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Abstract

Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography–
mass spectrometry (GC–MS) was used for the extraction and determination of 13 polycyclic 
aromatic hydrocarbons (PAHs) in mineral water samples. In this procedure, the suitable 
combination of extraction solvent (500 µL chloroform) and disperser solvent (1000 µL 
acetone) were quickly injected into the water sample (10.00 mL) by Hamilton syringe. After 
centrifugation, 500 µL of the lower organic phase was dried under a gentle stream of nitrogen, 
re-dissolved in chloroform and injected into GC-MS. Chloroform and acetone were found to be 
the best extraction and disperser solvent, respectively. Validation of the method was performed 
using spiked calibration curves. The enrichment factor ranged from 93 to 129 and the recovery 
ranged from 71 to 90%. The linear ranges for all the PAHs were 0.10-2.80 ngmL-1. The relative 
standard deviations (RSDs) of PAHs in water by using anthracene-d10 as internal standard, were 
in the range of 4-11% for most of the analytes (n = 3). Limit of detection (LOD) for different 
PAHs were between 0.03 and 0.1 ngmL-1. The method was successfully applied for the analysis 
of PAHs in mineral water samples collected from Tehran.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) 
are a group of various cyclic organic compounds 
with two or more fused aromatic rings in their 
structures (1). PAHs are principally byproducts 
of incomplete burning of organic substances 

occurring naturally or the result of human 
intervention such as  jungle fires, domestic and 
industrial heating appliances, factories and power 
plants to generate electricity, transportation 
industry, cooking, volcanic activities and so 
on (2-5). Therefore, due to such extensive 
sources, they have been noticed in water, air, 
soil, agriculture products and nearly everywhere 
in the environment (3, 6). The possible sources 
of PAHs in water may be listed as below: 
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extremely low (A). Therefore, despite the use of 
exceedingly sensitive analytical devices for the 
analysis of samples the results will not have enough 
accuracy and precision (19). Consequently, it is 
essential to develop and validate an extraction 
method and preconcentration procedures for 
these compounds prior to their instrumental 
analysis (19). The sample preparation method, 
must have high enough efficiency in separation 
and concentration of the trace analytes from 
the matrix and is well-matched with analytical 
device (20). 

In order to separate, clean up and concentrate 
PAHs from water samples, many methods 
including liquid–liquid extraction (LLE) (21-
28), solid-phase extraction (SPE) (25, 29-32), 
liquid phase microextraction (LPME) (33-
36), dispersive liquid–liquid microextraction 
(DLLME) (37-40), micelle-mediated 
preconcentration (MMP) (41), hollow fiber-
based LPME technique (HF-LPME) (42). single-
drop microextraction (SDME) (43), Dispersive 
Liquid-Liquid Microextraction (DLLME) 
based on the Solidification of Floating Organic 
Drop (SFO), ultrasound-assisted emulsification 
microextraction (USAEME) (44), and acid-
induced cloud point extraction (ACPE) (45), 
hollow fiber liquid–liquid microextraction (HF-
LLME) are used (37). Due to time consuming 
and high cost of LLE and SPE methods, the 
miniaturized extraction procedures such as 
DLLME have mostly been considered (6, 24, 
37). DLLME method has been presented by 
Rezaee et al. in 2006. In this procedure a suitable 
combination of dispersive and extraction solvents 
(a polar water miscible, a high-density solvent, 
respectively) is pushed into an aqueous sample 
using a microsyringe. After forming a cloudy 
solution and centrifugation, the content of the 
lower phase can be analyzed by an appropriate 
analytical method (38). DLLME procedure has 
many advantages such as low cost and therefore, 
has been used by many researchers for aqueous 
sample preparation (46). In this study, parameters 
affecting DLLME procedure and GC-MS 
techniques were examined and optimized to 
determine 13 priority PAHs in real mineral 
water samples collected from Tehran market. In 
the European Union, bottled water may be called 
mineral water when it is bottled at the source and 

Atmospheric deposition (via wet and dry particle 
deposition and gross gas absorption), wastewater 
treatment plant discharges,  tributaries, storm 
water runoff, oil spills, ground water discharges 
from underground water and runoff of PAHs 
from contaminated sites (7). After the arrival 
of PAHs to the atmosphere, they are transferred 
into water by direct surface contact or as a result 
of precipitation (8). Occurrence of PAHsinwater 
resources, including drinking water have been 
reported indifferent parts of the world (8). WHO 
reported that water is a very significant source 
of PAHs, and in drinking water, fluoranthene, 
phenanthrene, pyrene and anthracene were 
usually detected (9, 10). Among the routes of 
exposure of general public such as inhalation 
of ambient and indoor air, dermal absorption, 
and/or dietary intake, drinking water is also 
important (11, 12).

Naphthalene is the most abundant PAH 
in water and the U.S. Department of Health 
and Human Services has concluded that 
it is reasonably anticipated to be a human 
carcinogen. However, PAHs show an extensive 
range of toxicities. For example, according to 
the international agency for research on cancer 
(IARC) classification system, benzo[a]pyrene 
(BaP) as one of the most known is classified in 
group 1 and some of them are also categorized 
as group 2A or 2B carcinogens (13, 14). Due to 
their recognized and doubted carcinogenicity 
and/or mutagenicity, many of these compounds 
form part of public health concern (15). It has 
not been possible to define a threshold level for 
PAHs, below which risk would be insignificant 
and therefore a tolerable daily intake could 
not be set for these compounds. As a result, it 
was suggested that exposures to them should 
be as low as reasonably achievable (16). The 
international organizations, i.e. World Health 
organization (WHO), Environmental Protection 
Agency (EPA) and European Community (EC), 
have recommended the continual detection and 
quantification of these compounds in drinking 
waters (17) and  established the maximum 
residue levels (MRLs) for benzo[a]pyrene (BaP) 
as the most well-known component of this group 
(18).

Due to low solubility, the concentration of 
organic pollutants, especially PAHs in water is 
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has undergone no or minimal treatment. The U.S. 
Food and Drug Administration (FDA) classifies 
mineral water as water containing at least 250 
parts per million total dissolved solid (TDS), 
originating from a geologically and physically 
protected underground water source. In many 
places, however, the term “mineral water” is 
colloquially used to mean any bottled water as 
opposed to tap water. 

Experimental

Reagents and materials
Naphthalene (Naph.), acenaphthene 

(Ace.), flourene (Fl.), phenanthrene (Phen.), 
anthracene (Ant.), anthracene-d10 (Ant.d10), 
pyrene (Pyr.), benzo[a]anthracene (B[a]A), 
chrysene (Chy.), benzo[b]fluoranthene (B[b]
F), benzo[k]fluoranthene (B[k]F), benzo[a]
pyrene (B[a]P), dibenz[a,h]anthracene (D[ah]
A) and benzo[ghi]perylene (B[ghi]P) with 
purity higher than 98% were purchased from 
Sigma-Aldrich/Fluka/ Supelco (Germany). 
HPLC grade isooctane, toluene, acetonitrile, 
dichloromethane, tetrachloroethylene, n-hexane, 
ethanol, 2-propanol, methanol, acetone and 
chloroform were obtained from Chem-lab 
Belgium. Ultrapure water was obtained from a 
Milli-Q plus ultra-pure water system (Millipore, 
Molsheim, France). Mineral water samples 
were collected from Tehran and used without 
any prior treatment. Stock standard solutions of 
PAHs were individually prepared by dissolving 
10 mg of each in 10 mL toluene of HPLC grade 
(Merck, Germany). 

Calibration standards
Individual stock standard solutions (1 mgmL-

1) of the PAHs were prepared in toluene. All the 
solutions were transferred to amber glass vials 
and stored at 4°C. They were kept for 30 min. at 
ambient temperature prior to their use. A mixed 
intermediate standard solution at a concentration 
of 100 ngmL-1 was prepared via appropriate 
dilution of the stock solutions in methanol. 
This solution was used as a spiking solution 
for validation experiments.  Spiked calibration 
standards at concentration levels of 0.35, 0.7, 1.4, 
2.8, and 5.6 ngmL-1 were prepared by addition 
of 35 μL, 70 μL, 140 μL, 280 μL and 560 μL of 

mixed standard stock solution to 10 mL of blank 
water samples in each case.

GC–MS analysis
Analyses were carried out by using a 7000 

Agilent triple Quadrupole MS system coupled 
with a 7890A GC, equipped with a split/splitless 
injection port, an autosampler model Agilent 
7693, and electronic ionization. A HP-5MS 
5% Phenyl Methyl Silox, Agilent 19091s-433 
capillary column was used (30 m × 0.25 mm 
I.D. and 0.25 μm film thickness). Helium with a 
purity of 99.99% and a flow rate of 1 mLmin-1 
was used as carrier gas. 

Method validation
Method efficiency is a very important 

parameter which should be assessed by all testing 
laboratories to guarantee the validity of routine 
analysis (47). In the present study, the spiked 
calibration curves (five points) for all the analytes 
were attained by plotting the ratio of peak area 
of each compound to that of internal standard 
against the concentration of the corresponding 
analyte. The graphs were constructed using 
triplicate analysis over the concentration range 
of 0.1-2.8 ngmL-1. Recovery and repeatability 
were determined at concentration levels of 0.4, 
1 and 2.5 ngmL-1. Each concentration level was 
repeated 3 times per day, and this was performed 
for three consecutive days. Internal standard 
(anthracene-d10) was used at a concentration 
equal to 0.7 ngmL-1. Blank sample (n = 3) was 
analyzed along with other samples every day. For 
each compound, the mass fragment (m/z) with 
the highest intensity was selected as quantifier 
ion and its peak area at different concentration 
levels was used to construct the calibration 
curve. Limits of detection (LODs) and Limits 
of quantification (LOQs) were calculated based 
on the signal-to-noise ratio of equal to 3 and 10, 
respectively. The validation parameters were 
compared to EU provision No. 836/2011 (47).

DLLME procedure
Ten milliliter ultrapure water was placed in a 

15 mL screw cap glass test tube and spiked with 
PAHs and anthracene-d10 (as internal standard) 
at concentrations 1 and 0.5 µgmL-1, respectively. 
A mixture of 500 µL chloroform and 1000 µL 
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acetone (as extraction and disperser solvent, 
respectively) was quickly injected into the sample 
solution in three portions, with a 500 µL Hamilton 
syringe. A cloudy solution was formed after 
adding the mixture of extraction and disperser 
solvent in the test tube. The test tube containing 
ultrapure water, extraction and disperser solvent 
was centrifuged (Hettich Zentrifugen Universas 
320R) for 3 min at 2500 rpm. The upper layer 
was discarded and 500 µL of the lower phase 
(extraction solvent) was removed by a Hamilton 
syringe and transferred to 1.5 mL amber glass 
vial. The content of the vial was dried under a 
gentle stream of nitrogen at room temperature 
and re-dissolved in 70 µL chloroform. The vial 
was placed in auto sampler and 2 µL of the 
contents was injected into the gas chromatograph 
in splitless mode. The approximate volume of the 
sedimented phase was about 550 µL.

Calculation of enrichment factor and 
extraction recovery

The enrichment factor (EF) is defined as 
the ratio between the analyte concentration in 
the sedimented phase (Csed.) and the spiking 
level (C0) (38). The Csed.was obtained from 
calibration graph of direct injection of PAHs 
standard solution in methanol at the range of 
0.25-5 mgL-1.

The extraction recovery (ER) is defined as 
the percentage of the total analyte amount in the 
sedimentedphase (Csed. × Vsed.) to total analyte 
amount in aqueous solution (Vaq × C0) (38).

Results and Discussion

Gas chromatography mass spectrometry 
determination

Analysis was accomplished in the SIM mode 
based on the use of one target as quantification 
ion and two confirmation ions. PAHs were 
recognized according to their retention times, 
target and confirmation ions (Table 1). The 
quantification was based on the peak area ratio 
of the targets to that of internal standard.In this 
study, the injector temperature was retained 
at 280°C and injection was performed in the 
splitless mode. The initial oven temperature was 
maintained at 60°C for 0.5 min, increased to 
230°C at a ramp rate of 3°C min−1 and kept for 

0.5 min, then increased to 290°C at 5°C min−1 
and hold for 10 min at the final temperature.  
Data acquisition was delayed for 12 min. The 
ionization was performed in ion source with 
electron impact mode (70ev). The ion source 
and triple quadrupole mass analyser temperature 
were kept at 230 and 280°C, respectively. A mass 
range of m/z 50-500 was scanned to find the 
retention time and diagnostic ions (quntification 
and confirmation ions) of the analytes. Retention 
time and mass spectrum of each of the standards 
were used to identify and confirm them. For 
quantitative determination, PAH standards 
and samples were analyzed in selected ion 
monitoring (SIM) mode.  The retention time, 
diagnostic ions and quantification ion for each 
analyte are presented in Table1. 

Method validation
According to the calibration graphs, the 

linearity for Naphthalene, Acenaphthene, 
Flourene and for Phenanthrene, Anthracene, 
Pyrene, Benz[a]anthracene, Chrysene, Benzo[b]
fluoranthene, Benzo[k]fluoranthene, Benzo[a]
pyrene, Dibenz[a,h]anthracene, Benzo[ghi]
perylene were observed over the concentration 
range of 0.1-2.8 and 0.35-2.8 ngmL-1, 
respectively. The coefficients of determination 
(r2) were between 0.983 and 0.999 for all PAHs. 
It shows that the extraction process and analytical 
method after validation have enough efficiency 
for the determination of PAHs at trace levels. 
In the present study, we used spiked calibration 
standard approach to overcome the problems 
caused by the matrix. In this approach, calibration 
standards are prepared by the addition of standard 
solution to blank water samples that are subjected 
to the same sample preparation procedure which 
is intended to be used for unknown samples. In 
this way, the standard sample matrices will have 
the same composition as the unknown samples 
and therefore the effect of matrix is reflected 
in both standards and unknown samples. The 
calibration curve is constructed using these 
spiked calibration standards and it is easily used 
to calculate the concentration of analyte (s) in 
unknown sample without being concerned about 
the matrix effects. The developed method has 
the advantage of using spiked calibration curves 
that minimize the matrix interferences.
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under optimized conditions are summarized 
in tables 2 and 3. As shown in these tables, 
all of the validation parameters examined 
were in compliance with EU provision No. 
836/2011 (47). Therefore, the attained validation 

Retention time
(min)

Diagnostic ions (m/z)
PAHs Quantification

ion
Confirmation ions

 m/z (%)

18.203128127(44.8), 129(33.5), 102(22.5)Naphthalene

30.846153154(93.2), 152(53.1), 151(24.6)Acenaphthene

34.790166165(94.0), 167(17.6), 139(10.5)Fluorene

42.151178179(18.8), 176(23.7), 152(13.5)Phenanthrene

42.292188189( 16.7), 187(13.9), 160(11.1)Anthracene-d10

42.392178179(19.2), 176(24.5), 152(12.2)Anthracene

52.786202203(20.3), 200(22.1), 101(21.8)Pyrene

59.971228226(28.4), 229(22.6), 227(10.7)Benz[a]anthracene

60.217228226(31.3), 229(22.6), 113(23.9)Chrysene

68.106252253(68.6), 250(28.1), 126(55.6)Benzo[b]fluoranthene

68.176252253(24.4), 250(23.5), 126(23.9)Benzo[k]fluoranthene

68.634252253(27.4), 250(24.1), 126(21.1)Benzo [a]pyrene

75.396278276(29.3), 138(32.8), 139(32.5)Dibenz[a,h]anthracene

76.699276277(25.1), 274(23.1), 138(43.0)Benzo[g,h,i]perylene

Table 1. Retention time and selected diagnostic ions of the studied analytes.

Limits of detection (LODs) and Limits of 
quantification (LOQs) were calculated based on 
the signal-to-noise ratio of equal to 3 and 10, 
respectively. Recovery, repeatability, RSD%, 
R2, LODs, LOQs and HORRAT of the method 

HORRATbAverageCV
)%(

Average 
Recovery(%)

Spiking level (ngmL-1)

PAHs 2.51.00.4

CV 
(%)

Recovery 
(%)

CV 
(%)

Recovery 
(%)

CV 
(%)

Recovery 
(%)

0.5117112736871652Naphthalene

0.49811277694872Acenaphthenen

0.2581780495468Flourene

0.25791080396462Phenanthrene

0.2584482597574Anthracene

0.511657598721865Pyrene

0.488556698511103Benzo[a]anthracene

0.36724601178479chrysene

0.488465510826116Benzo[b]fluoranthene

0.2488684394586Benzo[k]fluoranthene

0.498385811829109Benzo[a]pyrene

0.8179017632010414102Dibenz[a,h]anthracene

0.5107165510771580Benzo[ghi]perylene

Table 2. Accuracy and precision of the DLLME procedure and GC-MS method in determination of 13 PAHs in ultrapure water (n = 3)a.

a Extraction conditions: extraction method, DLLME procedure; ulrapure water  sample volume, 10 mL; spiking level, 0.4-2.5 ngmL-1; 
disperser solvent (acetone) volume, 1000 µL; extraction solvent (chloroform) volume, 500 µL; internal standard (anthracene–d10), 0.7 
ngmL-1;   centrifugation time and  rpm, 3min, 2500, room temperature.

.b HORRAT, the Horwitz Ratio
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parameters are acceptable and the optimized and 
validated method can be used to analyze the real 
samples. Hence, the optimized method were 
applied to analyze 50 mineral water samples 
which were collected from Tehran market.

Dispersive liquid-liquid microextraction 
optimization

The recovery rate is an important indicator 
at the extraction process. It was usually used 
to evaluate the efficiency of the DLLME 
procedure. There are many parameters that affect 
the recovery. In the present study, the effect of 
different factors such as the type and volume of 
extraction and disperser solvent, rpm and time 
of centrifuge on the recovery were evaluated 
and optimized. To evaluate the effect of these 
parameters on the recovery, we used 10.00 mL 
of ultrapure water containing 1.00 ngmL-1 of 
each PAH and 0.70 ngmL-1 of antracene-d10 
as internal standard.  All the optimization trials 
were performed three times.

The kind of extraction solvent
 In order to have efficient extraction, the 

selection of a suitable extraction solvent is 

essential.  The extraction solvent must have 
some characteristics including: low solubility 
in water, low volatility, High affinity to extract 
the desired compounds and the ability to form 
a clear and detectible peak in the chromatogram 
(18). In this study, different organic solvents 
were used as extraction solvent with higher 
or lower density than water. The solvents 
including tetrachloroethylene, toluene, carbon 
tetrachloride, chloroform and n-hexane were 
examined and their ability to extract the analytes 
were assessed (Figure 1). In order to evaluate 
the extraction efficiency of each of the organic 
solvents, three spiked samples were prepared. 
The extraction and centrifugation processes 
were fulfilled according to the stated method. 
But instead of 500 µL of each extraction solvent, 
250 µL was used.  The recovery values for 
the 13 studied PAHs are shown in Figure 1. 
The results indicated that chloroform and tetra 
chloroethylene have higher extraction efficiency 
than the others. The extraction efficiencies 
attained for chloroform and tetra chloroethylene 
are similar and there were not any significant 
differences in recovery values between them. 
But a number of compounds did not result in 

 Regression equationLRe (ngmL-1)EFdr2LODc (ngmL-1)LOQb (ngmL-1)PAHs

y= 2.507  +0.68690.10-2.80101.400.9920.030.10Naphthalene

y=1.3637  +0.09540.10-2.80115.780.9950.030.10Acenaphthene

     y=1.3686  +0.16630.10-2.80115.710.9970.030.10Flourene

y=3.6569  +0.71570.35-2.80112.860.9950.100.35Phenanthrene

y=3.1554  +0.33560.35-2.80120.000.9960.100.35Anthracene

y=1.4566  +0.07720.35-2.8092.860.9960.100.35Pyrene

y=0.7353  -0.08280.35-2.80121.430.9870.100.35Benzo[a]anthracene

y=0.8012  +0.00140.35-2.80102.860.9950.100.35chrysene

y=0.5118  -0.12700.35-2.80120.000.9830.100.35Benzo[b]fluoranthene

y=0.6653  -0.06600.35-2.80125.710.9960.100.35Benzo[k]fluoranthene

y=0.3071  -0.05010.35-2.80118.570.9930.100.35Benzo[a]pyrene

y=0.0389  +0.00380.35-2.80128.570.9990.100.35Dibenz[a,h]anthracene

y=0.0705  -0.00340.35-2.80101.430.9990.100.35Benzo[ghi]perylene

Table 3. Figures of merit for the DLLME procedure and GC-MS method in determination of 13 PAHs in ultrapure watera.

a Extraction conditions: extraction method, DLLME procedure; ulrapure water  sample volume, 10 mL; spiking level, 0.1-2.8 ngmL-1; 
disperser solvent (acetone) volume, 1000 µL; extraction solvent (chloroform) volume, 500 µL; internal standard (anthracene–d10), 0.7 
ngmL-1;  centrifugation time and  rpm, 3min, 2500,  room temperature.
b LOQ, limit of quantification for a S/N = 9.   
c LOD, limit of detection for a S/N = 3.
d EF, enrichment factor.
e LR, linear range.
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normal peaks when tetra chloroethylene was 
used to extract them. Therefore, chloroform was 
chosen as the optimum extraction solvent.

extraction method, DLLME procedure, 
ultrapure water  sample volume, 10 mL, spiking 
level, 2.8 ngmL-1; disperser solvent (acetone) 
volume, 1000 µL; extraction solvent volume, 
500 µL; centrifugation, 3 min., 2500 rpm, room 
temperature.

Extraction solvent volume
To evaluate the effect of extraction solvent 

volume on the recovery values of the studied 
analytes, different volumes of chloroform (100, 
250, 500 and 1000 µL) were examined. In this 
study, three spiked samples were prepared for 
each of the volumes of the extracting solvent. 
At all the experiments a constant volume of 
1000 µL of the dispersive solvent was applied. 
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The extraction and centrifugation processes 
were done according to procedure described in 
section 2.3. As shown in Figure 2, the recovery 
values of PAHs increase gradually with rising 
the volume of the extracting solvent in the 
range of 100-500 µL. Figure 2 shows that the 
volumes of 500 and 1000 µL of the extraction 
solvent have the highest extraction efficiencies 
but there is not any significant differences in 
extraction efficiency between them. The results 
had no repeatability in case of the volumes less 
than 100 µL. Therefore, the volume of 500 µL 
of chloroform was chosen as the best volume of 
extraction solvent.

The kind of disperser solvent
The selection of an appropriate disperser 

solvent is very important for the efficient 
extraction. The disperser solvent must have 

Figure 2. Effect of the extraction solvent volume on the recovery of PAHs. Extraction conditions: extraction method, DLLME procedure, 
ultrapure water  sample volume, 10 mL; spiking level, 2.8 ngmL-1; disperser solvent volume, 1000 µL; extraction solvent, chloroform; 
centrifugation, 3 min., 2500 rpm, room temperature.
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some characteristics including: the ability to be 
distributed in aqueous samples in order to form 
very small droplets and increase the surface 
area in contact between the analytes and the 
extracting solvent and solubility in the aqueous 
samples and the organic extraction solvents. 
In addition, the compound should also be not 
expensive and highly toxic. Therefore, the 
ability to form a cloudy solution or an effective 
emulsion depends significantly on the amount 
and type of the disperser solvents. In this work, 
acetone, acetonitrile, methanol and ethanol were 
tested and their influence on the recovery values 
were evaluated (Figure 3). For this purpose, 
five spiked samples were supplied for each 
of disperser solvent. Then each of them was 
extracted by using a combination of 500 µL of 
chloroform as the extracting solvent and 1000 
µL of each of the mentioned disperser solvents. 
The extraction and centrifugation processes 
were accomplished based on the aforesaid 
procedure in section 2.3. All the lower phase was 
collected and dried, then re-dissolved in 70 µL 
of chloroform. The results of these experiments 
are presented in Figure 3. Maximum recovery 
values obtained for all 13 PAHs when acetone 
was used as disperser solvent compared to the 
others. Therefore, acetone was selected and used 
as disperser solvent in this study.

Dispersive solvent volume
In DLLME procedure, the dispersive 
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Figure 3. Effect of different disperser solvent volume (n = 4) on the recovery of PAHs. Extraction conditions: extraction method, 
DLLME procedure, ultrapure water  sample volume, 10 mL; spiking level, 2.8 ngmL-1; disperser solvent volume, 1000 µL; extraction 
solvent volume (chloroform), 500 µL; centrifugation, 3 min., 2500 rpm, room temperature.

solvent volume is a critical parameter and its 
effect should be determined on the efficiency 
of extraction. For examining the effect of this 
factor on the recovery values of the 13 PAHs, 
five spiked samples were prepared for each of 
the dispersive solvent volume. In this work, 
the different volumes (100, 250, 500 and 1000 
µL) of acetone as dispersive solvent containing 
500 µL chloroform as the extracting solvent 
were applied for extraction. The extraction and 
centrifugation processes were accomplished 
based on the aforementioned technique in 
Section 2.3. The settled phase was collected 
completely and dried, then re-dissolved in 70 µL 
of chloroform. As shown in Figure 4, increasing 
the dispersive solvent volume results gradually in 
increased recovery values of PAHs. The highest 
efficiency of extraction was achieved when 1000 
µL of acetone was used. Then, a mixture of the 
extracting and dispersve solvents with volumes 
of 500 and 1000 µL, respectively were selected 
as the optimum volumes for further trials.

Centrifugation time
In order to assess the effect of centrifugation 

time on the extracting efficiency, a range of 
centrifugation times (1, 3 and 6 min) were tried. 
For each of the mentioned times, five spiked 
samples were prepared. For extraction, a mixture 
containing 500 µL chloroform and 1000 µL 
acetone were used as the extracting and disperser 
solvents, respectively. The extraction process 
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centrifugation times (1, 3 and 6 min) were tried. For each of the mentioned times, five spiked 

samples were prepared. For extraction, a mixture containing 500 µL chloroform and 1000 µL 

acetone were used as the extracting and disperser solvents, respectively. The extraction process 

was accomplished according to the described procedure. All of the experiments were performed 

at 5000 rpm.  The results (recovery values) are shown in Figure 5. According to the results, the 

centrifugation times 3 and 6 minutes have the highest effect on the amount of recovery but there 

was not a significant difference between them. Therefore, 3 min was applied as the optimum 

centrifugation time for further tests. 

Figure 4. Effect of the disperser solvent volume (n = 4) on the recovery of PAHs. Extraction conditions: extraction method, DLLME 
procedure, ultrapure water  sample volume, 10 mL; spiking level, 2.8 ngmL-1; disperser solvent, acetone, extraction solvent volume, 500 
µL; centrifugation, 3 min., 2500 rpm, room temperature.

was accomplished according to the described 
procedure. All of the experiments were performed 
at 5000 rpm.  The results (recovery values) are 
shown in Figure 5. According to the results, the 
centrifugation times 3 and 6 minutes have the 
highest effect on the amount of recovery but there 
was not a significant difference between them. 
Therefore, 3 min was applied as the optimum 
centrifugation time for further tests.

Analysis of real samples
Khalili Zanjani MR, et al. (26) and Rezaee 

M, et al. (38) have reported the use of DLLME 
method along with GC-FID for the analysis of 
polycyclic aromatic hydrocarbons.

Khalili Zanjani MR, et al. have used 
1-undecanol as the extraction solvent while 
Rezaee M, et al., have used tetra chloroethylene 
for extraction. 
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and analysis were accomplished according to the described procedure. A blank and three spiked 

ultrapure water at concentration of 1 ngmL-1 were used beside the real water samples, per 

working day. The results of the samples analysis show that the concentrations of PAHs in the 
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Figure 5. Effect of centrifugation time (n = 3) on the recovery of PAHs. Extraction conditions: extraction method, DLLME procedure; 
ultrapure water  sample volume, 10 mL; spiking level, 2.8 ngmL-1; disperser solvent (acetone) volume, 1000 µL; extraction solvent 
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In the present study, chloroform was used 
as the extraction solvent and mass detector was 
used coupled to the gas chromatograph.

Satisfactory figures of merit were obtained. 
The optimized and validated procedure was used 
to determine PAHs in 50 real water samples 
(bottled mineral water). No treatment was 
conducted such as filtration on the samples, 
prior to extraction process. Extraction process, 
centrifugation and analysis were accomplished 
according to the described procedure. A blank 
and three spiked ultrapure water at concentration 
of 1 ngmL-1 were used beside the real water 
samples, per working day. The results of the 
samples analysis show that the concentrations 
of PAHs in the real samples (mineral water 
samples) were lower than the LOQ in all the 
samples. There are only few published papers 
for determination of PAH in mineral water. In 
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Ma J, Xiao R, Li J, Yu J, Zhang Y and Chen L. 
Determination of 16 polycyclic aromatic hydrocarbons 
in environmental water samples by solid-phase 
extraction using multi-walled carbon nanotubes as 
adsorbent coupled with gas chromatography–mass 
spectrometry. J. Chromatogr. A (2010) 1217: 5462-
5469.
Sanchesa S, Leitãob C, Penetrac A, Cardosoc VV, 
Ferreirac E, Benolielc MJ, Barreto Crespoa MT and 
Pereira VJ. Direct photolysis of polycyclic aromatic 
hydrocarbons in drinking water sources. J. Hazardous 
Materials (2011) 192: 1458-1465.
Díaz-Moroles NE, Garza-Ulloa HJ, Castro-Ríos R, 
Ramírez-Villarrea EG, Barbarín-Castillo JM, de la 
Luz Salazar-Cavazo M and Waksman-de Torres N. A 
comparison of the performance of two chromatographic 
and three extraction techniques for the analysis of 
PAHs in sources of drinking water. J. Chromatogr. Sci. 
(2007) 45: 57-62.
Zhang L, Dong L, Ren L, Shi S, Zhou L, Zhang T and 
Huang Y. Concentration and source identification of 
polycyclic aromatic hydrocarbons and phthalic acid 
esters in the surface water of the Yangtze River Delta. 
China J. Environ. Sci. (2012) 24: 335-342.
Ozcan S, Tor A and Aydin ME. Determination of 
polycyclic aromatic hydrocarbons in waters by 
ultrasound-assisted emulsification-microextraction 
and gas chromatography–mass spectrometry. Anal. 
Chim. Acta (2010) 665: 193-199.
Khalili-Fard V, Ghanemi K, Nikpour Y and Fallah-
Mehrjardi M. Application of sulfur microparticles 
for solid-phase extraction of polycyclic aromatic 
hydrocarbons from sea water and wastewater samples. 
Anal. Chem. Acta (2012) 714: 89-97.
Rodenburg LA. Mass Balances on Selected Polycyclic 
Aromatic Hydrocarbons (PAHs) in the NY/NJ 
Harbor Estuary (2006). Available from: http://www.
nyas.org/asset.axd?id=9402584c-e704-4190-8c74-
db34ad417816. 
WHO. Polycyclic Aromatic Hydrocarbons, Selected 
Non-Heterocyclic (EHC 202, 1998) (1998). Available 
from: URL:  http://www.inchem.org/documents/ehc/

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

one of these studies, Humood F. Al-Mudhafa 
et al. (48) analyzed twenty-five bottled water 
brands for extractable semivolatiles (SVs), 
including PAHs, listed in the US-EPA 525.2 
method; and found that all samples were free of 
SVs contamination. Our results are in agreement 
with the above mentioned study. 

But in some studies, some contamination 
have been found in mineral water. For example, 
In one of these studies, Ma Teresa Pena et al. 
(49) determined eighteen PAHs in drinking 
water samples (tap, bottled, fountain, well) and 
reported sum of their concentration between 
127.8 ngL−1 and 413.2 ngL−1. In another study, 
Albert Guart et al. (50) detected PAHs in 18 out 
of 77 bottled water samples at levels between 
0.005 and 0.202 μgL-1. They found that the most 
detected compound was naphthalene, which was 
detected in 16 samples at concentrations of 0.005-
0.202 μgL-1. Also, CuneytGuler, (51) found that 
a significant number of bottled waters in Turkey 
contained some elements (e.g. sodium, chloride, 
sulfide, fluoride, PAHs and several heavy metals) 
above the maximum concentration allowed for 
bottled waters by the Turkish legislation.  

Considering the few studies regarding PAHs 
contamination in drinking water in Iran, to get a 
clear picture of contamination of drinking water, 
comprehensive monitoring of PAHs in water in 
different provinces and seasons are suggested.

Conclusions

In the present study, dispersive liquid-liquid 
microextraction (DLLME) procedure coupled 
with gas chromatography mass spectreometry 
was used for determination of trace amounts of 
thirteen polycyclic aromatic hydrocarbons in water 
samples. After optimization of the parameters 
affecting the extraction and analysis efficiency, the 
identification and quantification of the PAHs were 
carried out by applying the mentioned techniques 
for the analysis of mineral water samples. The 
results showed that these two techniques in 
combination, result in a satisfactory recovery 
and precision. No contamination of mineral 
water samples with PAHs were found among the 
samples. However, considering the high risk of 
contamination with PAHs in Iran, a comprehensive 
survey for PAHs in water is recommended.
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