech Co., Tehran, Iran). The RNA purity was
assessed by the ratio of absorbance at 260 and 280 nm.
Gel electrophoresis was performed to assess the RNA
integrity. Complementary DNA (cDNA) synthesis was
carried out in a 20 L reaction mixture containing 1x
reaction buffer, 500 pmol/L each dNTP, 5 umol/L
Oligo(dT) primers, 5 yumol/L random hexamer primers, 2
ug total RNA template, and 10 U/pL reverse transcriptase,
following the manufacturer’s protocol. The reverse
transcription reaction was incubated at 25°C for 10
minutes and then at 50°C for 60 minutes. The enzyme
was inactivated at 80°C for 5 minutes.

3.4. Multiplex Real-time PCR Assay
Multiplex real-time PCR was conducted using the ABI

StepOne” Real-Time PCR System (Applied Biosystems,
USA) with 48-well plates in a 20 pL reaction volume. ABL,
used as the reference gene, was amplified in separate
parallel reactions because its Ty, (82.5°C) was close to
that of RUNX1-RUNXITI. UltraPure nuclease-free water was
used for all amplification processes and non-template
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controls (NTCs) to minimize the risk of contamination.
Negative cDNA control (NC) and non-template control
(NTC) were included in all real-time PCR reactions.
Plasmid DNAs of RUNXI-RUNXITI, PML-RARa (bcri, bcr3),
were kindly provided by NovinGene (Tehran, Iran).
Additionally, ¢cDNAs synthesized from the positive
patients were applied to all four targets.

For each target gene, the temperature gradient PCR
was conducted using PeqSTAR 2X Gradient
Thermocycler (PEQLAB Biotechnologie, Germany), with
an annealing temperature range from 58.0 to 63.0°C as
follows: Ten PL master mix (Ampliqon, Denmark), 7.2 uL
nuclease-free water (Yekta Tajhiz Azma, Iran), 0.4 uL of
each forward and reverse primer (10 pM), and two pL of
cDNA.

Then, a singleplex real-time PCR was performed for
all four targets. After ensuring the successful setup,
primers were combined to design a two-plex assay. In
this approach, targets were multiplexed in pairs,
resulting in the development of all two-plex assays.
Then, a three-plex and a four-plex real-time PCR were
performed. In all multiplex formats (6 two-plex formats,
four forms of three-plex formats, and a four-plex
format), a singleplex was performed in parallel within
the same run to compare the cycle threshold (Ct) and T,

values. Multiplex reactions were carried out in a total
volume of 20 pL, which included 10 pL of 2x SYBR Green
master mix, 2 uL of cDNA template, and nuclease-free
water to reach the final volume. Primer volumes for
each 20 pL reaction were as follows: RUNXI-RUNXITI
forward 0.6 uL and reverse 0.6 puL; CBFB-MYH11 forward
0.7 uL and reverse 0.7 uL; PML-RARa bcri forward 0.5 pL;
bcr3 forward 0.5 uL; and common reverse ENR962 1.0 L.
Since primer stocks are at 10 pM, the final
concentrations per primer were: RUNX1-RUNX1T1 300 nM
each; CBFB-MYHI11 350 nM each; PML-RARa, bcr1 forward
250 nM; PML-RARa, bcr3 forward 250 nM; and common
reverse 250 nM. The remaining volume was filled with
nuclease-free water.

For four-plex real-time PCR, various PCR programs
and reaction volumes were tested. The cycling program
was conducted as follows: Initial denaturation at 95°C
for 15 minutes, followed by 40 cycles of 95°C for 15
seconds, 60°C for 15 seconds, and 72°C for 15 seconds.
Melting curve analysis was applied in the same
instrument.
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3.5. Criteria for Positive Sample Identification

A sample was considered positive if it met the
following criteria: (A) a typical "S-shape" amplification
curve above the threshold level; (B) a single, narrow
peak obtained from melting analysis with a defined
melting T, value based on the T, of positive controls

(SD £ 1°C); (C) an expected single band on agarose gels;
(D) no amplification in the NTC from the same run; and
(E) positive amplification of ABL.

3.6. Assay Validation

In this method, the specificity was assessed using the
following four strategies: (A) initial screening of primers
with BLAST; (B) examination of non-AML individuals (30
healthy individuals; (C) melt-curve analysis; and (D) gel
electrophoresis. Repeatability and reproducibility were
measured in five replicates within the same run (intra-
assay) and across three different runs (inter-assay).

3.7. Comparison Between Multiplex Real-time PCR and
Singleplex Real-Time PCR

Clinical testing was performed in parallel on 50
newly-diagnosed samples to compare the singleplex and
multiplex real-time PCR methods, identifying whether

the singleplex methods can be replaced by the
multiplex one.

3.8. Statistical Analysis

Statistical analyses were conducted using R software
(version 4.3.1), incorporating the tidyverse, ggpubr, and
pwr packages. Continuous variables are expressed as
means + standard deviation (SD) with 95% confidence
intervals (CIs). Given the small sample sizes, formal
normality assessments were not performed; paired
comparisons between singleplex and multiplex assays
utilized non-parametric Wilcoxon signed-rank tests,
with asymptotic approximations applied for ties or
zeros. Consequently, descriptive statistics, including
means and observed trends, were employed.

The agreement between singleplex and multiplex
methods was assessed using Bland-Altman plots, which
provided the mean differences and limits of agreement
(£ 1.96 SD). Effect sizes were calculated using Cohen’s d
(mean difference divided by SD), and post-hoc power
analyses were conducted based on a non-central t-

distribution (two-sided, a = 0.05). Sensitivity and
specificity were estimated using Clopper-Pearson exact
95% binomial Cls. Coefficient of variation (CV) were
determined as (SD/mean) x 100%, with NA assigned for
mean differences of zero or sample sizes of n = 1. P-
values are reported to three decimal places, and results
from subgroups with n < 5 are interpreted cautiously
due to limited statistical power. All analyses were
benchmarked against comparable multiplex assay
studies, such as those by Dolz et al. (29). A schematic
overview of the method is illustrated in Figure 1.

4. Results

4.1. Optimization of Multiplex Real-time PCR

- Cycle number: Some negative controls exhibited
PCR amplification curves with Ct values greater than 35.
Their T,, (ranging from 61°C to 74°C) and

electrophoresis band confirmed the nature of their
primer-dimer artifacts. To maximize assay sensitivity
and minimize possible artifact amplification, 35 cycles
were chosen as the optimal number of cycles (Appendix
1in Supplementary File).

- Primer  concentration:  Various primer
concentrations were evaluated to determine the most
suitable amount for each. The best final concentrations
were as follows: RUNXI-RUNXIT! primers: 300 nM, PML-
RARa, bcri, and bcr3 primers: 250 nM, and CBFB-MYH11
primers: 350 nM.

- Annealing step: The annealing temperature of 60°C
was associated with the lowest Ct, indicating it was the
ideal annealing temperature in supporting specific
amplification.

- Extension step: Compared to the 2-step PCR, the 3-
step, including an extension step, resulted in a sharper
melt curve. Evaluating the extension time of 15, 20, and
30 seconds for this step indicated that increasing the
extension time did not improve the amplification
reaction. Considering the length of the target amplicons
ranged from 97 to 147 bp and polymerase extension
rates, which are typically 10 to 45 nucleotides per second
(30), the condition of 72°C for 15 seconds showed the
best results for the extension step.

- Reaction components: The magnesium ion is the

key parameter affecting the Ct value. MgCl, titrations
were performed to achieve the lowest Ct values.

Int ] Cancer Manag. 2025;18(1): €166704
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Figure 1. Schematic overview of development, optimization, and validation of the multiplex SYBR Green real-time PCR assay for acute myeloid leukemia (AML) translocations. A,
sample collection; B, RNA extraction and complementary DNA (cDNA) synthesis; C, primer selection: Europe Against Cancer (EAC)-recommended primer sets were selected; D,
primers combined sequentially to establish two-plex, three-plex, and four-plex assays, with all targets showing distinct melting temperature (T,) values (> 1°C separation); E,
assay validation: The assay demonstrated reproducibility with acceptable inter- and intra-assay coefficient of variation (CV), and comparison with singleplex PCR showed
minimal, non-significant differences in ACt and AT, values (The figure is created by BioRender).

However, no significant improvement was observed.
These results indicate that adjusting magnesium
concentration does not significantly enhance the overall
performance of the multiplex system.

Table 1. Melting Temperature of Positive Controls

Translocation Mean +SD of T, (°C)
t(8;21) (q22,q22) RUNX1-RUNXIT1 82.01£0.145
t(15;17) (q24;q12)/ PML-RARa , ber1 87.57+0.147
t(15;17) (q24;q12)/ PML-RARa , ber3 86.07+0.126
t(16;16)(p13.1q22) CBFB-MYH11 , type A 83.09+0.188

Abbreviation: SD, standard deviation; T, ), melting temperature.

Int ] Cancer Manag. 2025;18(1): e166704

4.2. Assay Validation

This technique met all four mentioned criteria for
specificity. The T, values differed by at least 1°C in all
four translocations (Table 1). The multiplex SYBR Green
real-time PCR assay effectively amplified all four target
fusion genes (RUNXI-RUNXIT1, PML-RARa, bcrl, and PML-
RARa, bcr3, and CBFB-MYH11) without interference in their
respective melt curves (Appendices 2 and 3
Supplementary File). The assay demonstrated 100%
specificity (95% CI: 91.2% - 100.0%, Clopper-Pearson), with
no false positives observed in negative controls or
among the 40 patients without translocations.
Sensitivity was also 100% (95% CI: 69.2% -100.0%),

in
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Table 2. Reproducibility of Cycle Threshold and Melting Temperature Values Across Genes
Gene Intra-assay Ct Intra-assay Ct Inter-assay Ct Inter-assay Ct Intra-assay T, Intra-assayT,  Inter-assayT ,  Inter-assayT |
Mean (95% CI) CV (%) Mean (95% CI) CV (%) Mean (95% CI) V(%) Mean (95% CI) V(%)
g 19.38 (19.20 - 19.40 (19.24 - 81.95 (81.66 - 81.96 (81.62 -
RUNX1-RUNXI1T1 19.56) 112 19.56 1.02 $224) 0.36 8230) 0.41
24.68(24.50 - 24.51(24.35- 87.77(87.59 - 87.80 (87.72-
PML-RARa, ber1 24.86) 0.81 24.67) 0.75 87.95) 0.25 87.88) 0.08
~ 24.19 (24.00 - 24.00(23.93- 86.12 (85.83 - 86.29 (85.94 -
PML-RARa, bcr3 2438) 112 24.07) 0.22 $6.41) 0.50 86.64) 0.57
g 27.20 (27.02 - 27.17(27.04 - 83.10 (82.98 - 82.96 (82.86 -
CBFB-MYH11 27.38) 0.68 2730) 0.50 83.22) 0.15 83.06) 0.12
Abbreviations: Ct, cycle threshold; CI, confidence interval; CV, coefficient of variation; T, melting temperature.
Table 3: Statistical Comparison Between Singleplex and Multiplex Assays
Gene No. ACt Mean CtSD CtCV (%) Ct P-Value AT, Mean Ty, SD Ty CV (%) Ty P-Value
RUNX1-
RUNXITY 5 0.380 0.421 111.0 0.106 0.240 0.227 94.8 0.174
PML.RARa, 1 0.000 NA NA NA 0.000 NA NA NA
ber1
;:xé-RARa ’ 2 -0.125 0.120 96.2 0.371 0.325 0.247 761 0.371
CBFB-MYH11 2 0.375 0.728 194.0 1.000 0.150 0.212 141.0 1.000

Abbreviations: Ct, cycle threshold; SD, standard deviation; CV, coefficient of variation; T, melting temperature; NA, not available.

accurately detecting all 10 positive cases within the 50-
patient cohort (5 RUNX1-RUNXI1T1, 1 PML-RARa, bcr1, 2 PML-
RARa, bcr3, 2 CBFB-MYHII), aligning with the 100%
accuracy reported by Dolz et al. (29) for analogous
fusion gene detection.

Reproducibility was evaluated through intra- and
inter-assay CV for Ct and Ty, values (Table 2). Intra-assay
CVs for Ct ranged from 0.68% to 1.12% (means: 19.38 -
27.20), and for T, from 0.15% to 0.50% (means: 81.95 -
87.77), indicating high consistency within runs. Inter-
assay CVs ranged from 0.22% to 1.02% for Ct and 0.08% to
0.57% for Ty, reflecting robust reproducibility across
runs. For example, RUNX1-RUNX1T1 showed an intra-assay
Ct mean of 19.38 + 0.21 and T;;, mean of 81.95 + 0.29, with

inter-assay values of 19.40 + 0.19 and 81.96 + 0.34,
demonstrating minimal variability.

4.3. Comparison Between Multiplex Real-Time PCR and
Singleplex Real-Time PCR

In 50 AML patients, 5 cases of RUNXI-RUNXITI, 2 cases
of CBFB-MYHI1, type A, 1 case of PML-RARa, bcr1, and 2 cases
of PML-RARa, bcr3 were detected. Validation in 50 AML
patients demonstrated strong concordance between

singleplex and multiplex assays using Bland-Altman
analysis (mean ACt: 0.24, limits of agreement: -0.61 to
1.09), as depicted in Figure 2 that shows the distribution
of differences, with most data points falling within the
limits of agreement, showing good consistency between
the methods. A slight bias toward positive differences at
higher mean Ct values suggests minor systematic
variation that could be explored in larger cohorts. Mean
ACt ranged from -0.125 (bcr3) to 0.380 (RUNXI-RUNXITI),
with Wilcoxon P-values from 0.106 to 1.000, indicating
no significant differences (Table 3). Mean AT,, ranged
from 0.150 (CBFB-MYHI11) to 0.325 (bcr3), with P-values
from 0.174 to 1.000. Notably, multiplex assays often
produced lower Ct values.

5. Discussion

Enhancing the simplicity and speed of diagnostic
tests is an undeniable aspect of molecular diagnosis in
the laboratory. Although novel diagnostic methods are
considered revolutionary advances, their accessibility
remains limited for all laboratories. Therefore,
modifications to conventional methods are still
appreciated to enhance their cost-effectiveness, time
efficiency, and accessibility. The single amplification
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(singleplex-multiplex)

Ctdifference

Figure 2. Bland-Altman plot of ACt (singleplex-multiplex) versus mean cycle threshold (Ct), with mean difference (0.24) and limits of agreement (-0.61 to 1.09).

method will be replaced by the multiplex assay, as it is
less susceptible to pipetting errors and minimizes the
hands-on time, offering cost and time benefits.
Although  multiplex PCR  appears
straightforward, some factors must be
considered. A challenge faced by all multiplex methods

real-time
critical

is competition, a common issue, especially related to
viral detection. In contrast to viral or pathogenic
multiplexing approaches, detecting two translocations
in a single individual is extremely rare (31). This lack of
competition among the targets raises interest in
conducting multiplex assays for screening fusion
transcripts.

In the current assay, Ct values in multiplex real-time
PCR assays conducted on positive samples overlap
almost exactly with those from the corresponding
singleplex assay, indicating comparable sensitivity of
the current multiplex approach. Interestingly, there
were several cases where the Ct value from the multiplex
was lower than that from the singleplex. Similarly, this
phenomenon has been reported in various other
multiplex assays within non-hematological fields,
particularly in viral detection (32-34). Quality-control
studies documented low-frequency discrepancies,
particularly at minimal transcript concentrations.
Specifically, false-negative rates of up to 12% and false-
positive frequencies ranging from 2% to 9.7% were
observed, depending on the fusion type and dilution

level, especially for CBFB-MYH11 and PML-RARa, bcrl, at 1074
dilutions (28). In the current study, no false-positive or

Int ] Cancer Manag. 2025;18(1): €166704

false-negative results were detected for any of the
analyzed fusion transcripts. This outcome can be
attributed to our additional verification steps, which
include confirmation of amplification
through T, analysis and visualization of

specificity
the
corresponding bands on agarose gel electrophoresis.
These complementary criteria minimized the risk of
false signal interpretation and strengthened the
reliability of our results.

Another critical factor in developing multiplex assays
is the number of cycles, as Ibrahim et al. suggested a
false positive of NTC after 37 cycles (35). Siraj et al.
defined 32 cycles as optimal to avoid primer-dimer
formations (36). Successful SYBR Green multiplex assays
are typically achieved using fewer amplification cycles.
Optimization should begin with a low cycle number and
be gradually increased to balance sensitivity and
specificity (37). More than 35 cycles increase the
probability of smears and false-positive results (26).
Therefore, 35 cycles were selected as an optimal number
of cycles for our multiplex PCR screening assay.

Our approach could provide several advantages as a
practical first-level screening strategy. First, our results
showed the adaptability of singleplex primers for
multiplex assays. The specificity and sensitivity of
primers are crucial for a successful assay; therefore, we
used previously validated primers in our study. Because
these primers also perform well in singleplex assays,
they remain suitable for follow-up testing. This
approach simplifies molecular diagnostics by reducing
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the number of reagents and eliminating the need for
complex primer redesign (19). Therefore, using validated
primers is more rational than insisting on designing
novel primers.

Another benefit of our method was its cost-
effectiveness, as the application of intercalating dyes
significantly reduces the cost of real-time PCR.
Additionally, sample throughput is increased in
multiplex PCR, as four variants are evaluated
simultaneously with a single control. The assay provided
results from a single 20 pL reaction while
simultaneously screening for four major prognostic
translocations. A negative result for all four targets
alerts clinicians that the patient may lack favorable-risk
cytogenetics, prompting further molecular
investigation (37). However, further investigations are
necessary for other mutations and less prevalent
translocations.

Furthermore, as the screening of four common
translocations was performed by a sole real-time PCR
instrument and a single technician, the processing time
will be reduced to five hours from sampling, including
one hour for RNA extraction, 1.5 hours for cDNA
synthesis, and 2.5 hours for the multiplex assay.
Moreover, the results are easy to interpret, as four
unique T,,, values were identified and validated for each

target. Although we found primer-dimer artifacts, other
studies have also reported this undesired amplification
(35, 36). Hence, a possible limitation of this screening
method is the weak amplification of NTC due to primer-
dimer formation, which often has a different T,;, value

than the four targets, though this can be eliminated by
decreasing the number of cycles. Furthermore, this
method is not capable of detecting all variants of CBFB-
MYHI1 and bcr2. It is worth noting that during the assay
development phase, we also evaluated the inclusion of
the PML-RARa, bcr2 in a five-plex assay. Although
amplification was successful, the T,; of bcr2 (87.8°C)

overlapped with that of bcri, leading to indistinct
melting profiles. Therefore, more technical work is
required to improve it. Although advanced methods
such as dPCR and sequencing offer single-cell resolution
and greater analytical depth, our multiplex assay
remains a practical, accurate, and cost-effective first-line
screening tool.

5.1. Conclusions

Although developing new diagnostic technologies is
important in the field of leukemia, ongoing
improvement and refinement of current methods are
equally essential. Overall, this assay offers a fast, reliable,
and cost-effective molecular method for screening three
common translocations in AML simultaneously. By
allowing quick detection of these favorable genetic
alterations, it provides timely risk assessment and
supports informed clinical decisions for AML patients.
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