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Abstract

An important field of bone tissue engineering (BTE) concerns the design and fabrication of 
smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor 
cells. One of these additives that has gained growing attention is metallic ions as therapeutic 
agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as 
other potential mechanical, and antimicrobial enhancements may vary depending on the ion entity, 
fabrication method, and biomaterials used. Therefore, this article provides an overview on current 
status of In-vivo application of MITAs in BTE and the remaining challenges in the field. Electronic 
databases, including PubMed, Scopus, Science direct and Cochrane library were searched for 
studies on MITAs treatments for BTE. We searched for articles in English from January-2000 to 
October-2019. Abstracts, letters, conference papers and reviews, In-vitro studies, studies on alloys 
and studies investigating effects other than enhancement of new bone formation (NBF) were 
excluded. A detailed summary of relevant metallic ions with specific scaffold material and design, 
cell type, animal model and defect type, the implantation period, measured parameters and obtained 
qualitative and quantitative results is presented. No ideal material or fabrication method suited to 
deliver MITAs can yet be agreed upon, but an investigation into various systems and their drawbacks 
or potential advantages can lead the future research. A tendency to enhance NBF with MITAs can be 
observed in the studies. However, this needs to be validated with further studies comparing various 
ions with each other in the same animal model using critical-sized defects.  
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Introduction

Successful induction of bone tissue 
regeneration is a complicated process requiring 
harmonic interplay of cells, cell supporting 
scaffolds and bioactive materials (1). An 
important field of bone tissue engineering 

(BTE) concerns the design and fabrication of 
smart scaffolds capable of inducing cellular 
interactions and differentiation of osteo-
progenitor cells. This can be achieved by 
loading the engineered scaffold with various 
therapeutic agents that give the scaffold a dual 
function: as a bed for new tissue growth and as 
a carrier for controlled in-situ drug delivery (2). 
One of these additives that has gained growing 
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attention is metallic ions as therapeutic agents 
(MITAs). As it has been shown in the recent 
literature that some ions are able to guide the 
differentiation of stem cells into a desired 
path, there is great hope in employing them 
in regenerative medicine (3-5). MITAs 
have essential roles in body as cofactors of 
various enzymes, in cellular metabolism, 
signaling pathways, ionic channels and other 
biologic procedures (6). Metallic ions enhance 
osteogenic differentiation of mesenchymal 
stem cells & regulate osteoclast-mediated 
bone resorption. Pathways known to be 
involved in osteogenic differentiation such 
as Wnt signaling has been reported to be 
influenced by stimulation with trace ions like 
lithium, magnesium, strontium, or zinc (7). 
Other related osteogenic markers such as 
Runt-related transcription factor 2 (Runx2), 
osteonectin, osteopontin, and collagen type 
one are also enhanced with addition of 
metallic ions (8-12). MITAs also have a role 
in promoting differentiation, migration and 
capillary formation of endothelial cells as 
well as inducing secretion of pro-angiogenic 
factors such as vascular endothelial growth 
factor (VEGF) (13-15). Inorganic ions are also 
bacteriostatic which give the scaffold impunity 
against bacterial adhesion & infection which 
disturb tissue integration (16, 17). Moreover, 
MITAs have relatively lower risk of cancer 
compared with recombinant proteins or 
genetic modifications (18). The bioactivity of 
a bone scaffold depends on the interaction of 
its constituent molecules with stem cells and 
pre-osteoblasts at the interface (19). Along 
with the growth factor proteins such as bone 
morphogenetic protein (BMP) family or other 
peptides and small molecules, research has 
been focused on metallic ions (20-22). Their 
prominent advantages against growth factors 
and other organic drugs are the lower expense, 
relative stability during fabrication procedure 
and higher function in lower concentrations 
(21, 23). Local delivery of these metal ions 
compared to taking them via oral routes has 
the advantage of better control over dose and 
distribution of the drug (24). Moreover, the 
ionic state of a few metallic ions is unstable 
and may cause toxic effects in case of direct 
ingestion. In case of systemic distribution, 
non-specific adverse effects in neurologic, 

cardiologic, hematologic or endocrine systems 
may be observed (25, 26). It should be noted that 
designing a scaffold that regulates the specific 
amount of ion released in a particular period 
is necessary to prevent local toxic effects and 
ion’s side effect on the metabolism of adjacent 
cells (27). Modulating release kinetics of ions 
from scaffold in a controlled manner, reduces 
the accumulation of ion and dose-dependent 
toxicity and results in induction of favorable 
cell behavior (3). Different methods such as 
Ion exchange, solvent casting, salt leaching, 
electrospinning, three dimensional (3D) 
printing, freeze-drying, and laser sintering 
have been applied in fabrication of bone 
scaffolds incorporating MITAs (28-33). These 
inorganic ions can be incorporated into various 
materials such as bioactive glasses, glass 
ceramics, calcium phosphates, hydroxyapatite 
(HA), alpha and beta-tricalcium phosphates, 
biodegradable polymers and composite 
scaffolds. This addition alters degradation 
behavior, mechanical characteristics and 
biological function of scaffolds (34). In this 
systematic review, we aimed to analyze In-
vivo studies on MITAs less commonly applied 
in BTE and present an overview upon their 
efficacy in enhancing bone regeneration. 

Experimental

This study has been designed and 
conducted according to the preferred 
reporting items for systematic reviews and 
meta-analyses (PRISMA) guidelines (35). 
Electronic databases, including PubMed, 
Scopus, Science direct and Cochrane 
library were searched for studies on MITAs 
treatments for BTE. The following keywords 
were used: bone tissue engineering/bone 
substitute/scaffold [title/abstract] AND ion/
mineral/names of organic ions each searched 
separately [title/abstract]. We searched for 
articles in English from January 2000 to 
October 2019 and checked the reference list of 
related reviews and the following journals for 
additional relevant studies: (1) Biotechnology 
and Bioengineering; (2) Journal of Biomedical 
Materials Research; (3) Journal of Tissue 
Engineering; (4) and Acta Biomateralia. 
A total of 1405 articles were collected. 
Eligibility checking and data extraction were 
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performed independently by two reviewers. 
Any disagreements were resolved by 
discussion. Inclusion and exclusion criteria 
of the study were applied through the initial 
screening of titles and abstracts. Total of 284 
duplicate results were excluded. Abstracts, 
letters, conference papers, and reviews were 
excluded (n=3). Abstracts and titles were 
screened and 1055 articles were excluded as 
they were In-vitro. Full-texts for the remainder 
were obtained (n = 63). Studies on alloys 
& mixtures of ions (n=19) were excluded 
because the osteoinductive activity could not 
be completely attributed to the one specific 
component. Also studies investigating ion 
effects other than enhancement of new bone 
formation (NBF) (n = 10) were excluded. 
One study was excluded because of the 
unacceptable In-vivo model. Figure 1 shows a 
diagram of study selection process.

The included studies were screened for 
the scaffold and fabrication method, cell type 
used, the animal model and size & location 
of the defect, the implantation period, study 
groups, measured parameters and obtained 
qualitative and quantitative results. A meta-
analysis could not be conducted due to the 
heterogeneity of the data.

Results

A total of 33 articles met our inclusion 
and exclusion criteria and were reviewed. 
The data is summarized in Table 1. Studies 
were classified according to the metallic ion 
added to the scaffolds. Strontium was the most 
studied ion, with 13 In-vivo studies (12, 36-
47), followed by magnesium with 6 (9, 30, 48-
51) and zinc with 5 articles (22, 52-55). Two 
articles were found on silicon (10, 56), lithium 
(8, 57) and iron (58, 59) each, and copper (60), 
silver (61), and cobalt (62, each had only one 
studies. 

These metallic ions were incorporated into 
various scaffolds: A total of 11 articles used 
polymers such as poly-caprolactone (PCL) (n 
= 5) (10, 37, 38, 48, 51), poly lactic-co-glycolic 
acid (PLGA) (n=2) (9, 30), Poly-L-lactic acid 
(PLLA) (n = 2) (39, 61), chitosan (60), and 
combination of collagen and alginate (62). 
Among the 13 studies which used ceramics, 
six used hydroxyapatite (HA) (8, 46, 49, 53, 

56, 58), four used calcium polyphosphates 
(CPP) (43-45, 57), three used tricalcium 
phosphate (TCP) (22, 54, 55). One study used 
magnesium phosphate 2D nano-sheets (50). 
Another ten studies evaluated the efficacy 
of ions in composite scaffolds. HA was used 
in combination with collagen in 3 studies 
(47, 52, 53), with poly(γ-benzyl-l-glutamate) 
(PBLG) in 2 studies (40, 63), with PCL in 2 
other studies (36, 61), and with PLLA in one 
study (41). Collagen polymer was combined 
with amorphous calcium phosphate porous 
microspheres in a study on strontium ion (52).

Only six studies implanted the designed 
scaffolds with stem cells to enhance bone 
formation. These included rabbit adipose 
derived stem cells (ADSCs) (40), rabbit bone 
marrow derived stem cells (BMSCs) (45), mice 
ADSCs (42), human telomerase immortalized 
BMSCs (37), hypoxia preconditioned BMSCs 
(8), and finally MC3T3e1 (mouse pre-
osteoblast) cell lines (10). 

Most frequently used animal model was rat 
(n=17) followed by rabbit (n=12). Two studies 
used mice while one study reported beagle 
dog (30) and another reported goat (64) as its 
animal model. 

The most commonly used defect model 
was a critical sized calvarial defect. Two 
studies investigated NBF in 8 mm defects (9, 
61) while seven used 5 mm defects (12, 36, 
39, 46, 56, 60, 62). A 15 mm defect was used 
in a goat model calvarium (49), as well as a 
10 mm rabbit calvarial defect (43) and a 2mm 
mouse cranial defect (38). One infected cranial 
defect was used to evaluate the antimicrobial 
effect of silver along with osteoinductivity 
(61). Eleven femoral (22, 40-42, 44, 51-53, 
55, 58, 59), five tibial (8, 47, 50, 57, 65) and 
one radial defects (45) were also studied in 
varying dimensions considered to be critical. 
Subcutaneous implantation was applied in 3 
studies (10, 37, 48) and one study reported a 
split mouth socket preservation in a dog model 
(30).

Average implantation period was 11.27 
weeks which varied between one study 
evaluating NBF after 2 weeks (50) and another 
long-term study waiting for a maximum of 60 
weeks (55). However, most of the studies (n=11) 
had a 12-week implantation period, followed 
by 10 studies having an 8-week period. 
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Figure 1. PRISMA Flowchart. 

  

Figure 1. PRISMA Flowchart.
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Different parameters including X-ray 
radiography or computed tomography (CT) 
measured bone mineral density, micro-CT 
derived new bone volume, mechanical testings, 
Dual x-ray absorptiometry, histomorphomteric 
analysis with Haemotoxylin and Eosin (H&E) 
and Goldner-Masson’s trichrome staining, 

quantitative real time polymerase chain 
reaction (qRT-PCR) measurement of different 
RNAs and western blot of the resultant 
proteins were evaluated. Other stainings such 
as von kossa for calcium detection, toluidine 
blue for cell nuclei, acid fuschin, fast green, 
sirius red for collagen, tartrate-resistant acid 

 

Figure 2. CT scanning and histological analysis of bone formation at 3 months after the transplantation. (A): 

Representative radiographic analysis of bone formation in the control (a), hydroxyapatite (HA) (b), and strontium 

(Sr) groups (c). (B): Representative histological analysis (H&E staining) of bone formation in the control (a), HA (b), 

and Sr group (c). (C): Representative histological analysis (Masson staining) of bone formation in the control (a), HA 

(b), and Sr group (c). Scale bar = 800 μm (B, C, low magnification); = 75 μm (B, C, high magnification). ***, p < .001. 

Abbreviations: CT, computed tomography; HA, hydroxyapatite; HU, Hounsfield unit; Sr, strontium (46). - The images 

are provided with permission from Stem Cells Publications, John Wiley & Sons Publication group (license number: 

4755280758795). 

 

Figure 2. CT scanning and histological analysis of bone formation at 3 months after the transplantation. (A): Representative 
radiographic analysis of bone formation in the control (a), hydroxyapatite (HA) (b), and strontium (Sr) groups (c). (B): Representative 
histological analysis (H&E staining) of bone formation in the control (a), HA (b), and Sr group (c). (C): Representative histological 
analysis (Masson staining) of bone formation in the control (a), HA (b), and Sr group (c). Scale bar = 800 μm (B, C, low magni-
fication); = 75 μm (B, C, high magnification). ***, p < .001. Abbreviations: CT, computed tomography; HA, hydroxyapatite; HU, 
Hounsfield unit; Sr, strontium (46). - The images are provided with permission from Stem Cells Publications, John Wiley & Sons 
Publication group (license number: 4755280758795).
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phosphatase for osteoclast and giemsa for 
osteoblast as well as chloroacetate esterase 
for neutrophils and human vimentin antibody 
staining for endothelium was conducted in 
some studies. Immunohistochemistry analysis 
helped in identification of various osteogenic 
markers such as osteonectin, osteopontin, 
collagen type I, β-catenin as well as angiogenic 
factors such as vascular endothelial growth 
factors (VEGF), basic fibroblast growth factor 
(BFGF). 

Discussion

Biomimetic bone scaffolds incorporating 
additional therapeutic agents like MITAs are 
a main focus of BTE. The specific biological 
advantage that these ions bring to scaffolds 
as well as other potential mechanical, and 
antimicrobial enhancements may vary 
depending on the ion entity, fabrication 
method, and biomaterials used. Herein, we 
categorized in-vivo studies on MITAs in 
bone substitutes with the aim of clarifying 
their efficacy and identifying the affecting 
parameters. 

The most frequently used ion, strontium 
(Sr), is a naturally occurring ion with 98% of it 
localized in the skeleton, exchanged with Ca2+ 
in the HA crystal lattice (3). Sr2+, a structurally 
similar ion to calcium, helps promote 
osteogenic differentiation of mesenchymal 
stem cells (MSCs) via wnt/βcatenin and Ras/
MAPK signaling pathways (46) and inhibits 
osteoclastic activity.  Strontium has thus been 
widely investigated in both In-vitro and In-vivo 
studies and has been shown to enhance NBF, 
remodeling and ossseointegration when added 
alone to scaffolds or combined with other ions 
(41, 66-68). However, high doses of Sr have 
been shown to have adverse effect on calcium 
absorption and bone mineralization, therefore, 
engineering a controlled release scaffold is 
of great importance (69). In our review, Sr 
enhanced NBF in nine studies while two studies 
had no control scaffolds without Sr to make 
the comparison possible. One study failed 
to report any significant difference between 
laponite-strontium ranelate containing PCL 
and PCL alone with or without cells (37) 
which could be due to ectopic implantation. 
Gao et al., reported bone volume/total volume 

(BV/TV) resembling that of natural bone 
using Sr-HA-graft-poly(benzyl-L-glutamate) 
nanocomposite microcarriers loaded with 
ADSCs in a mice 2mm critical-sized femoral 
defect model (42).  

Magnesium was also extensively studied 
in combination with PLGA and PCL polymers 
and HA. Mg2+ is another element found in 
human body, half of which is deposited 
in bone tissue (70). Studies have shown a 
correlation between magnesium deficiency 
and osteoporosis, attributable to changes 
in parathyroid hormone (PTH), Vitamin 
D levels and increased pro-inflammatory 
cytokine secretion such as substance P, 
TNF-α, IL-1β, and RANKL (71). Similar to 
strontium, magnesium works by stimulating 
MSCs proliferation, differentiation while 
suppressing osteoclast activity. Moreover, 
it has been demonstrated that magnesium 
increases osteogenic gene expression and 
protein expression of collagen type X and 
VEGF (72). Additionally, magnesium is 
reported to have antibacterial properties, 
beneficial in reducing infection risk in bone 
grafting procedures (73).  Almost all studies 
reviewed in this article, proved magnesium 
efficient in promoting NBF with the exception 
of a study by Suryavanshi et al. that reported 
no NBF using PCL and MgO in subcutaneous 
implantation. The scaffold, however, was 
proved to be biocompatible (48). In another 
study by Deng et al. in a goat bi-parietal 15 
mm calvarial defect model, the synergistic 
effect of magnesium and human recombinant 
bone morphogenetic protein 2 (rh-BMP2) was 
also demonstrated (49).

Another frequently studied ion is zinc, 
a trace element essential for neural growth, 
immunological functions and many other 
cellular processes (74). Zinc is well recognized 
as a critical mineral for bone health and 
development, as its deficiency is associated 
with bone growth lag and mal-development 
as well as osteoporosis (75). Zn2+ affects 
MSCs through ERK1/2 signaling and hinders 
osteoclasts by antagonizing NF-κB pathway 
(76). Zinc also processes antibacterial effects 
owing to production of reactive oxygen 
species (ROS) and aids in wound healing 
(77). Of the five In-vivo studies reported in 
this study, one study provided no control for 
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comparison (53), while another study showed 
that both βTCP and Zn-TCP were able to 
stimulate regeneration of new bone closing the 
defect but Zn-TCP showed a faster rise in bone 
mineral density and resulted in a more mature 
and denser trabecular bone (54). A long-term 
(60 weeks) study on bone formation in white 
New Zealand rabbit transcortical femoral 
defect model also presented that Zn-HA-TCP 
was able to promote NBF compared to HA-
TCP (55). Similar results were obtained in an 
8-week study on Zn-HA-Collagen in SD rat 
model (52). Samanta et al. conducted a study 
in a rabbit femoral defect model where TCP-
Zn was compared to TCP-Ti and TCP-Mg. 
NBF was increased to 65.06 ± 3.0 in TCP-Ti, 
compared to 50.55 ± 2.0 in TCP-Mg, 48.40 ± 
2.0 in TCP-Zn, and 34.24 ± 2.0 in TCP alone 
(22). More similar studies are recommended 
to make the comparison between various ions 
possible.

Data on other less commonly applied 
metallic ions can be found in Table 1. 
The readers are referred to two published 
narrative reviews on metallic ions for further 
explanation of the functions of these ions (3, 
72). Undoubtedly, the most frequently used 
ion in bone structure and bone substitutes 
is calcium. However, as their obvious role 
in bone tissue regeneration has been well 
documented, the authors agreed to limit this 
systematic review on ions, whose potential 
role and efficacy are yet to be determined. 
The authors also excluded studies on mixtures 
of ions and alloys as such studies would not 
help in drawing conclusions regarding the 
efficacy of a specific ion. There is a body of 
In-vivo literature on magnetic scaffolds, of 
which only the ones that housed animals in 
normal cages are included. Studies stimulating 
bone formation by creating a magnetic field 
around the animal during implantation period 
were excluded because it was agreed that 
the underlying mechanism is rather different 
than that of MITAs. The readers are kindly 
encouraged to read a review by Xu et al. on 
magnetic responsive scaffolds in BTE (78).

As presented in table 1, various polymers, 
ceramics and composites are functionalized 
using MITAs. Among the polymers, PCL 
seems to be more frequently used which could 
be explained by its relative simple application 

in the fabrication of scaffolds. PCL is a non-
immunogenic synthetic polymer which can be 
dissolved in most of organic solvents, there 
are many methods to its fabrication and it can 
be blended with other polymers or ceramics 
to hand in composite scaffolds with enhanced 
mechanical properties especially in load 
bearing areas. The slow degradation rate and 
unfavorable water contact angle are among its 
drawbacks (79). Hydroxyapatite is the most 
applied ceramic doped with MITAs in our 
review. HA is a calcium phosphate similar 
to that of human hard tissues in morphology 
and composition with an identical Ca/P ratio 
to bone apatite. HA has been extensively used 
in BTE due to its stability in physiological 
conditions, biocompatibility, osteoinductivity 
and non-toxicity and non-inflammatory 
nature (80). In our review, HA was introduced 
into animal defects alone or with natural 
or synthetic polymers such as collagen, 
PLLA, PLGA and chitosan. Such composite 
scaffolds have the advantage of making the 
scaffold osteoconductive and reinforcing the 
mechanical characteristics of scaffold further 
mimicking natural bone architecture (81). The 
efficacy of MITAs in improving bone tissue 
regeneration was evaluated in mesoporous 
bioactive glasses (MBG) by some researchers. 
We excluded all these studies because as 
explained before, the specific influence of an 
ion could be obscured by the synergistic effect 
they may have with other ions in MBG. There 
is a valuable review on MBG incorporating 
MITAs for bone tissue engineering which can 
be considered in addition to the present study 
(82).

A meta-analysis by shanbhag et al. 
indicated statistically significant benefits in 
loading scaffolds with cells with a weighted 
mean difference of NBF of 15.59–49.15% and 
8.60–13.85% NBF in large- and small-animal 
models, respectively (83). In our review, seven 
studies seeded the scaffolds with various types 
of cells. In one study, hypoxia preconditioned 
BMSCs enhanced NBF more than normal 
BMSCs and they both scored higher NBF 
compared to unloaded HA + Li scaffold (8). 
Wang et al. and Gu et al. loaded all scaffolds 
with cells and prabha et al. reported no 
enhancement of NBF when loading scaffolds 
with hBMSCs (10, 37, 84). Yan et al. and Gao 
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et al. also showed improved NBF using rabbit 
and mouse ADSCs (40, 42). 

Animal models play a crucial role in 
testing bone scaffolds for understanding 
their osteoconductivity, biocompatibility, 
mechanical properties, degradation, and 
interaction with host tissues (85). Small animal 
models used in BTE research are primarily 
rodents (rats and mice) and rabbits (83). In 
our review, almost all studies used small 
animals because of significantly lower costs, 
and easier housing and handling (86). Rodents 
also have a less varied genetic background in 
terms of biological response which makes the 
statistical analysis credible (87). However, 
before generalizing results from these studies 
to humans, the differences in the structure and 
composition of these animals’ bones as well 
as faster skeletal change and bone turnover 
in these animals should be considered (88). 
Another limitation is the inability to create 
multiple defects to study different materials 
simultaneously (89). In two studies, larger 
animals, namely beagle dogs and goats were 
used. Dogs are widely used in musculoskeletal 
research, given the similarities in structure 
and physiology of canine and human bone. 
However, limitations of ethical issues, high 
costs, handling difficulties exist (89). One 
study used normal human osteoblast cell line, 
claiming that it mimics the cellular event of 
the in-vivo intramembranous bone formation 
process and reported the study as an In-vivo 
model which was excluded by the agreement 
of authors (90).

Critical-sized defects were created in 
these animal models in order to observe 
osteoinductive capacity of scaffolds 
incorporating MITAs. A critical-sized defect 
is defined as “the smallest osseous wound 
that does not heal spontaneously over a long 
period of time or more clinically relevant, 
that which has no mineralized area ˃ 30% 
after 52 weeks” (85). For the rat calvarial 
defect, 8 mm is generally reported to be the 
critical size; however, smaller defects have 
been investigated in models with bi-parietal 
defects, resulting in fewer sacrificed animals 
(91). In our review, nine articles regarded 5 
mm defects as critical which is suggested to be 
replaced with 8 mmm defects in future studies. 
Three studies evaluated the newly designed 

scaffolds in subcutaneous implantation, two 
of which could not report NBF (10, 37, 48). 
Therefore, it is suggested that more accurate 
defect models be used in BTE researches. 

The most frequently conducted test to 
evaluate In-vivo bone formation were µ-CT, and 
H&E staining. The biological performances of 
a scaffold regarding cell adhesion, proliferation 
and mineral deposition as well as formation of 
mature bone with vasculature are factors to be 
evaluated during In-vivo implantation testing 
(92). µ-CT is a non-destructive computational 
technique capable of providing 3D images of 
engineered constructs as well as quantitative 
data based on the fact that new bone, fibrous 
tissue and scaffolds have different coefficients 
of absorption (93). Studies have also focused 
on other aspects of bone substitutes containing 
MITAs such as in tumor suppression 
capability, angiogenetic ability, immune 
response induction, etc. (94-96). However, 
all the articles not evaluating the formation of 
new bone were excluded in our study because 
they were not consistent with the aims of this 
review.

Limitations 
Few studies did not have the control 

group, and several variations including cell 
sources, scaffold types, fabrication methods, 
and measured parameters between included 
studies do not permit general conclusions to 
be drawn. 

Conclusion

A systematic review on In-vivo studies 
on MITAs used in Bone tissue engineering 
showed several important findings: 1) 
various materials can be successfully used to 
incorporate MITAs and one must opt for the 
composition that renders the best biological 
response as well as physicochemical 
characteristics. 2) Of the various fabrication 
methods applied in BTE for integrating MITAs 
into scaffolds, it is important to consider their 
effect on controlled release of ion besides 
the ease of method as many ions can have 
deleterious effects if the therapeutic doses 
are surpassed. 3) A tendency to enhance new 
bone formation with the use of MITAs can be 
observed in the studies. However, this needs 
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to be validated with further studies comparing 
various ions with each other and the different 
concentration in the same animal model using 
critical-sized defects.  

report.
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