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Abstract

Context: This scoping review investigates the association between ambient air pollution and cardiometabolic outcomes using

data from the Tehran Lipid and Glucose Study (TLGS), a population-based cohort initiated in 1999.

Evidence Acquisition: Five TLGS studies were included, each examining associations between ambient air pollutants and

cardiometabolic outcomes such as hypertension (HTN), dyslipidemia, diabetes, cardiovascular morbidity, and mortality. Due to

overlapping populations but differing outcome measures across studies, a meta-analysis was not feasible. Instead, a narrative

synthesis was conducted, with results organized into a comparative matrix to facilitate cross-study evaluation.

Results: The findings reveal heterogeneous effects of ambient air pollutants on cardiometabolic health across both short- and

long-term pathways. Short-term exposures to nitrogen dioxide (NO₂) and particulate matter ≤ 10 µm in diameter (PM₁₀) were

linked to higher systolic blood pressure (SBP), while sulfur dioxide (SO₂) was associated with elevated diastolic pressure. For

lipid parameters, carbon monoxide (CO) and SO₂ corresponded with higher total cholesterol (TC), triglycerides (TG), low-density

lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels. Cardiovascular outcomes also

worsened, as increases in the Air Quality Index (AQI), PM₁₀, SO₂, and CO were associated with higher risks of cardiovascular

disease (CVD) hospitalization and mortality. Long-term exposures to ozone (O₃), PM₁₀, and SO₂ predicted incident HTN

(strongest for PM₁₀), while CO was associated with elevated TC, TG, and adverse dyslipidemia phenotypes but not high LDL-C.

Sulfur dioxide, O₃, and PM₁₀ also increased risks of dysglycemia, though no consistent associations with type 2 diabetes

incidence or long-term mortality were observed.

Conclusions: This review underscores the substantial influence of ambient air pollution on metabolic and cardiovascular

health in Tehran. Short-term exposure to pollutants such as PM₁₀, SO₂, and CO is associated, either immediately or with lagged

effects, with increased blood pressure, adverse lipid changes, and heightened cardiovascular risk, while long-term exposure to

PM₁₀ and SO₂ exacerbates HTN and impairs glucose metabolism. These findings highlight the need for stricter air quality

regulations and further investigation into the cumulative, long-term effects of air pollution in the metropolitan city of Tehran.
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1. Context

Ambient air pollution has significantly increased

over the past two decades and, in 2021, was identified as

the leading environmental risk factor for global

mortality, particularly in urban centers. It is responsible

for over eight million deaths annually, with more than

90% occurring in low- and middle-income countries (1-

3). According to the Global Burden of Disease (GBD)

study, particulate matter (PM₁₀) is the largest

environmental contributor to disease burden,

accounting for 8.0% of total disability-adjusted life years
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(DALYs), surpassing traditional metabolic risk factors

like high systolic blood pressure (SBP) (4).

Iran, particularly Tehran, is experiencing a rising

prevalence of non-communicable diseases, including

hypertension (HTN), dyslipidemia, and type 2 diabetes

(5, 6). In Tehran, air pollution is a growing concern, with

vehicular traffic, industrial emissions, and geographical

features contributing to high levels of ambient

pollutants. These factors are linked to the increasing

burden of cardiometabolic diseases, including

myocardial infarction (MI), stroke, and premature

mortality (7-10).

The Tehran Lipid and Glucose Study (TLGS), a

population-based cohort initiated in 1999, has provided

extensive data on risk factors for non-communicable

diseases (11, 12). By integrating TLGS data with regional

air pollution monitoring, the study has enabled detailed

assessments of ambient pollutants' effects on various

cardiometabolic outcomes (6, 10).

Recent TLGS studies have highlighted associations

between PM₁₀, sulfur dioxide (SO₂), nitrogen dioxide

(NO₂), ozone (O₃), and carbon monoxide (CO) with

increased risks of HTN (10), dysglycemia (6),

dyslipidemia (13), cardiovascular events and mortality

(14), and cardiovascular hospitalization (15). However,

existing research is fragmented across multiple

publications with varying methodologies and exposure

assessments, hindering comprehensive interpretation

and the development of effective public health

strategies. A scoping review is ideal for mapping

existing evidence, clarifying research boundaries, and

identifying gaps in knowledge without the limitations

of meta-analytic homogeneity (16-18).

This scoping review aims to assess TLGS literature on

ambient air pollution and cardiometabolic outcomes.

The review will address four key questions: (1) Which

cardiometabolic outcomes have been studied? (2) What

pollutants and exposure windows have been examined,

and what methods were used? (3) What are the main

findings? (4) What gaps remain, and what future

research directions are needed? The objective is to map

available evidence and identify research priorities,

rather than derive pooled quantitative estimates.

2. Evidence Acquisition

2.1. Review Design

This scoping review was conducted in accordance

with the PRISMA-ScR (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses Extension for

Scoping Reviews) guidelines (19). Its primary objective

was to map the existing evidence on the association

between ambient air pollution and cardiometabolic

health outcomes, with a specific focus on studies

conducted within the TLGS cohort. The TLGS is a large-

scale, longitudinal study that provides robust data on

environmental exposures and their relationships with a

wide range of health outcomes. The details of the cohort

characteristics are presented elsewhere (11, 12).

2.2. Eligibility Criteria

Studies were eligible for inclusion if they were

conducted within the TLGS cohort, assessed the impact

of ambient air pollution on cardiometabolic outcomes

such as HTN, dyslipidemia, diabetes, cardiovascular

events, and all-cause mortality, and adopted a cohort

study design to evaluate associations between exposure

and outcome.

2.3. Information Sources

All data for this review were obtained exclusively

from studies conducted within the TLGS cohort. External

databases and grey literature were not searched, as all

pertinent evidence on the relationship between

ambient air pollution and cardiometabolic outcomes

was already available from TLGS-based research.

2.4. Selection of Sources of Evidence

The selection process began with the screening of all

TLGS publications according to the predefined eligibility

criteria. Studies that specifically examined the

association between ambient air pollution and

cardiometabolic outcomes were retained. In total, five

studies met the eligibility criteria and were included in

the review. Given our objective to exclusively map and

synthesize the evidence generated from the well-defined

TLGS cohort, a broader database search was deemed

outside the scope of this particular review, therefore no

further studies were considered.

2.5. Data Charting

Data extraction was conducted manually by one

author, and the results were independently verified by a

second author to ensure accuracy and consistency.

Extracted data included bibliographic details, study

design and analytical approach, TLGS phases and

calendar period, sample size and participant

demographics, pollutants assessed, exposure metrics
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and sources, cardiometabolic outcomes, statistical

models, main results, adjusted confounders, and

author-reported limitations.

2.6. Synthesis of Results

Meta-analysis was not feasible due to heterogeneity

in outcomes, exposure periods, and study populations.

Instead, a narrative synthesis was performed. The

extracted data were systematically organized in a

comparative matrix to enable cross-study evaluation of

pollutant types and cardiometabolic outcomes, thereby

facilitating coherent interpretation despite

methodological variability across studies.

2.7. Assessment of Methodological Quality

No formal critical appraisal was conducted, as all

eligible TLGS publications were included. However,

study designs, statistical models, outcomes, and

reported limitations were comprehensively

documented and considered during synthesis.

3. Results

3.1. Study Characteristics

Five TLGS papers (2019 - 2025) met inclusion criteria.

Two cardiovascular-event studies analyze TLGS Phase 1

recruits from 1999 (15, 16), while three risk-factor studies

start in Phase 2 from 2001 and follow participants

through Phase 6. Sample sizes range from roughly 3,500

to 9,700 adults. Four papers model short-term (0 - 14-

day) lags, three examine long-term (1- to 3-year)

averages, and two cover both. All rely on identical city-

wide metrics for PM₁₀, SO₂, NO₂, O₃, and CO. Outcomes

span continuous blood pressure and incident HTN,

longitudinal serum lipids and dyslipidemia, incident

dysglycemia/diabetes, adjudicated fatal and non-fatal

cardiovascular events and hospitalizations, and all-

cause/cause-specific mortality. Study characteristics are

summarized in Table 1. The distribution of air pollutants

during 1999 - 2018 (15) is shown in Table 2, and

associations between pollutants and outcomes are

presented in a matrix in Figure 1. Moreover, a chord

diagram of positive short- and long-term associations

between pollutants and cardiometabolic outcomes are

presented in Figure 2A and 2B, respectively.

3.2. Blood-Pressure Outcomes

3.2.1. Systolic Blood Pressure

Short-term exposure to CO did not affect SBP across

any of the 14-day lag periods. Exposure to NO₂ was

associated with increased SBP, with a significant positive

association observed throughout the 14-day lag period.

Ozone exposure was linked to a reduction in SBP across

the full lag window. Particulate matter was associated

with elevated SBP within the 0 - 3-day lag range. Sulfur

dioxide did not demonstrate a statistically significant

association with SBP across any lag periods.

3.2.2. Diastolic Blood Pressure

Short-term exposure to CO was significantly

associated with reduced diastolic blood pressure (DBP)

across all 14-day lag periods. Nitrogen dioxide exposure

had no significant effect on DBP. Ozone exposure

produced a slight, statistically non-significant increase

in DBP. Particulate matter exposure was associated with

increased DBP during lags 0 - 3 days and again at 12 - 14

days. Sulfur dioxide exhibited the strongest and most

consistent effect on DBP, showing statistically

significant increases throughout all 14-day lag periods.

3.2.3. Incident Hypertension (Long-Term Outcome)

Incident HTN was evaluated as the sole long-term

blood pressure outcome using interval-censored

Weibull survival models over 1-, 2-, and 3-year average

pollutant exposures. Long-term exposure to CO had no

statistically significant association with incident HTN.

Nitrogen dioxide was associated with a significantly

lower risk of developing HTN over the 2- and 3-year

exposure windows. In contrast, O₃ was associated with

an increased risk of incident HTN in all three exposure

windows. Similarly, PM₁₀ was consistently associated

with an increased risk of HTN, with the strongest effect

observed for 3-year exposure [hazard ratio (HR): 1.96; 95%

confidence interval (CI): 1.48 - 2.62]. Sulfur dioxide also

showed a positive association with incident HTN

consistently across all three time-spans (10).

3.3. Lipid-Profile Outcomes

3.3.1. Total Cholesterol

Short-term exposure produced clear pollutant-

specific patterns. Carbon monoxide and SO₂ raised total

cholesterol (TC) across the 14-day moving-average

window, whereas NO₂ produced a significant fall in TC

over the same lags. Ozone showed no material
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Table 1. Basic Characteristics of the 5 Included Studies

#

Bibliographic

Details/Study

Design

Study Design

and

Analytical

Approach

TLGS

Cycle(s)

and

Calendar

Period

Sample and

Demographics

Pollutants

(Lags/Averaging

Windows)

Exposure

Metric and

Source

Cardiometabolic

Outcomes

Key Results

(Effect Size ±

95% CI)

Confounders

Adjusted

Author-

Reported

Limitations

1

Khajavi A. et al.,

2019. Sci Total

Environ

661:243-250 –

Iran –

Prospective

cohort time-

series (14)

Daily cohort

time-series;

DLNM; zero-

inflated quasi-

Poisson

Cycles 1-5;

1999 -

2014

follow-up

9 731 adults ≥ 30

y (4 409 men)

Composite AQI

(primary); single-

pollutant

sensitivity

(PM₁₀); lags 0-7 d

(peaks at 2 & 6 d)

23 fixed

monitors;

city-wide

daily mean

(TehranAQI)

Daily fatal+non-

fatal CVD events;

all-cause deaths

CVD: AQI 180

vs. 50, lag 2 d

RR 1.94 (1.02 -

3.67); lag 6 d

RR 2.06 (1.09 -

3.88). Death:

AQI 180, lag 1

d RR 2.40

(1.00 - 5.59)

Natural

splines of

temperature;

Day-of-week;

Long-term

time trend;

Population

offset

Central-site

exposure; Zero-

inflated counts;

Limited events;

Ecological

inference

2

Khajavi A. et al.,

2021. Int J Hyg

Environ Health

234:113719 –

Iran –

Longitudinal

cohort (10)

Mixed-effects

transition

model

(SBP/DBP, lags

0-14 d);

Weibull

proportional-

hazards

(interval-

censored) for

incident HTN

Cycles 2 -

6; 2001 -

2018

4 580 non-

hypertensive

adults 20 - 69 y

(41.6 % men)

PM₁₀, SO₂, NO₂,

O₃, CO; lags 0-14 d

and 1-, 2-, 3-y

means

23-station

daily

averages

(Tehran

AQI)

Continuous

SBP/DBP; Incident

HTN

3-y PM₁₀ ↑ 10

µg/m³ → HR

1.96 (1.48 -

2.62) incident

HTN

Age, sex, BMI,

WC, diabetes,

anti-HTN drug

use, ever-

smoker,

temperature

Central

monitor; No

PM₂.₅; Urban-

only

generalizability

3

Khajavi A. et al.,

2025. Int J Hyg

Environ Health

266:114573 –

Iran –

Prospective

cohort time-

series (15)

Daily counts;

DLNM; zero-

inflated quasi-

Poisson

Cycles 1 -

6 (subset

50 - 70 y);

1999 -

2018

3 454 adults 50 -

70 y (54%

women)

CO, PM₁₀, SO₂,

NO₂, O₃; single-

day and

distributed lags

0 - 7 d

Citywide

mean of 23

monitors

CVD

hospitalizations

(MI, stroke, HF,

unstable angina,

PAD+other

specified)

CO lag 0 (IQR

≈ 5 mg/m³):

RR 1.92 (1.65

-2.23); PM₁₀
lag 1 (IQR ≈ 12

µg/m³): RR 1.12

(1.01 - 1.24);

SO₂ lag 2: RR

1.06 (1.04 -

1.07)

Temperature,

day-of-week,

seasonality,

long-term

trend

Central-site

exposure; Age-

restricted

cohort; Missing

residential

data; Urban-

only focus

4

Tamehri Zadeh

S. S. et al., 2022.

Environ Sci

Pollut Res

30:3213-3221 –

Iran –

Prospective

cohort (6)

Weibull PH

(interval-

censored) for

long-term

dysglycaemia;

1-, 2-, 3-y

averages

Cycles 2-

6; 2001 -

2018

4 254

normoglycaemic

adults 20 - 69 y

(40.4% men)

PM₁₀, SO₂, O₃,

NO₂, CO; annual

means (1 - 3 y)

Mean of 23

monitors;

No PM₂.₅
data

Incident

dysglycaemia, IFG,

type 2 diabetes

PM₁₀ 3 - y ↑ 10

µg/m³ → HR

2.20 (1.67 -

2.89) incident

dysglycaemia

Age, sex, BMI,

WC, family

history

diabetes, HTN,

ever-smoker,

temperature

Central

monitor;

Mobility-

related

exposure error;

Lack of rural

data; No PM₂.₅

5

Tamehri Zadeh

S. S. et al., 2023.

Atmos Environ

306:119796 –

Iran –

Longitudinal

cohort (13)

LME (short-

term 1 - 14 d);

Weibull PH for

incident

dyslipidaemia

Cycles 2 -

6; 2001 -

2018

5 821 adults 20 -

69 y (58.2%

women)

PM₁₀, SO₂, O₃,

NO₂, CO; Moving

av. 1 - 14 d; 1 - 3 y

means

23-station

average

(Tehran

AQI)

Continuous lipids

(TC, TG, LDL-C,

HDL-C, non-HDL-

C); Incident high

TC/TG, low HDL-C,

etc.

CO 3-y ↑ 1

mg/m³ → HR

1.80 (1.50 -

2.30) high TG;

HR 1.79 (1.30 -

2.52) low

HDL-C

Sex, age, BMI,

PA, smoking,

prevalent

CVD,

temperature

Central

monitor;

Healthier-

participant

bias; No PM₂.₅;

Urban context

only

Abbreviations: AQI, Air Quality Index; BMI, Body Mass Index; CI, confidence interval; CO, carbon monoxide; CVD, cardiovascular disease; DBP, diastolic blood pressure; DLNM,
distributed-lag non-linear model; HF, heart failure; HR, hazard ratio; HTN, hypertension; IFG, impaired fasting glucose; IQR, interquartile range; LDL-C, low-density-lipoprotein

cholesterol; LME, linear mixed-effects; MI, myocardial infarction; NO₂, nitrogen dioxide; O₃, Ozone; PAD, peripheral artery disease; PA, physical activity; PH, proportional hazards;

PM₁₀, particulate matter ≤ 10 µm; PM₂․₅, particulate matter ≤ 2.5 µm; RR, relative risk; SBP, systolic blood pressure; SO₂, sulfur dioxide; TC, total cholesterol; TG, triglycerides; WC,
waist circumference; non-HDL-C, non-high-density lipoprotein cholesterol.

association with TC, and PM₁₀ had at most a minimal,

non-significant effect.

Long-term analyses, based on 1-, 2-, and 3-year mean

concentrations, identified CO as the only pollutant that

increased the hazard of developing high TC; the risk

rose progressively with longer exposure. Particulate
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Table 2. The Distribution of Temperature and Air Pollutants During the Study Period 1999 - 2018 (15) a

PM10 SO2 NO2 CO O3

WHO thresholds 45 40 25 4 100

Mean ± SD 61.4 ± 20.0 31.7 ± 14.5 44.6 ± 22.2 3.2 ± 1.6 36.9 ± 20.1

Min-Max 5 - 281 3 - 113 6 - 110 0.8 - 30 2 - 160

IQR 22 19 38 1.7 25

Abbreviations: WHO, World Health Organization; SD, standard deviation; IQR, interquartile range.

a Values are expresses as percentage or mean ± SD (µg/m³).

matter was linked to a lower incidence of high TC after

three years, while NO₂, O₃, and SO₂ showed no

significant long-term relation with high TC.

3.3.2. Triglycerides

In the short term, both CO and SO₂ consistently

elevated triglycerides (TG), the effect size intensifying as

the 14-day moving average lengthened. By contrast, NO₂
and O₃ were each associated with lower TG across the

same lag structure, and PM₁₀ exerted no discernible

influence.

For long-term risk of high TG, CO again emerged as

an adverse factor, showing a significant positive

association in all three exposure windows. Nitrogen

dioxide and O₃ were opposite, each conferring a lower

risk of high TG over two- and three-year averages,

whereas PM₁₀ and SO₂ did not reach significance after

multivariable adjustment.

3.3.3. Low-Density Lipoprotein Cholesterol

Short-term increments in CO and SO₂ increased low-

density lipoprotein cholesterol (LDL-C), while NO₂ and

O₃ produced statistically significant reductions.

Particulate matter had no material impact on LDL-C.

In the long-term interval-censored Weibull survival

models, none of the five pollutants showed a significant

association with incident high LDL-C after adjustment

for demographic and lifestyle covariates.

3.3.4. High-Density Lipoprotein Cholesterol

Short-term exposure to CO lowered high-density

lipoprotein cholesterol (HDL-C) throughout the 14-day

lag period. Nitrogen dioxide and O₃ each raised HDL-C,

and PM₁₀ produced a small but statistically significant

increase. Sulfur dioxide showed no consistent effect on

HDL-C.

Long-term results paralleled the short-term findings:

Carbon monoxide increased the risk of developing low

HDL-C, whereas NO₂ and O₃ were associated with lower

risk. Particulate matter also showed inverse association,

demonstrating a significant reduction in incident low

HDL-C after one and two years of exposure, while SO₂
remained neutral.

3.3.5. Non-high-Density Lipoprotein Cholesterol

For non-HDL cholesterol, the short-term pattern

resembled that of TC: Carbon monoxide and SO₂
elevated non-HDL levels, NO₂ and O₃ reduced them, and

PM₁₀ showed no meaningful effect.

In long-term analysis, a single significant finding

emerged: three-year exposure to PM₁₀ was associated

with a lower incidence of high non-HDL cholesterol.

Carbon monoxide, NO₂, O₃, and SO₂ were not materially

related to long-term risk of high non-HDL cholesterol

(13).

3.4. Glucose-Metabolism Outcomes

3.4.1. Impaired Fasting Glucose

Short-term effects of ambient pollutants on fasting

glucose were not evaluated in the TLGS analyses;

therefore, only long-term findings are reported. In the

fully-adjusted Weibull models, a clear pollutant-specific

pattern emerged. Mean annual exposures to SO₂ and O₃
raised the risk of incident impaired fasting glucose (IFG)

across all three exposure windows, and PM₁₀ raised the

risk at one- and three-year averages (the two-year

window was not significant as CIs crossed 1). Nitrogen

dioxide showed the opposite behavior, reducing IFG risk

in every time window. Carbon monoxide had no

measurable influence on IFG. The strongest adverse

effect was seen for PM₁₀ after three years of exposure, HR

2.08 (95% CI 1.55 - 2.80), whereas the largest protective
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Figure 1. Matrix of associations between ambient air pollutants and cardiometabolic health outcomes in the short-term and long-term; short-term (A), and long-term (B)

associations between ambient air pollutants (CO, NO₂, O₃, PM₁₀, and SO₂) and various cardiometabolic health outcomes, including blood pressure (SBP, DBP), lipid profiles (total
cholesterol, triglycerides, LDL-C, HDL-C, non-HDL cholesterol), and cardiovascular events and hospitalization. Positive (+) and negative (-) associations are indicated in green and

red, respectively. Neutral/no association is marked in gray (abbreviations: CO, carbon monoxide; NO₂, nitrogen dioxide; O₃, ozone; PM₁₀, particulate matter ≤ 10 µm in diameter;

SO₂, sulfur dioxide; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; non-HDL,
non-high-density lipoprotein).

effect was recorded for NO₂ after three years, HR 0.82

(0.72 - 0.94).

3.4.2. Dysglycemia

The overall incidence of dysglycemia was

significantly influenced by long-term exposure to SO₂,

O₃, and PM₁₀. These pollutants were linked to an

increased risk of dysglycemia, with PM₁₀ showing the

highest risk, notably after 3 years of exposure, where the

HR reached 2.20 (95% CI 1.67 - 2.89). Similar to IFG, NO₂

exposure was inversely associated with the development

of dysglycemia, particularly in the first year of exposure,

where a modest decrease in risk was observed (HR 0.89,

95% CI 0.80 - 0.98), and no significant associations were

detected for CO.

3.4.3. Type 2 Diabetes Mellitus

Most pollutants demonstrated no significant long-

term association with incident diabetes after

multivariable adjustment. Carbon monoxide, SO₂, O₃,
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Figure 2. Chord diagram of positive associations between ambient air pollutants and cardiometabolic health outcomes in the short-term and long-term; short-term and long-

term associations between ambient air pollutants (CO, NO₂, O₃, PM₁₀, and SO₂) and various cardiometabolic health outcomes, including blood pressure (SBP, DBP), lipid profiles

(total cholesterol, triglycerides, LDL-C, HDL-C, non-HDL cholesterol), and cardiovascular events & hospitalization (abbreviations: CO, carbon monoxide; NO₂, nitrogen dioxide; O₃,

ozone; PM₁₀, particulate matter ≤ 10 µm in diameter; SO₂, sulfur dioxide; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; non-HDL, non-high-density lipoprotein).

and PM₁₀ showed no significant associations in any

exposure window after multivariable adjustment.

Nitrogen dioxide differed from the other pollutants. A

one-year increase in NO₂ was linked to a modest but

significant reduction in diabetes risk (HR 0.89, 95% CI

0.80 - 0.98), while the two- and three-year averages did

not reach statistical significance. Thus, apart from this

isolated inverse association for NO₂, long-term ambient

pollution was not a decisive determinant of incident

type 2 diabetes in the TLGS (6).

3.5. Cardiovascular Morbidity and Mortality

3.5.1. Cardiovascular Diseases and Mortality

In the Khajavi, et al. 2019 study, the focus was on the

relationship between the Air Quality Index (AQI) and

cardiovascular mortality. The AQI is a numerical scale

that represents the overall air quality based on the

maximum scaled values of six key pollutants, including

PM₁₀, NO₂, SO₂, CO, and O₃. The higher the AQI value, the

more polluted the air. The results indicated that high

AQI values were linked to an increased risk of

cardiovascular death. However, the study did not find

significant long-term effects of air pollution on

mortality across the entire sample, but immediate

exposure to higher AQI values did lead to higher

mortality risks. This suggests that short-term exposure

to high pollution levels, as measured by the AQI, is

particularly harmful in terms of cardiovascular

mortality.

The subgroup analysis in this study revealed notable

differences in the impact of air pollution on

cardiovascular disease (CVD) and mortality across age

groups. For individuals under 60 years old, significant

risks for CVD were observed at higher levels of air

pollution (AQI = 180) with a lag of 2 and 6 days, where

relative risks (RR) of 1.94 and 2.06 were reported,

respectively. In contrast, no significant effect on CVD was

found for individuals aged 60 and above. Regarding

mortality, significant effects were also observed in the

under-60 group, with the highest risk at AQI = 180 and

lag 1 day (RR = 3.29). For the 60+ years subgroup, the

highest risk for death due to air pollution occurred at

AQI = 180 and lag 7 days, with an RR of 2.16. These
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findings highlight that younger individuals were more

immediately and significantly affected by air pollution

in terms of both CVD and mortality, whereas elderly

individuals displayed a delayed response, with risks

peaking at longer lags (14).

3.5.2. Cardiovascular Disease Events and Hospitalization

The 2025 study by Khajavi, et al. reported that short-

term exposure to ambient air pollutants, particularly

PM₁₀, SO₂, and CO, was significantly associated with an

increased risk of CVD hospitalization. Elevated PM₁₀
concentrations, especially those exceeding 70 µg/m³,

were linked to a heightened risk of hospitalization, with

the strongest effect observed within one day of

exposure. Similarly, SO₂ levels as low as 24 µg/m³ were

associated with increased hospitalization risk, and this

association persisted at higher concentrations,

particularly at a six-day lag. Carbon monoxide exposure

was also positively associated with hospitalization risk,

with the greatest effect occurring shortly after exposure,

especially at concentrations above 3 mg/m³. In contrast,

NO₂ exposure above 68 µg/m³ was associated with a

reduced risk of hospitalization, although this inverse

association was not statistically significant across all lag

periods. No significant association was observed for O₃
overall; however, a concentration of 50 µg/m³

corresponded to a 20% increase in hospitalization risk

among individuals with chronic kidney disease (CKD) or

metabolic syndrome (MetS).

The subgroup analysis reveals that pollutant effects

vary significantly across different groups based on sex,

CKD status, and MetS status. Particulate matter shows

significant effects primarily in women, CKD, and MetS

individuals, with increasing risk at higher

concentrations. Ozone has no significant effect across

any subgroup. Sulfur dioxide consistently demonstrates

significant effects in all groups, peaking at 49-50 μg/m³.

Carbon monoxide exhibits notable effects at higher

concentrations (5 mg/m³) across all subgroups, with

lagged effects observed in CKD and MetS individuals,

particularly at 5-6 days for MetS. Nitrogen dioxide is

associated with reduced risk at higher concentrations in

all groups, with the lowest risk recorded at 86 μg/m³.

Lagged effects are primarily seen for CO, with significant

lags in non-CKD and MetS individuals, while other

pollutants, such as PM₁₀, SO₂, and NO₂, show no lag

effects. These findings highlight the differential impacts

of air pollutants depending on demographic and health

conditions (15).

4. Discussion

ehran, the most densely populated metropolitan

area in Iran, has been a focal point of research given its

substantial burden of cardiometabolic diseases [20 - 24].

Building on previous evidence, this study highlights

that a considerable share of this burden is attributable

to ambient air pollution. In particular, exposure to

pollutants such as CO, SO₂, and PM₁₀ appears to

exacerbate both risk factors and outcomes related to

cardiometabolic health.

4.1. Air Pollution and Blood Pressure

In Tehran, HTN represents a major public health

challenge, affecting an estimated 40% of the population,

with an additional 12% classified as pre-hypertensive (20-

22). Despite a relatively high awareness rate of 70%, only

50% of affected individuals seek treatment, and merely

40% achieve their treatment goals (20). Findings from

the TLGS are consistent with prior Iranian evidence,

showing that exposure to PM₁₀, SO₂, and O₃ is associated

with incident HTN. In parallel, a 2017 national study

across several Iranian cities reported that PM₁₀
concentrations were significantly associated with 55%

greater risk for incident HTN (23). Another study

highlighted a similar relationship between particulate

matter ≤ 2.5 µm (PM₂.₅), O₃, and HTN, while no

significant association was found with NO₂ exposure

(24). Complementary evidence from the CASPIAN-III

study in adolescents revealed a significant positive

correlation between AQI and SBP (25).

Similar patterns have been observed internationally.

A 2016 Systematic Review and Meta-Analysis of 17 studies

examining the associations of exposure to air pollutants

with HTN, reported that long-term exposure to NO₂ and

PM₁₀ had significant associations with HTN (26).

Moreover, a newly published umbrella review of

systematic reviews and meta-analyses further

demonstrated that short-term exposure to PM₂.₅ is

associated with increased systolic and diastolic BP, as

well as with long-term incidence of HTN, while PM₁₀
exposure was only linked specifically to elevated DBP in

both the short- and long-term exposure (27). Also, a

recent Danish cohort study of 32,851 participants found

an increase in SBP linked to NO₂ exposure, with no

association for DBP, reflecting trends seen in the TLGS

(28). In line with these observations, the recently

updated American Heart Association (AHA) guideline for

HTN management identifies air pollution, in particular

fine particulate matter (PM₂.₅), as a key non-dietary risk
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factor for HTN (29, 30). However, our study extends this

perspective by highlighting that coarse particulate

matter (PM₁₀) also plays a crucial, yet often

underappreciated, role in the development of HTN.

4.2. Air Pollution and Serum Lipids

Recent national surveillance studies report that

nearly 80% of Iranian adults have at least one lipid

abnormality, with low HDL-C and hyper TG being the

most prevalent. Although high TC and LDL-C showed a

declining trend from 2016 to 2021, the overall prevalence

of dyslipidemia remained unchanged due to persistent

low HDL-C and rising TG levels (31, 32). Ambient air

pollution is a recognized risk factor for adverse lipid

profiles and cardiovascular events (33). In TLGS, short-

term exposure to CO and SO₂ was linked to unfavorable

lipid changes, whereas long-term exposure showed

minimal associations. These findings align with the

CASPIAN-III adolescent cohort, which reported higher TC

and TG levels associated with AQI (25), as well as several

systematic reviews and observational studies (34-38).

A 2023 meta-analysis found no significant short-term

effects of air pollution on lipids, but long-term exposure

to PM₁₀, SO₂, and NO₂ was associated with higher TC, TG,

LDL-C, and lower HDL-C, albeit with substantial

heterogeneity (I² ≥ 69.7%) (34). Another systematic

review and meta-analysis, despite limited quantitative

evidence, reported significant associations between

PM₁₀ and NO₂ and elevated TG levels, with ~80%

heterogeneity (35). Similarly, a South Korean prospective

cohort of ~13,000 healthy soldiers observed adverse

effects of PM₂.₅, NO₂, and O₃ on lipid profiles (39).

Despite robust evidence, current lipid management

guidelines have yet to incorporate ambient air

pollutants as non-dietary risk factors for dyslipidemia

(40-44).

4.3. Air Pollution and Blood Glucose

National surveys in Iran report a high and rising

prevalence of dysglycemia (diabetes or prediabetes),

affecting 25.3% of men and 23.6% of women in 2016 (45).

Although awareness is relatively high (~80%) and about

70% receive treatment, only 30 - 40% of treated

individuals achieve glycemic control (46). In TLGS,

exposure to O₃, PM₁₀, and SO₂ was linked to higher risks

of IFG, but no pollutant showed a significant association

with incident type 2 diabetes mellitus (T2DM). These

findings are largely consistent with a 2023 study in

Isfahan that linked air pollution exposure to higher FPG,

HbA1c, and glucose intolerance (47). However, unlike

TLGS, they observed an association between air

pollution exposure with increased risk of both diabetes

and prediabetes. Furthermore, an Iranian ecologic study

also found a significant association between PM₁₀ levels

and incident diabetes (23). A population-based

retrospective cohort of 73,117 participants in Israel found

a modest association between intermediate-term PM₁₀
exposure and higher serum glucose, with the effect

twice as strong among individuals with diabetes (38).

Supporting this, a 2020 systematic review and meta-

analysis reported significant associations of PM₂.₅ and

PM₁₀ with incident T2D (48). While the ADA has not yet

incorporated air pollution into its clinical guidelines,

the association between environmental factors and

diabetes risk underscores the importance of

considering broader environmental determinants in

public health strategies (49).

4.4. Air Pollution, Cardiovascular Disease Events, and
Mortality

Cardiovascular diseases are among the three leading

causes of hospital admissions attributable to air

pollution exposure (50). Consistent with TLGS findings,

studies from Iran (51-53) and worldwide (54-56)] have

shown that exposure to ambient pollutants is

significantly associated with higher CVD hospitalization

rates. In Arak, each 10 µg/m³ rise in PM₁₀ and NO₂ and

each 1 mg/m³ rise in CO were linked to 0.7%, 3.3%, and

9.4% increases in CVD admissions, respectively (57). In

Isfahan, a 10-unit AQI increase corresponded to a 7.3%

rise in CVD hospitalization (58). Similarly, in Thailand,

O₃ was correlated with heart failure (HF) visits, NO₂ with

MI admissions, and SO₂ with cerebrovascular events

(59).

For CVD mortality, TLGS found that short-term

exposure to high AQI values was particularly harmful,

leading to an immediate rise in cardiovascular deaths.

This aligns with other evidence, including a multi-city

case-crossover study showing strong links between NO₂,

CO, and PM₂.₅ and cardiovascular mortality, especially in

middle-aged and older adults (60). A 2023 national

systematic review and meta-analysis also reported PM₁₀
as a major contributor to CVD mortality in Iran (61).

Similarly, a Tehran-based study found CVD mortality

most strongly associated with PM₁₀, followed by SO₂,

NO₂, and O₃, estimating ~5,000 excess all-cause deaths

per 100,000 people from these pollutants between 2010

and 2011 (62). Additional Iranian studies further support

associations between ambient pollution and respiratory
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deaths (63), CV mortality (64, 65), hospital admissions

(66-69), and cerebrovascular accidents (70).

Furthermore, an umbrella review of 56 systematic

reviews and meta-analyses provided robust evidence

that higher levels of ambient air pollution increase the

risk of CVDs and CVD mortality, particularly from stroke

and ischemic heart disease (27).

According to the study "Global Effect of Modifiable

Risk Factors on Cardiovascular Disease and Mortality"

(71), the combined population-attributable fractions of

five major traditional cardiovascular risk factors —

namely high Body Mass Index (BMI), elevated non-HDL

cholesterol, high SBP, type 2 diabetes, and smoking—

account for approximately 60% and 30% of 10-year CVD

and all-cause mortality, respectively. This suggests that

nearly 40% and 70% of CVD and all-cause mortality

events occur independently of these factors, thereby

highlighting the significance of non-traditional and

residual risk factors. Among these, air pollution

emerges as an underappreciated contributor, not only

exacerbating the burden of traditional risk factors such

as high SBP, dyslipidemia, dysglycemia, and obesity, but

also serving as a recognized non-traditional risk factor

for the onset of CVD itself (50, 72).

4.5. Ambient Air Pollutants, Sources, and Mechanisms of
Harm

The US Environmental Protection Agency (EPA)

reports that ambient air pollutants such as NO₂, SO₂, CO,

O₃, and PM₁₀ are primarily emitted through

anthropogenic activities, notably from transportation,

industrial processes, and combustion of fossil fuels.

Nitrogen dioxide is predominantly released from

vehicle emissions, power plants, and industrial

activities, while SO₂ mainly originates from the burning

of coal and oil in power plants and industrial facilities.

Carbon monoxide is produced by incomplete

combustion of carbon-containing fuels, commonly

from motor vehicles and residential heating. Ozone is a

secondary pollutant formed through photochemical

reactions involving precursor gases like NO₂ and volatile

organic compounds under sunlight. Particulate matter

consists of inhalable particles with diameters generally

10 micrometers and smaller, arising from both natural

sources such as dust storms and anthropogenic sources

including construction activities, vehicular emissions,

and industrial processes (73).

Ambient NO₂, SO₂, CO, O₃, and PM₁₀ plausibly affect

cardiometabolic risk through overlapping pathways

that link pulmonary injury to systemic vascular and

metabolic dysfunction. Acute exposures trigger airway

oxidative stress and inflammation that spill into

circulation, disturbing autonomic balance, impairing

endothelial function, elevating blood pressure,

reducing heart-rate variability, and promoting

thrombosis. Chronic exposure sustains low-grade

inflammation in vascular, adipose, and hepatic tissues,

impairing insulin signaling, worsening dyslipidemia,

and driving atherosclerosis and plaque instability. Fine

particles may directly translocate into blood and

damage vascular or myocardial tissue; O₃ and NO₂
amplify oxidative stress; SO₂ induces

bronchoconstriction and autonomic activation; and CO

reduces oxygen delivery through carboxyhemoglobin,

aggravating myocardial ischemia. Collectively, these

mechanisms explain acute surges in ischemic events

and heart-failure decompensation after pollution

spikes, and long-term increases in HTN, diabetes, and

atherosclerotic disease (74).

4.6. Clinical Impact and Policy View

The findings from this review, based on studies from

the TLGS, highlight the critical role that ambient air

pollution plays in shaping the incidence of NCDs and

contributing to cardiovascular and metabolic health

outcomes. Short-term exposure to pollutants like PM₁₀,

SO₂, and CO is consistently linked to elevated risks of

HTN, dysglycemia, cardiovascular hospitalization, and

increased mortality, particularly during high-pollution

periods. Additionally, in the Khajavi et al. (2025) study

(15), a correlation of 0.52 was found between SO₂ and CO

levels, suggesting a significant relationship between

these two pollutants in influencing health risks. These

results emphasize the urgent need for targeted public

health interventions. Clinically, the results signal that

although the harm caused by ambient air pollution is

more pronounced among older adults and those with

chronic conditions, every individual in this community,

regardless of age or health status, is affected by the

adverse outcomes of this problem, as demonstrated in

the data presented before (25, 47, 64, 75).

In this study, some pollutants appeared to show

negative associations with certain cardiometabolic

outcomes; however, these are unlikely to represent true

biological effects and should be interpreted with

caution. Several methodological explanations are

plausible. Omitted variable bias, such as unmeasured

pollutants (PM₂.₅) or confounders, may have distorted

the observed effect. Also, collinearity among pollutants

could dilute the harmful impact of some pollutants
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when correlated with others. Moreover, correlations

with unmeasured factors (e.g., socioeconomic status,

lifestyle) may further confound the association (76, 77).

This study underscores the urgent need for stricter

air quality regulations in urban centers, particularly

Tehran, where pollution levels consistently exceed safe

thresholds. A key finding is the lag effect; air pollution

remains harmful even after concentrations decline, with

adverse health effects persisting for days. This exposes

the limitations of current short-term policies, such as

school or office closures during peak pollution episodes,

especially in autumn and winter when inversion

worsens air quality. Such temporary approaches cannot

offset the lasting health impacts of pollutants.

Moreover, our findings show that the risks of air

pollution extend beyond high-risk groups — such as the

elderly or those with chronic diseases — to the general

population. Comprehensive, long-term interventions

are urgently required to mitigate these risks and protect

public health, including the transition to cleaner fuels,

promotion of low- and zero-emission vehicles, wider

adoption of effective emission-control technologies, and

better alignment of climate investments with health-

focused air quality policies.

4.7. Conclusions

This scoping review highlights the significant impact

of ambient air pollution on cardiovascular and

metabolic health in Tehran, driven by both short-term

(immediate or lagged) and long-term exposure to

pollutants such as PM₁₀, SO₂, and CO. The findings

underscore that while older adults and those with

chronic conditions are more vulnerable, air pollution

adversely affects every individual in the community.

Given the consistent evidence from the metropolitan

city of Tehran, immediate policy action is required to

reduce pollution levels and mitigate its health impacts.

Public health initiatives, stricter air quality regulations,

and continued research are essential to protect the

health of Tehran’s population and reduce the burden of

pollution-related diseases.

4.8. Strengths, Limitations, and Future Research Directions

This scoping review offers several strengths,

providing a comprehensive synthesis of findings from

multiple studies conducted within the TLGS. It offers

valuable insights into the relationship between ambient

air pollution and cardiovascular/metabolic outcomes in

Tehran, encompassing a range of pollutants, including

PM₁₀, SO₂, NO₂, CO, and O₃. The alignment of the TLGS

findings with other national and global studies

enhances the generalizability of the results, making

them applicable to a broader population.

Several limitations should be acknowledged to guide

future research. First, the lack of data on PM₂.₅ — a

pollutant with well-established links to cardiovascular

and respiratory diseases — limits the ability to fully

capture the burden of air pollution. The absence of

analyses on multi-pollutant mixtures and source-

specific effects further constrains the understanding of

combined and differential health risks. Second, spatial

variability in air pollution exposure across Tehran was

not considered, potentially leading to exposure

misclassification and heterogeneous health outcomes

across subpopulations. Third, the exclusion of

adolescents restricts the assessment of pollution-related

health risks in younger populations, who may be

particularly vulnerable to adverse effects. Finally, this

review focused on cardiometabolic outcomes and did

not examine other major conditions associated with air

pollution, such as respiratory diseases and cancers,

which are critical to comprehensively evaluating its

public health impact.

To address these gaps, future research should focus

on elucidating the long-term, cumulative effects of

chronic exposure to pollutants such as PM₂.₅, NO₂, and

CO on the onset and progression of cardiometabolic

diseases, as well as other health outcomes linked to air

pollution. Large-scale longitudinal studies are essential

to capture multi-year exposures, disentangle combined

pollutant effects, and assess source-specific

contributions from transportation, industry, and

residential heating. Equally important is incorporating

spatial heterogeneity and examining differential

impacts across socio-economic and demographic

groups. Finally, evaluating the effectiveness of

interventions — including urban planning strategies,

regulatory measures, and health promotion programs—

will be critical for mitigating risks and enhancing

population resilience.
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