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Abstract

An important field of bone tissue engineering (BTE) concerns the design and fabrication of
smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor
cells. One of these additives that has gained growing attention is metallic ions as therapeutic
agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as
other potential mechanical, and antimicrobial enhancements may vary depending on the ion entity,
fabrication method, and biomaterials used. Therefore, this article provides an overview on current
status of In-vivo application of MITAs in BTE and the remaining challenges in the field. Electronic
databases, including PubMed, Scopus, Science direct and Cochrane library were searched for
studies on MITAs treatments for BTE. We searched for articles in English from January-2000 to
October-2019. Abstracts, letters, conference papers and reviews, In-vitro studies, studies on alloys
and studies investigating effects other than enhancement of new bone formation (NBF) were
excluded. A detailed summary of relevant metallic ions with specific scaffold material and design,
cell type, animal model and defect type, the implantation period, measured parameters and obtained
qualitative and quantitative results is presented. No ideal material or fabrication method suited to
deliver MITAs can yet be agreed upon, but an investigation into various systems and their drawbacks
or potential advantages can lead the future research. A tendency to enhance NBF with MITAs can be
observed in the studies. However, this needs to be validated with further studies comparing various
ions with each other in the same animal model using critical-sized defects.
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Introduction

Successful induction of bone tissue
regeneration is a complicated process requiring
harmonic interplay of cells, cell supporting
scaffolds and bioactive materials (1). An
important field of bone tissue engineering
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(BTE) concerns the design and fabrication of
smart scaffolds capable of inducing cellular
interactions and differentiation of osteo-
progenitor cells. This can be achieved by
loading the engineered scaffold with various
therapeutic agents that give the scaffold a dual
function: as a bed for new tissue growth and as
a carrier for controlled in-situ drug delivery (2).
One of these additives that has gained growing
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attention is metallic ions as therapeutic agents
(MITAs). As it has been shown in the recent
literature that some ions are able to guide the
differentiation of stem cells into a desired
path, there is great hope in employing them
in regenerative medicine (3-5). MITAs
have essential roles in body as cofactors of
various enzymes, in cellular metabolism,
signaling pathways, ionic channels and other
biologic procedures (6). Metallic ions enhance
osteogenic differentiation of mesenchymal
stem cells & regulate osteoclast-mediated
bone resorption. Pathways known to be
involved in osteogenic differentiation such
as Wnt signaling has been reported to be
influenced by stimulation with trace ions like
lithium, magnesium, strontium, or zinc (7).
Other related osteogenic markers such as
Runt-related transcription factor 2 (Runx2),
osteonectin, osteopontin, and collagen type
one are also enhanced with addition of
metallic ions (8-12). MITAs also have a role
in promoting differentiation, migration and
capillary formation of endothelial cells as
well as inducing secretion of pro-angiogenic
factors such as vascular endothelial growth
factor (VEGF) (13-15). Inorganic ions are also
bacteriostatic which give the scaffold impunity
against bacterial adhesion & infection which
disturb tissue integration (16, 17). Moreover,
MITAs have relatively lower risk of cancer
compared with recombinant proteins or
genetic modifications (18). The bioactivity of
a bone scaffold depends on the interaction of
its constituent molecules with stem cells and
pre-osteoblasts at the interface (19). Along
with the growth factor proteins such as bone
morphogenetic protein (BMP) family or other
peptides and small molecules, research has
been focused on metallic ions (20-22). Their
prominent advantages against growth factors
and other organic drugs are the lower expense,
relative stability during fabrication procedure
and higher function in lower concentrations
(21, 23). Local delivery of these metal ions
compared to taking them via oral routes has
the advantage of better control over dose and
distribution of the drug (24). Moreover, the
ionic state of a few metallic ions is unstable
and may cause toxic effects in case of direct
ingestion. In case of systemic distribution,
non-specific adverse effects in neurologic,
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cardiologic, hematologic or endocrine systems
may be observed (25,26). Itshould be noted that
designing a scaffold that regulates the specific
amount of ion released in a particular period
is necessary to prevent local toxic effects and
ion’s side effect on the metabolism of adjacent
cells (27). Modulating release kinetics of ions
from scaffold in a controlled manner, reduces
the accumulation of ion and dose-dependent
toxicity and results in induction of favorable
cell behavior (3). Different methods such as
Ion exchange, solvent casting, salt leaching,
electrospinning, three dimensional (3D)
printing, freeze-drying, and laser sintering
have been applied in fabrication of bone
scaffolds incorporating MITAs (28-33). These
inorganic ions can be incorporated into various
materials such as bioactive glasses, glass
ceramics, calcium phosphates, hydroxyapatite
(HA), alpha and beta-tricalcium phosphates,
biodegradable polymers and composite
scaffolds. This addition alters degradation
behavior, mechanical characteristics and
biological function of scaffolds (34). In this
systematic review, we aimed to analyze In-
vivo studies on MITAs less commonly applied
in BTE and present an overview upon their
efficacy in enhancing bone regeneration.

Experimental
This study has been designed and
conducted according to the preferred

reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines (35).
Electronic databases, including PubMed,
Scopus, Science direct and Cochrane
library were searched for studies on MITAs
treatments for BTE. The following keywords
were used: bone tissue engineering/bone
substitute/scaffold [title/abstract] AND ion/
mineral/names of organic ions each searched
separately [title/abstract]. We searched for
articles in English from January 2000 to
October 2019 and checked the reference list of
related reviews and the following journals for
additional relevant studies: (1) Biotechnology
and Bioengineering; (2) Journal of Biomedical
Materials Research; (3) Journal of Tissue
Engineering; (4) and Acta Biomateralia.
A total of 1405 articles were collected.
Eligibility checking and data extraction were



performed independently by two reviewers.
Any disagreements were resolved by
discussion. Inclusion and exclusion criteria
of the study were applied through the initial
screening of titles and abstracts. Total of 284
duplicate results were excluded. Abstracts,
letters, conference papers, and reviews were
excluded (n=3). Abstracts and titles were
screened and 1055 articles were excluded as
they were In-vitro. Full-texts for the remainder
were obtained (n = 63). Studies on alloys
& mixtures of ions (n=19) were excluded
because the osteoinductive activity could not
be completely attributed to the one specific
component. Also studies investigating ion
effects other than enhancement of new bone
formation (NBF) (n = 10) were excluded.
One study was excluded because of the
unacceptable /n-vivo model. Figure 1 shows a
diagram of study selection process.

The included studies were screened for
the scaffold and fabrication method, cell type
used, the animal model and size & location
of the defect, the implantation period, study
groups, measured parameters and obtained
qualitative and quantitative results. A meta-
analysis could not be conducted due to the
heterogeneity of the data.

Results

A total of 33 articles met our inclusion
and exclusion criteria and were reviewed.
The data is summarized in Table 1. Studies
were classified according to the metallic ion
added to the scaffolds. Strontium was the most
studied ion, with 13 In-vivo studies (12, 36-
47), followed by magnesium with 6 (9, 30, 48-
51) and zinc with 5 articles (22, 52-55). Two
articles were found on silicon (10, 56), lithium
(8, 57) and iron (58, 59) each, and copper (60),
silver (61), and cobalt (62, each had only one
studies.

These metallic ions were incorporated into
various scaffolds: A total of 11 articles used
polymers such as poly-caprolactone (PCL) (n
=5)(10,37,38,48,51), poly lactic-co-glycolic
acid (PLGA) (n=2) (9, 30), Poly-L-lactic acid
(PLLA) (n = 2) (39, 61), chitosan (60), and
combination of collagen and alginate (62).
Among the 13 studies which used ceramics,
six used hydroxyapatite (HA) (8, 46, 49, 53,
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56, 58), four used calcium polyphosphates
(CPP) (43-45, 57), three used tricalcium
phosphate (TCP) (22, 54, 55). One study used
magnesium phosphate 2D nano-sheets (50).
Another ten studies evaluated the efficacy
of ions in composite scaffolds. HA was used
in combination with collagen in 3 studies
(47, 52, 53), with poly(y-benzyl-I-glutamate)
(PBLG) in 2 studies (40, 63), with PCL in 2
other studies (36, 61), and with PLLA in one
study (41). Collagen polymer was combined
with amorphous calcium phosphate porous
microspheres in a study on strontium ion (52).

Only six studies implanted the designed
scaffolds with stem cells to enhance bone
formation. These included rabbit adipose
derived stem cells (ADSCs) (40), rabbit bone
marrow derived stem cells (BMSCs) (45), mice
ADSCs (42), human telomerase immortalized
BMSCs (37), hypoxia preconditioned BMSCs
(8), and finally MC3T3el (mouse pre-
osteoblast) cell lines (10).

Most frequently used animal model was rat
(n=17) followed by rabbit (n=12). Two studies
used mice while one study reported beagle
dog (30) and another reported goat (64) as its
animal model.

The most commonly used defect model
was a critical sized calvarial defect. Two
studies investigated NBF in 8 mm defects (9,
61) while seven used 5 mm defects (12, 36,
39, 46, 56, 60, 62). A 15 mm defect was used
in a goat model calvarium (49), as well as a
10 mm rabbit calvarial defect (43) and a 2mm
mouse cranial defect (38). One infected cranial
defect was used to evaluate the antimicrobial
effect of silver along with osteoinductivity
(61). Eleven femoral (22, 40-42, 44, 51-53,
55, 58, 59), five tibial (8, 47, 50, 57, 65) and
one radial defects (45) were also studied in
varying dimensions considered to be critical.
Subcutaneous implantation was applied in 3
studies (10, 37, 48) and one study reported a
split mouth socket preservation in a dog model
(30).

Average implantation period was 11.27
weeks which varied between one study
evaluating NBF after 2 weeks (50) and another
long-term study waiting for a maximum of 60
weeks (55). However, most of the studies (n=11)
had a 12-week implantation period, followed
by 10 studies having an 8-week period.
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-Types of studies: In-viva

-Language: English;

Electronic database advanced search

-Search terms: “bone tissue engineering/bone substitute/scaffold” [title/abstract]
AND “ion/mineral/names of organic ions” each searched separately [title/abstract]

-Publication dates: January 2000 to October 2019;

Pubmed: 306 Sciencedirect: 294 Scopus: 771

Handsearch in Journals:

Blotechnology and Bloengineering, Journal
of Bliomedical Materials Research, Journal
of lissue Engineering, Acta Blomateralia

(n=34)

1405 scarch results

Nuplicates excluded
(n=284)

Records screened

(n-1121)

tull-text articles assessed for
eligibility

(n=63)

Not relevant according to title
abstract screening

{n=1055)

Reviews

(n-3)

Excluded according to their full
texts

(n=30)

19 because they were studying mixtures
ofions

10 for reporting other effects other than

Final articles used for data synthesis

[n=33)

a

1 for not using acceptable In-vive medel

!

l

Other metallic ions Strontium
(n-20) (n=13)
Magnesium Zinc Silicon Lithium Iron Copper Silver Cobalt
(n=6) (n=5) (n=2) (n=2) (n=2) (n=1) (n=1) (n=1)

Figure 1. PRISMA Flowchart.
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Different parameters including X-ray
radiography or computed tomography (CT)
measured bone mineral density, micro-CT
derived new bone volume, mechanical testings,
Dual x-ray absorptiometry, histomorphomteric
analysis with Haemotoxylin and Eosin (H&E)
and Goldner-Masson’s trichrome staining,

Control

quantitative real time polymerase chain
reaction (QRT-PCR) measurement of different
RNAs and western blot of the resultant
proteins were evaluated. Other stainings such
as von kossa for calcium detection, toluidine
blue for cell nuclei, acid fuschin, fast green,
sirius red for collagen, tartrate-resistant acid

CT bone density

CT (HU)

HA

Group

Control

Figure 2. CT scanning and histological analysis of bone formation at 3 months after the transplantation. (A): Representative
radiographic analysis of bone formation in the control (a), hydroxyapatite (HA) (b), and strontium (Sr) groups (c). (B): Representative
histological analysis (H&E staining) of bone formation in the control (a), HA (b), and Sr group (c). (C): Representative histological
analysis (Masson staining) of bone formation in the control (a), HA (b), and Sr group (c). Scale bar = 800 um (B, C, low magni-
fication); = 75 pm (B, C, high magnification). ***, p <.001. Abbreviations: CT, computed tomography; HA, hydroxyapatite; HU,
Hounsfield unit; Sr, strontium (46). - The images are provided with permission from Stem Cells Publications, John Wiley & Sons

Publication group (license number: 4755280758795).
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phosphatase for osteoclast and giemsa for
osteoblast as well as chloroacetate esterase
for neutrophils and human vimentin antibody
staining for endothelium was conducted in
some studies. Immunohistochemistry analysis
helped in identification of various osteogenic
markers such as osteonectin, osteopontin,
collagen type I, B-catenin as well as angiogenic
factors such as vascular endothelial growth
factors (VEGF), basic fibroblast growth factor
(BFGF).

Discussion

Biomimetic bone scaffolds incorporating
additional therapeutic agents like MITAs are
a main focus of BTE. The specific biological
advantage that these ions bring to scaffolds
as well as other potential mechanical, and
antimicrobial ~enhancements may vary
depending on the ion entity, fabrication
method, and biomaterials used. Herein, we
categorized in-vivo studies on MITAs in
bone substitutes with the aim of clarifying
their efficacy and identifying the affecting
parameters.

The most frequently used ion, strontium
(Sr), is a naturally occurring ion with 98% of it
localized in the skeleton, exchanged with Ca?*
in the HA crystal lattice (3). Sr*", a structurally
similar ion to calcium, helps promote
osteogenic differentiation of mesenchymal
stem cells (MSCs) via wnt/Bcatenin and Ras/
MAPK signaling pathways (46) and inhibits
osteoclastic activity. Strontium has thus been
widely investigated in both In-vitro and In-vivo
studies and has been shown to enhance NBF,
remodeling and ossseointegration when added
alone to scaffolds or combined with other ions
(41, 66-68). However, high doses of Sr have
been shown to have adverse effect on calcium
absorption and bone mineralization, therefore,
engineering a controlled release scaffold is
of great importance (69). In our review, Sr
enhanced NBF in nine studies while two studies
had no control scaffolds without Sr to make
the comparison possible. One study failed
to report any significant difference between
laponite-strontium ranelate containing PCL
and PCL alone with or without cells (37)
which could be due to ectopic implantation.
Gao et al., reported bone volume/total volume
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(BV/TV) resembling that of natural bone
using Sr-HA-graft-poly(benzyl-L-glutamate)
nanocomposite microcarriers loaded with
ADSCs in a mice 2mm critical-sized femoral
defect model (42).

Magnesium was also extensively studied
in combination with PLGA and PCL polymers
and HA. Mg? is another element found in
human body, half of which is deposited
in bone tissue (70). Studies have shown a
correlation between magnesium deficiency
and osteoporosis, attributable to changes
in parathyroid hormone (PTH), Vitamin
D levels and increased pro-inflammatory
cytokine secretion such as substance P,
TNF-a, IL-1B, and RANKL (71). Similar to
strontium, magnesium works by stimulating
MSCs proliferation, differentiation while
suppressing osteoclast activity. Moreover,
it has been demonstrated that magnesium
increases osteogenic gene expression and
protein expression of collagen type X and
VEGF (72). Additionally, magnesium is
reported to have antibacterial properties,
beneficial in reducing infection risk in bone
grafting procedures (73). Almost all studies
reviewed in this article, proved magnesium
efficient in promoting NBF with the exception
of a study by Suryavanshi et al. that reported
no NBF using PCL and MgO in subcutaneous
implantation. The scaffold, however, was
proved to be biocompatible (48). In another
study by Deng et al. in a goat bi-parietal 15
mm calvarial defect model, the synergistic
effect of magnesium and human recombinant
bone morphogenetic protein 2 (th-BMP2) was
also demonstrated (49).

Another frequently studied ion is zinc,
a trace element essential for neural growth,
immunological functions and many other
cellular processes (74). Zinc is well recognized
as a critical mineral for bone health and
development, as its deficiency is associated
with bone growth lag and mal-development
as well as osteoporosis (75). Zn?" affects
MSCs through ERK1/2 signaling and hinders
osteoclasts by antagonizing NF-kB pathway
(76). Zinc also processes antibacterial effects
owing to production of reactive oxygen
species (ROS) and aids in wound healing
(77). Of the five In-vivo studies reported in
this study, one study provided no control for
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comparison (53), while another study showed
that both BPTCP and Zn-TCP were able to
stimulate regeneration of new bone closing the
defect but Zn-TCP showed a faster rise in bone
mineral density and resulted in a more mature
and denser trabecular bone (54). A long-term
(60 weeks) study on bone formation in white
New Zealand rabbit transcortical femoral
defect model also presented that Zn-HA-TCP
was able to promote NBF compared to HA-
TCP (55). Similar results were obtained in an
8-week study on Zn-HA-Collagen in SD rat
model (52). Samanta et al. conducted a study
in a rabbit femoral defect model where TCP-
Zn was compared to TCP-Ti and TCP-Mg.
NBF was increased to 65.06 + 3.0 in TCP-Ti,
compared to 50.55 = 2.0 in TCP-Mg, 48.40 +
2.0 in TCP-Zn, and 34.24 + 2.0 in TCP alone
(22). More similar studies are recommended
to make the comparison between various ions
possible.

Data on other less commonly applied
metallic ions can be found in Table 1.
The readers are referred to two published
narrative reviews on metallic ions for further
explanation of the functions of these ions (3,
72). Undoubtedly, the most frequently used
ion in bone structure and bone substitutes
is calcium. However, as their obvious role
in bone tissue regeneration has been well
documented, the authors agreed to limit this
systematic review on ions, whose potential
role and efficacy are yet to be determined.
The authors also excluded studies on mixtures
of ions and alloys as such studies would not
help in drawing conclusions regarding the
efficacy of a specific ion. There is a body of
In-vivo literature on magnetic scaffolds, of
which only the ones that housed animals in
normal cages are included. Studies stimulating
bone formation by creating a magnetic field
around the animal during implantation period
were excluded because it was agreed that
the underlying mechanism is rather different
than that of MITAs. The readers are kindly
encouraged to read a review by Xu et al. on
magnetic responsive scaffolds in BTE (78).

As presented in table 1, various polymers,
ceramics and composites are functionalized
using MITAs. Among the polymers, PCL
seems to be more frequently used which could
be explained by its relative simple application
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in the fabrication of scaffolds. PCL is a non-
immunogenic synthetic polymer which can be
dissolved in most of organic solvents, there
are many methods to its fabrication and it can
be blended with other polymers or ceramics
to hand in composite scaffolds with enhanced
mechanical properties especially in load
bearing areas. The slow degradation rate and
unfavorable water contact angle are among its
drawbacks (79). Hydroxyapatite is the most
applied ceramic doped with MITAs in our
review. HA is a calcium phosphate similar
to that of human hard tissues in morphology
and composition with an identical Ca/P ratio
to bone apatite. HA has been extensively used
in BTE due to its stability in physiological
conditions, biocompatibility, osteoinductivity
and non-toxicity and non-inflammatory
nature (80). In our review, HA was introduced
into animal defects alone or with natural
or synthetic polymers such as collagen,
PLLA, PLGA and chitosan. Such composite
scaffolds have the advantage of making the
scaffold osteoconductive and reinforcing the
mechanical characteristics of scaffold further
mimicking natural bone architecture (81). The
efficacy of MITAs in improving bone tissue
regeneration was evaluated in mesoporous
bioactive glasses (MBG) by some researchers.
We excluded all these studies because as
explained before, the specific influence of an
ion could be obscured by the synergistic effect
they may have with other ions in MBG. There
is a valuable review on MBG incorporating
MITAs for bone tissue engineering which can
be considered in addition to the present study
(82).

A meta-analysis by shanbhag et al
indicated statistically significant benefits in
loading scaffolds with cells with a weighted
mean difference of NBF of 15.59-49.15% and
8.60—13.85% NBEF in large- and small-animal
models, respectively (83). In our review, seven
studies seeded the scaffolds with various types
of cells. In one study, hypoxia preconditioned
BMSCs enhanced NBF more than normal
BMSCs and they both scored higher NBF
compared to unloaded HA + Li scaffold (8).
Wang et al. and Gu et al. loaded all scaffolds
with cells and prabha et al. reported no
enhancement of NBF when loading scaffolds
with hBMSCs (10, 37, 84). Yan et al. and Gao



et al. also showed improved NBF using rabbit
and mouse ADSCs (40, 42).

Animal models play a crucial role in
testing bone scaffolds for understanding
their  osteoconductivity, biocompatibility,
mechanical properties, degradation, and
interaction with host tissues (85). Small animal
models used in BTE research are primarily
rodents (rats and mice) and rabbits (83). In
our review, almost all studies used small
animals because of significantly lower costs,
and easier housing and handling (86). Rodents
also have a less varied genetic background in
terms of biological response which makes the
statistical analysis credible (87). However,
before generalizing results from these studies
to humans, the differences in the structure and
composition of these animals’ bones as well
as faster skeletal change and bone turnover
in these animals should be considered (88).
Another limitation is the inability to create
multiple defects to study different materials
simultaneously (89). In two studies, larger
animals, namely beagle dogs and goats were
used. Dogs are widely used in musculoskeletal
research, given the similarities in structure
and physiology of canine and human bone.
However, limitations of ethical issues, high
costs, handling difficulties exist (89). One
study used normal human osteoblast cell line,
claiming that it mimics the cellular event of
the in-vivo intramembranous bone formation
process and reported the study as an In-vivo
model which was excluded by the agreement
of authors (90).

Critical-sized defects were created in
these animal models in order to observe
osteoinductive  capacity = of  scaffolds
incorporating MITAs. A critical-sized defect
is defined as “the smallest osseous wound
that does not heal spontaneously over a long
period of time or more clinically relevant,
that which has no mineralized area > 30%
after 52 weeks” (85). For the rat calvarial
defect, 8 mm is generally reported to be the
critical size; however, smaller defects have
been investigated in models with bi-parietal
defects, resulting in fewer sacrificed animals
(91). In our review, nine articles regarded 5
mm defects as critical which is suggested to be
replaced with 8§ mmm defects in future studies.
Three studies evaluated the newly designed
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scaffolds in subcutaneous implantation, two
of which could not report NBF (10, 37, 48).
Therefore, it is suggested that more accurate
defect models be used in BTE researches.

The most frequently conducted test to
evaluate In-vivo bone formation were u-CT, and
H&E staining. The biological performances of
ascaffold regarding cell adhesion, proliferation
and mineral deposition as well as formation of
mature bone with vasculature are factors to be
evaluated during /n-vivo implantation testing
(92). u-CT is a non-destructive computational
technique capable of providing 3D images of
engineered constructs as well as quantitative
data based on the fact that new bone, fibrous
tissue and scaffolds have different coefficients
of absorption (93). Studies have also focused
on other aspects of bone substitutes containing
MITAs such as in tumor suppression
capability, angiogenetic ability, immune
response induction, etc. (94-96). However,
all the articles not evaluating the formation of
new bone were excluded in our study because
they were not consistent with the aims of this
review.

Limitations

Few studies did not have the control
group, and several variations including cell
sources, scaffold types, fabrication methods,
and measured parameters between included
studies do not permit general conclusions to
be drawn.

Conclusion

A systematic review on In-vivo studies
on MITAs used in Bone tissue engineering
showed several important findings: 1)
various materials can be successfully used to
incorporate MITAs and one must opt for the
composition that renders the best biological
response as well as physicochemical
characteristics. 2) Of the various fabrication
methods applied in BTE for integrating MITAs
into scaffolds, it is important to consider their
effect on controlled release of ion besides
the ease of method as many ions can have
deleterious effects if the therapeutic doses
are surpassed. 3) A tendency to enhance new
bone formation with the use of MITAs can be
observed in the studies. However, this needs
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to be validated with further studies comparing
various ions with each other and the different
concentration in the same animal model using
critical-sized defects.

report.
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