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Abstract

Background: Wound infection is a highly common problem in hospital settings, where microbes are often resistant and difficult
to treat due to rapid exposure to antibiotics. While treating wound infection, bacteria often enter the deep tissue; as therapy needs
long exposure time, bacteria have sufficient time to develop biofilm, which makes them much more resistant to antibiotics.
Objectives: The current study was performed to identify wound-infecting bacteria and determine their protease production activ-
ity.

Methods: The ability to produce biofilm was evaluated by the Congo red agar and tube methods. Antibiotic resistance pattern was
assessed before and after biofilm formation to detect the changes in resistance due to biofilm formation.

Results: We identified Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Corynebacterium xerosis, Alcaligenes faecalis, Bacillus
cereus, Escherichia coli, Acinetobacter spp., Klebsiella pneumoniae, Staphylococcus spp., Shigella spp., and Salmonella spp. in 20 wound
samples, among which about 10 isolates were found to be biofilm producers. Almost all the biofilm producers showed complete
resistance or a much smaller inhibition zone.

Conclusions: Pathogenic bacteria can be more difficult to eradicate by antibiotic treatment if they are able to produce biofilm;

thus, it is essential to prevent biofilm formation.
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1. Background

Biofilm is characterized by closely arranged cells in-
side a matrix or gel-like material produced by cells them-
selves. Biofilms are highly resistant to some environmen-
tal conditions where the same normal free-living bacte-
ria are readily killed (1-4). Bacteria can attached to all sur-
faces of the human body, including skin, teeth, and gut,
and when the attachment is irreversible, biofilm forma-
tion initiates (5-7). Several pathogenic bacteria are biofilm
producers, including Pseudomonas aeruginosa, Streptococ-
cus mutans, Klebsiella pneumoniae, Enterococcus faecalis,
Staphylococcus aureus, Streptococcus pyogenes, Escherichia
coli, Haemophilus influenza, Burkholderia cepacia, Acineto-
bacter baumannii, and Streptococcus pneumoniae (1-4).

The communal lifestyle of biofilm members is often
much different than the single bacterial cells (8). Gen-
erally, bacterial cells at the stationery growth phase pro-

duce biofilms when the environmental conditions become
harsh for planktonic cells due to nutrient depletion or
toxic substance accumulation (9). Biofilm formation is a
step-by-step process of attachment, maturation, and dis-
persion. In addition to the help of flagella and fimbriae,
Van der Waals forces between cells and the surface play an
important role during adhesion. Adhesion can be both re-
versible and irreversible (10, 11). After the first successful
attachment of cells to a surface, they produce more and
more matrix products like extracellular polysaccharides
or intracellular polysaccharides (e.g., glucose, mannose,
galactose, N-acetyl-glucosamine, galacturonic acid, arabi-
nose, fucose, rhamnose, and xylose) (12). These polysaccha-
rides provide scaffolding to make it possible for carbohy-
drates, proteins (help in biofilms architecture and struc-
tural strength), lipids, and nucleic acids to attach (7).

The physical structure of matured biofilms can resem-
ble mushroom from outside (13). There are channels to pro-
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vide air, nutrition, and water for the cells (7). Biofilm in-
hibits the easy access of antibacterial agents, and high con-
centration of cells inside it facilitates gene transfer mech-
anisms (14). As the biofilm grows, population outgrowth
creates competition for nutrients; the dispersal step initi-
ates where the outermost cells leave the biofilm as plank-
tonic cells again and start new biofilms in another site (1,
4,15).

Wound infection with biofilm producers is difficult
to eradicate as the antibiotic treatment often used to kill
planktonic cells fails to kill the bacteria in biofilms (16,
17). Several mechanisms can be responsible for such resis-
tance, such aslimited access of antibiotics to the biofilm in-
terior, activation of efflux pump mechanism, slowed down
growth rate, formation of persister cells, production of en-
zymes capable of degrading antimicrobial agents, charged
extracellular polysaccharides binding to antibiotics and
inhibiting entering cells from the matrix, etc. (2, 4, 18, 19).
Wounds infected with biofilm producers like Staphylococ-
cus aureus and Pseudomonas aeruginosa have been reported
in numerous studies (20-23).

2. Objectives

The aim of the study was to identify the bacteria in in-
fected wounds and determine the biofilm production ca-
pability of these bacteria. Simultaneously, the antibiotic
resistance of these bacteria before and after biofilm forma-
tion was evaluated to determine changes in resistance pat-
tern.

3. Methods

3.1. Sample Collection and Study Area

After asking for patients’ permission in a local health-
care center in Dhaka, Bangladesh, during September, 2019,
wound samples from outpatients were collected using
sterile cotton swabs following the Levine technique (24).
The samples were collected aseptically and sent to a labo-
ratory immediately for microbiological analysis.

3.2. Identification of Bacteria

Streaking was performed from the swabs on culture
media plates. Two types of agar plates were used to isolate
the pathogens. One was MacConkey agar, and the other
was blood agar. After 24 hours of incubation, growth was
observed, and the isolates were then subjected to the bio-
chemical identification process. Triple sugar iron agar test

(TSI), catalase, oxidase, citrate utilization, methyl red (MR),
Voges-Proskauer (VP), and indole test were performed as
the biochemical tests.

3.3. Determination of Protease Activity

Protease enzyme production capability was deter-
mined by streaking the bacterial isolates on casein agar
plates and gelatin deep tubes. Casein plates were incu-
bated at 37°C for 24 hours for observation of clear zone
around bacterial colony. Gelatin deep tubes were observed
every 24 hours for seven days. During each observation,
tubes were refrigerated at 4°C to detect non-solidified por-
tion (due to proteolysis).

3.4. Biofilm Production by the Congo Red Agar Method

Congo red agar was used for the biofilm production of
wound bacteria. The plates were inoculated with the bac-
teria by the streak plate technique and incubated for 24 to
48 hours at37°C. Black colonies indicate biofilm formation
(25).

3.5. Determination of Antimicrobial Susceptibility of the Iso-
lates

Isolates collected from the wound samples were tested
for antibiotic susceptibility before and after biofilm for-
mation on Mueller-Hinton agar (Difco, Detroit, MI) by the
Kirby-Bauer method with Vancomycin (30 ug), Neomycin
(30 pg), Cotrimoxazol (30 ug), Ceftazidime (40 ug),
Nalidixic Acid (30 pg), Chlortetracycline (30 ug), Novo-
biocin(30 ug), Linezolid(30 ug), Ciprofloxacin (5 pg), and
Azithromycin (15 pug). After 24 hours of incubation, the
plates were observed for inhibition zones, and the findings
were interpreted as susceptible, intermediate, or resistant
(26).

4. Results

After biochemical identification, we found Pseu-
domonas aeruginosa, Proteus mirabilis, Proteus vulgaris,
Corynebacterium xerosis., Alcaligenes faecalis, Bacillus cereus,
Escherichia coli, Acinetobacter spp., Klebsiella pneumoniae,
Staphylococcus spp., Shigella spp., and Salmonella spp. (Ta-
ble 1) in 20 wound samples, among which Pseudomonas
aeruginosa, Salmonella typhimurium, Corynebacterium xero-
sis, and Alcaligenes faecalis showed protease activity (Table
2).

Int J Infect. 2021; 8(3):e108247.



Proma TT and Ahmed T

Table 1. Biochemical Identification of Isolates Collected from Wound Samples

Isolate TSI . . . .

No. Citrate Indole Catalase Oxidase MR VP Identified Bacteria
Slant Butt Gas H,S

01 A A +

02 A A + - - - Acinetobacter spp.

03 K A + + + + - + Proteus mirabilis

04 K A - + - + + + Proteus vulgaris

05 K A - + - + + + Proteus vulgaris

06 K A + + + + + Proteus mirabilis

07 A A + + Alcaligenes faecalis

08 K A - + + + + Salmonella spp.

09 K A - + + + + Salmonella spp.

10 A A - - + + + Pseudomonas aeruginosa

1 A A + - - - Corynebacterium xerosis

12 A A - - + + + Klebsiella pneumoniae

13 A A + + Staphylococcus aureus

14 K A - - + + + + + Bacillus cereus

15 A A + - + + + + Staphylococcus aureus

16 A A + - - + + - Escherichia coli

17 K A + + - - - Corynebacterium xerosis

18 A A + + + Staphylococcus spp.

19 K K - - + + + Pseudomonas aeruginosa

20 K K - - + + + Pseudomonas aeruginosa

Abbreviations: A: Acidic, K:Alkaline

Among the 20 isolates, 10 (isolates 01, 03, 04, 08, 09,
11, 12, 13, 16 and 20) were biofilm producers (Table 3). Es-
cherichia coli showed resistance to vancomycin, nalidixic
acid, and chlortetracycline, while it was susceptible to
these drugs before biofilm formation (Tables 3 and 4).
In addition, Proteus vulgaris spp.
linezolid and Proteus mirabilis to chlortetracycline after
biofilm formation.

showed resistance to

5. Discussion

Twenty wound samples were subjected to biochemical
identification, and after the biochemical tests, we found
Escherichia coli, Proteus mirabilis, Acinetobacter spp., Proteus
vulgaris, Alcaligenes faecalis, Salmonella spp., Pseudomonas
aeruginosa, Corynebacterium xerosis, Klebsiella pneumoniae,
Staphylococcus aureus, and Bacillus cereus (Table 1). Simul-
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taneously, the bacteria’s extracellular protease activity was
also examined. None of the isolates from the 20 samples
showed casein hydrolysis activity, but a few were proved
to be capable of hydrolyzing gelatin (Table 2). They were
samples no. 7 (Alcaligenes faecalis), 8 (Salmonella spp.),
17 (Corynebacterium xerosis), and 20 (Pseudomonas aerugi-
nosa).

Gelatin hydrolysis occurs with the help of the gelati-
nase enzyme, which contributes to the virulence of wound
bacteria. This helps bacteria to escape from the wound
and disseminate to the distal body parts and cause dis-
eases like endocarditis (27, 28). Bacteria with gelatinase
production capability can spread to the internal organs
passing the connective tissue if antibiotic treatment does
not reach into the biofilm. About 10 isolates (50% isolates)
were biofilm producers (Table 3), indicating a great threat
for treatment as antibiotics might not reach the biofilm in-
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Table 2. Detection of Protease Activity

Table 3. Biofilm Formation

Isolate Bacterial Isolate Casein Gelatin

No. Hydroly- Hydroly-
sis sis

o1 Escherichia coli -

02 Acinetobacter spp. -

03 Proteus mirabilis -

04 Proteus vulgaris -

05 Proteus vulgaris -

06 Proteus mirabilis -

07 Alcaligenes faecalis - +

08 Salmonella spp. - +

09 Salmonella spp. -

10 Pseudomonas aeruginosa -

1 Corynebacterium xerosis -

12 Klebsiella pneumoniae -

13 Staphylococcus aureus -

14 Bacillus cereus -

15 Staphylococcus aureus -

16 Escherichia coli -

17 Corynebacterium xerosis - +

18 Staphylococcus spp. -

19 Pseudomonas aeruginosa -

20 Pseudomonas aeruginosa - +

terior due to the antibiotic reflux mechanism.

Antibiotic sensitivity was evaluated both before and
after biofilm production (Tables 4 and 5), and it was re-
vealed that mostisolates that were sensitive before biofilm
formation became resistant (Table 4). Some isolates with
a large inhibition zone showed a quite small inhibition
zone, indicating the decreased capacity of antibiotics to in-
hibit the growth of microbes after biofilm formation. For
instance, Pseudomonas aeruginosa with a 31-mm zone for
ciprofloxacin showed a 15-mm zone after biofilm forma-
tion, which is nearly half of the original size. Only few
bacteria showed no changes in antibiotic resistance within
24 hours (e.g., Escherichia coli for ciprofloxacin and Proteus
mirabilis for novobiocin).

As it is difficult to treat biofilms with antibacterial
agents, the first priority would be to prevent the forma-
tion of biofilms before their development (29). This study
aimed to determine biofilm-producing bacteria isolated
from wound samples. Based on our findings, it is imper-
ative to take measures to stop bacterial growth in wound
sites. Due to the open wound, the primary immune barrier

Isolate No. Bacterial Isolate Biofilm Production
o1 Escherichia coli Positive
02 Acinetobacter spp. -

03 Proteus mirabilis Positive
04 Proteus vulgaris Positive
05 Proteus vulgaris -

06 Proteus mirabilis -

07 Alcaligenes faecalis -

08 Salmonella spp. Positive
09 Salmonella spp. Positive
10 Pseudomonas aeruginosa -

1 Corynebacterium xerosis Positive
12 Klebsiella pneumoniae Positive
13 Staphylococcus aureus Positive
14 Bacillus cereus -

15 Staphylococcus aureus -

16 Escherichia coli Positive
17 Corynebacterium xerosis -

18 Staphylococcus spp. -

19 Pseudomonas aeruginosa -

20 Pseudomonas aeruginosa Positive

is already broken down, and the leaking plasma provides
an optimal environment with nutrient supply for bacte-
ria to grow further and produce biofilms. Thus, regular
sterilizing of the wound site with an appropriate propor-
tion/concentration of antibacterial agents is key to prevent
bacterial growth. Also, the antibiotics regimen should be
adhered to according to the prescription, and there is no
alternative to strictly following the physician advice.

5.1. Conclusions

Bacteria causing wound infection can produce
biofilms very easily if left untreated or unclean. As it
is difficult to inhibit bacteria after biofilm formation with
antibiotics or organic substances, which can usually stop
wound infection, strict care must be given to sanitize the
wound site properly to prevent any infection.
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