

Relationship Between Serum Leptin and Adiponectin and Bone Mass with Energy Intake and Nutrients in 40-60 Year-Old Postmenopausal Women

Mottaghi A, Jazayery A, Golestan B

Faculty of Public Health, Tehran University of Medical Sciences; Tehran, I.R.Iran

Adquate nutrition is crucial for growth and maintenance of the body skeleton health; nutrients consumed affect leptin and adiponectin levels and bone mass. This study was done to determine the relationship between serum leptin, adiponectin and bone mass with energy intake and nutrients in postmenopausal women, 40-60 years old.

Material and Methods: The present cross-sectional study was done on 85 postmenopausal women, aged 40-60 years. Samples of fasting blood were taken to determine serum concentrations of leptin and adiponectin and bone mineral density was measured by the DXA method in the two areas of L2-4 and the femoral neck. Food intake was documented using questionnaires including food frequency and data was analyzed by FP2 software.

Results: Leptin had a negative relationship with energy intake, protein and magnesium and a positive relationship with carbohydrate; there was a positive relationship between adiponectin and energy and carbohydrate intakes. BMD of femur had a negative relationship with energy and carbohydrate, while it had positive relationship with calcium, and there was direct and significant relationship between BMD of the spine and zinc intake.

Conclusion: Increase in consumption of carbohydrates and decrease in consumption of protein led to increase in leptin levels. Consumption of calcium and zinc can have a protective effect on

bones.

Key Words: Leptin, Adiponectin, Bone mass, Nutrients

Received: 13.10.2008

Accepted: 20.11.2008

Introduction

Adequate nutrition is crucial for growth and maintenance of the body's skeletal health. Although bone diseases have complicated etiologies, adequate nutrition can delay their development. Of these diseases, osteoporosis is the most common, and can drastically decrease quality of life. Providing bone synthesizing nutrients before osteoporosis develops is vital. Not only are calcium, phosphorus and vitamin D essential for producing normal bones and ensuring normal function, but other nutrients also have fundamental roles in bone construction and function. Some of the other nutrients that affect bone are magnesium, vitamin K, vitamin A, fluoride, copper, manganese, iron, zinc, boron and also protein and caffeine.¹

Leptin, an ob gene product, is a small polypeptide hormone that is originally produced by adipocytes,^{2,3} and strongly correlated with body fat mass.⁴ This hormone has several physiologic functions that are not limited to energy balance. Recent studies show that lep-

Correspondence: Azadeh Mottaghi, Faculty of Public Health, Tehran University of Medical Sciences; Tehran, I.R.Iran

E-mail:mottaghi_a@razi.tums.ac.ir

tin inhibits bone synthesis by affecting the hypothalamus.⁵ Adiponectin, a new adipocytokine highly expressed in the adipocytes,⁶ regulates energy homeostasis and has anti-inflammatory and anti-atherogenic effects.⁷ This cytokine is a collagen-like protein has been recognized as adipocyte specific protein, and is conversely correlated to body mass index.⁹ One study¹⁰ shows that leptin and energy intake are directly correlated, whereas another study¹¹ reports a negative correlation. Also two studies assessed effects of carbohydrate consumption on serum leptin concentration and demonstrated that increase in carbohydrate consumption caused an increase in serum leptin concentration.^{12,13} A positive correlation was seen between energy expenditure and bone mineral density (BMD) in two studies^{15,22} but Abraham et al reported the negative effects of energy on bone mineral density.²²

This study was done to determine the relationship between serum leptin, adiponectin and bone mass with energy intake and nutrients in postmenopausal women, 40-60 years old.

Materials and Methods

The present cross-sectional study was done on 85 postmenopausal women, 40-60 years old, that referred to the bone mineral densitometry center of Tehran's Imam Khomeini hospital using a randomized sampling method. Females excluded were those on hormone therapy or used drugs affecting bone mass, such as corticosteroids, antiepileptics, thyroid hormones, antidepressant tablets, heparin, antiacids, thiazid diuretic, beta blockers, anti vitamin k substances, bisphosphonates, or those who had any bone, liver or, renal diseases, or had a history of hysterectomy. Data collected on persons who had the inclusion criteria, included ages of menarche and menopause, history of diseases and utilization of drugs, multivitamin and calcium. Semi-quantities food frequency questionnaires, the reliability and validity of

which had been determined, were completed to obtain nutritional information. Then bone mineral density and bone mineral content (BMC) in L2-4 area and femoral neck of these women was measured by IQ.DPX made by Lunar Co, USA with Dual X-Ray absorptiometry. Based on the World Health Organization (WHO) definitions, subjects were categorized in three groups; "osteoporotic" (bone mineral density ≥ 2.5 standard deviation from the mean of the young women population, 20-29 years old, "osteopenic" (bone mineral >1 standard deviation and <2.5 standard deviation from the mean of the normal young women population, and "normal" (bone mineral density ≤ 1 from the mean of bone mass in normal young women).

Blood samples were collected from all cases after 12-14 hours fasting, centrifuged, and sera were stored at -80°C; serum leptin and adiponectin concentrations were measured by ELISA using a Bio Vendor Co. kit (the interassay coefficient of variation for leptin kit: 6.8%, the intra-assay coefficient of variation leptin kit: 5.4%, the interassay coefficient of variation adiponectin kit: 7.5%, the intra-assay coefficient of variation adiponectin kit: 6.8%).

Descriptive data were reported as maximum, minimum, and mean \pm SD. Correlation between quantitative variables was tested, using Pearson's coefficient. One-way Anova was utilized for assessment of correlation between nutrients and groups of bone mineral density. Analysis of semi-quantitative food frequency questionnaire was done by FP2 software. SPSS version 11.5 was used for statistical analysis of data.

Results

Mean and standard deviation of age of participants was 52.4 ± 5.4 years. Mean and standard deviations of bone mineral density, serum leptin and adiponectin and other baseline characteristics of the subjects are summarized in table 1.

Of 85 female participants, bone mineral density of the femoral neck was normal in 35

women; 47 women had osteopenia and 3 had osteoporosis. Daily intakes of energy, macronutrients, calcium, phosphorus, magnesium, vitamin C and zinc are shown in table 2. No significant differences were observed between either macronutrients or micronutrients assessed. Table 3 shows the correlation between leptin and adiponectin and the intakes of some nutrients.

Intakes of energy, protein and magnesium were negatively and significantly related to serum leptin and a positive relationship was seen between intakes of carbohydrates and serum leptin; a significantly positive relationship was also observed between energy and carbohydrate intakes and adiponectin.

Table 1. General characteristics of the female population studied

Variable	Mean \pm SD	Minimum	Maximum
Age(y)	52.46 \pm 5.46	40	60
Femoral BMD(g/cm ²)	0.7447 \pm 0.83	0.5630	1.1010
Spine BMD(g/cm ²)	37.23 \pm 6.68	26.37	61.99
Leptin(ng/dL)	26.9 \pm 8.7	11.5	47.5
Adiponectin(μ g/dL)	10.7 \pm 3.0	4.2	16.9

Table 2. Mean and standard deviation of daily intakes of energy, macronutrients, calcium, phosphorus, magnesium, vitamin C and zinc

Daily energy and nutrient intake	Normal (n=35)	Osteopenia (n=47)	Osteoporosis (n=3)
Energy(kcal)	1774 \pm 443*	1975 \pm 625	1751 \pm 290
Protein(g)	70.7 \pm 16.1	74.9 \pm 22.1	73.1 \pm 17.7
Carbohydrate(g)	245 \pm 74	281 \pm 108	247 \pm 96
Lipid(g)	63.8 \pm 12.7	69.1 \pm 25.3	58.6 \pm 16.3
Calcium(mg)	1118 \pm 309	1214 \pm 357	1203 \pm 281
Magnesium(mg)	277 \pm 77	293 \pm 106	94 \pm 65
Vitamin C(mg)	87.9 \pm 11.3	81.2 \pm 12.5	76.6 \pm 10.6
Zinc(mg)	10.7 \pm 2.5	10.8 \pm 3.5	10.8 \pm 4.1

*mean \pm SD

Table 3. Pearson correlation test correlations between leptin and adiponectin with intake of macronutrients, calcium, phosphorus, magnesium, vitamin C and zinc

Nutrients	Leptin		Adiponectin	
	r	p-value	r	p-value
Energy(kcal)	-0.26	0.01	0.25	0.02
Protein(g)	-0.25	0.02	0.13	0.21
Carbohydrate(g)	0.27	0.01	0.30	0.004
Lipid(g)	-0.16	0.12	0.15	0.16
Calcium(mg)	-0.15	0.16	0.15	0.17
Magnesium(mg)	-0.22	0.03	0.11	0.29
Vitamin C(mg)	-0.15	0.15	0.16	0.14
Zinc(mg)	-0.19	0.06	0.12	0.27

Correlations between femoral BMD and spine BMC with intakes of some nutrients

are shown in table 4. A significantly inverse correlation was observed between energy and

carbohydrate intakes and femoral BMD. There was positive association between calcium and BMD; also between zinc intake and

spine BMC, a significant and positive relation was observed.

Table 4. Pearson correlation coefficients between femoral neck bone mineral density and spine bone mass content with intake of macronutrients

Nutrients	Femoral neck bone mineral density		Spine bone mass content	
	r	P	r	p
Energy(kcal)	-0.22	0.04	0.06	0.55
Protein(g)	-0.21	0.05	0.16	0.14
Carbohydrate(g)	-0.24	0.02	-0.04	0.71
Lipid(g)	-0.13	0.22	0.15	0.16
Calcium(mg)	0.28	0.001	0.11	0.31
Magnesium(mg)	-0.18	0.09	0.18	0.09
Vitamin C(mg)	-0.08	0.43	0.13	0.21
Zinc(mg)	-0.12	0.27	0.22	0.04

Discussion

The present study aimed at determining relationships between serum leptin, adiponectin and bone mass and energy and nutrient intakes. Regarding intakes of macronutrients, energy, calcium, magnesium, vitamin C and zinc and energy in the three groups, normal, osteopenic and osteoporotic, based on recommended dietary allowances (RDA), no deficiencies were observed. Zinc and vitamin C intakes of the women studied, were slightly higher than the RDAs of these nutrients, for an age-matched group, showing that intakes were adequate; however, in the case of magnesium intake these women had a deficiency. The RDA for magnesium in women aged ≥ 31 years old is 320 mg, whereas the means of intakes in all three study groups, were less than this value.

Data of one study¹¹ showed that energy restriction in rats causes increase in serum leptin, indicating that when energy intakes of rats decrease, their serum leptin levels increase, results which confirm the findings of our study.

Two studies assessing the effect of carbohydrate consumption on serum leptin concentration also support other results of this study,^{12,13} in both studies, increase in carbo-

hydrate consumption caused increases in serum leptin concentration; Romon et al showed that serum leptin levels have a direct correlation with insulin; hence consumption of carbohydrates, can increase blood insulin and serum leptin levels as well.

The present study showed a negative correlation between protein intake and serum leptin levels. One study¹⁴ reported that rats consuming diets with 5-8% casein had higher serum leptin levels than rats on diets with 20% casein; these findings show that with decrease of protein in the diet of rats, their serum leptin levels increase, results that are in agreement with those of the present study.

Our results showed that when protein intakes decrease, total dietary intakes increase and if an individual becomes overweight, since body weight is related to serum leptin levels, serum leptin concentrations increase following decrease in protein intakes.

A positive relationship was seen between BMD and calcium intake, an expected outcome since calcium is vital to bone health. In study done by Ilich et al, on the relationship between BMD and calcium, in healthy post-menopausal women, a positive and significant relationship between BMD and dietary calcium was seen;¹⁵ a study of Chinese post-

menopausal women, done by Ho et al¹⁶ reported a significant relationship between calcium intake and BMD changes. Other interventional studies showed the effect of calcium in delaying decrease of bone density in some areas, especially cortical bones e.g. beginning and end of the femur; these studies also reported that the total body in comparison with the specific areas mentioned was more sensitive to calcium intake.¹⁶⁻²⁰ A negative association was seen between energy and carbohydrate consumption in this study with BMD. Although in some studies,^{15,21} a positive relationship between energy and BMD was seen, one study²² showed that energy consumption after menopause had a negative effect on BMD²², a result in agreement with findings of this study.

Studies reported that positive relationship between zinc intake and BMC, similar to the

significant positive relationship in our study; however in one study, it was seen that zinc has a negative effect on BMD, which could be a result of the study participants having diabetes type 2, because diabetes impairs zinc metabolism.²³

Zinc is essential for enzymes that play a role in collagen synthesis in osteoblasts; alkaline phosphatase, one of the most important enzymes in osteoblasts, needs zinc to function.

To conclude, increases in leptin concentration, resulting from increased carbohydrate consumption and decreased protein consumption, can adversely affect bones. However, calcium and zinc intakes have protective effects on bone and skeletal health, confirming that, individuals with appropriate nutrition and balanced diets can have appropriate bone mass.

References

1. Mahan L K, Escott-Stump S. Nutrition and bone health. In: Mahan L K, Escott-Stump S, editors. Krause's Food, Nutrition, & Diet Therapy. 11th ed. Philadelphia: WB. Saunders Co; 2004. p. 642-66.
2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. *Nature* 1994; 372: 425-32.
3. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. *Cell* 1995; 83: 1263-71.
4. Thomas T, Burguera B, Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Riggs BL, et al. Relationship of serum leptin levels with body composition and sex steroid and insulin levels in men and women. *Metabolism* 2000; 49: 1278-84.
5. Chanprasertyothin S, Piaseu N, Chailurkit L, Rajatanavin R, Ongphiphadhanakul B. Association of circulating leptin with bone mineral density in males and females. *J Med Assoc Thai* 2005; 88: 655-9.
6. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). *Biochem Biophys Res Commun* 1996; 221: 286-9.
7. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. *Bone* 2003; 33: 646-51.
8. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. *Biochem Biophys Res Commun* 1999; 257: 79-83.
9. Matsubara M, Maruoka S, Katayose S. Inverse relationship between plasma adiponectin and leptin concentration in normal-weight and obese women. *Eur J Endocrinol*. 2002; 147: 173-80.
10. Mars M, de Graaf C, de Groot LC, Kok FJ. Decreases in fasting leptin and insulin concentrations after acute energy restriction and subsequent compensation in food intake. *Am J Clin Nutr* 2005; 81: 570-7.
11. Martin A, David V, Malaval L, Lafage-Proust MH, Vico L, Thomas T. Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. *Endocrinology* 2007; 148: 3419-25.
12. Romon M, Lebel P, Velly C, Marecaux N, Fruchart JC, Dallongeville J. Leptin response to carbohydrate or fat meal and association with subsequent satiety and energy intake. *Am J Physiol* 1999; 277: E855-61.
13. Jenkins AB, Markovic TP, Fleury A, Campbell LV. Carbohydrate intake and short-term regula-

tion of leptin in humans. *Diabetologia* 1997; 40: 348-51.

14. Du F, Higginbotham DA, White BD. Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. *J Nutr* 2000; 130: 514-21.

15. Illich JZ, Brownbill RA, Tamborini L. Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. *Eur J Clin Nutr* 2003; 57: 554-65.

16. Ho SC, Chen YM, Woo JL, Lam SS. High habitual calcium intake attenuates bone loss in early postmenopausal Chinese women: an 18-month follow-up study. *J Clin Endocrinol Metab* 2004; 89: 2166-70.

17. Shea B, Wells G, Cranney A, Zytaruk N, Robinson V, Griffith L et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. *Endocr Rev* 2002; 23: 552-9.

18. Riggs BL, O'Fallon WM, Muhs J, O'Connor MK, Kumar R, Melton LJ 3rd. Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. *J Bone Miner Res* 1998; 13: 168-74.

19. Dawson-Hughes B. Calcium supplementation and bone loss: a review of controlled clinical trials. *Am J Clin Nutr* 1991; 54 Suppl 1: 274S-280S.

20. Dawson-Hughes B, Harris SS, Kall E.A, Dallal GE. Effect of withdrawal of calcium and vitamin D supplements on bone mass in elderly men and women. *Am J Clin Nutr* 2000; 72: 745-50.

21. Quintas ME, Ortega RM, López-Sobaler AM, Garrido G, Requejo AM. Influence of dietetic and anthropometric factors and of the type of sport practised on bone density in different groups of women. *Eur J Clin Nutr* 2003; 57 Suppl 1: S58-62.

22. Abraham R, Walton J, Russell L, Wolman R, Wardley-Smith B, Green JR, et al. Dietary determinants of post-menopausal bone loss at the lumbar spine: a possible beneficial effect of iron. *Osteoporos Int* 2006; 17: 1165-73.

23. de Luis Román DA, Aller R, Pérez Castrillon JL, De Luis J, González Sagrado M, Izaola O, et al. Effects of dietary intake and life style on bone density in patients with diabetes mellitus type 2. *Ann Nutr Metab* 2004; 48: 141-5.